Non-Equilibrium Thermodynamics of Micro Technologies
Abstract
:1. Second Law of Thermodynamics and Its Importance in Microscale Systems
2. The 9 Contributions Published in This Special Issue
Acknowledgments
Conflicts of Interest
References
- Suryawanshi, P.L.; Gumfekar, S.P.; Bhanvase, B.A.; Sonawane, S.H.; Pimplapure, M.S. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 2018, 189, 431–448. [Google Scholar] [CrossRef]
- Kaisare, N.S.; Vlachos, D.G. A review on microcombustion: Fundamentals, devices and applications. Prog. Energy Combust. Sci. 2012, 38, 321–359. [Google Scholar] [CrossRef]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.M. A review of entropy generation in microchannels. Adv. Mech. Eng. 2015, 7. [Google Scholar] [CrossRef]
- Mies, M.J.M.; Rebrov, E.V.; Deutz, L.; Kleijiv, C.R.; De Croon, M.H.J.M.; Schouten, J.C. Experimental validation of the performance of a microreactor for the high-throughput screening of catalytic coatings. Ind. Eng. Chem. Res. 2007, 46, 3922–3931. [Google Scholar] [CrossRef]
- Hunt, G.; Torabi, M.; Govone, L.; Karimi, N.; Mehdizadeh, A. Two-dimensional heat and mass transfer and thermodynamic analyses of porous microreactors with Soret and thermal radiation effects—An analytical approach. Chem. Eng. Process Process Intensif. 2018, 126, 190–205. [Google Scholar] [CrossRef]
- Zhai, Y.; Xia, G.; Chen, Z.; Li, Z. Micro-PIV study of flow and the formation of vortex in micro heat sinks with cavities and ribs. Int. J. Heat Mass Transf. 2016, 98, 380–389. [Google Scholar] [CrossRef]
- Xia, G.; Ma, D.; Zhai, Y.; Li, Y.; Liu, R.; Du, M. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers. Manag. 2015, 105, 848–857. [Google Scholar] [CrossRef]
- Champagne, P.; Olson, J.R.; Loung, V.; Dobbins, C.L.; Saito, E.; Kenton, A.C.; Dobbins, C.L. Microcryocooler for tactical and space applications. Adv. Cryog. Eng. 2014, 357, 357–364. [Google Scholar] [CrossRef]
- Cao, H.S.; Vanapalli, S.; Holland, H.J.; Vermeer, C.H.; ter Brake, H.J.M. A micromachined Joule–Thomson cryogenic cooler with parallel two-stage expansion. Int. J. Refrig. 2016, 69, 222–231. [Google Scholar] [CrossRef]
- Wang, K.; Vafai, K.; Wang, D. Analytical characterization of gaseous slip flow and heat transport through a parallel-plate microchannel with a centered porous substrate. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 854–878. [Google Scholar] [CrossRef]
- Lee, J.; Mudawar, I. Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks—Part 1: Experimental methods and flow visualization results. Int. J. Heat Mass Transf. 2008, 51, 4315–4326. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.K.; Li, Z.W.; Yang, W.M. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel 2010, 89, 708–715. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, Q.; Yu, Y.; Wu, Y.; Liao, S.; Sha, Z. Simulation of a micro channel separate heat pipe (MCSHP) under low heat flux and low mass flux. Appl. Therm. Eng. 2017, 119, 25–33. [Google Scholar] [CrossRef]
- Abdoli, A.; Jimenez, G.; Dulikravich, G.S. Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot. Int. J. Therm. Sci. 2015, 90, 290–297. [Google Scholar] [CrossRef]
- Zhang, K.; Chou, S.K.; Ang, S.S. Fabrication, modeling and testing of a thin film Au/Ti microheater. Int. J. Therm. Sci. 2007, 46, 580–588. [Google Scholar] [CrossRef]
- Li, T.; Wu, L.; Liu, Y.; Wang, L.; Wang, Y.; Wang, Y. Micro-heater on membrane with large uniform-temperature area. In Proceedings of the 2006 IEEE Sensors Conference, Daegu, South Korea, 22–25 October 2006; pp. 571–575. [Google Scholar]
- Gupta, N.K.; Gianchandani, Y.B. Porous ceramics for multistage Knudsen micropumps—Modeling approach and experimental evaluation. J. Micromech. Microeng. 2011, 21, 095029. [Google Scholar] [CrossRef]
- Pang, L.; Wang, M.; Wang, W.; Liu, M.; Wang, J. Optimal thermal design of a stacked mini-channel heat sink cooled by a low flow rate coolant. Entropy 2013, 15, 4716–4731. [Google Scholar] [CrossRef]
- Ting, T.W.; Hung, Y.M.; Guo, N. Entropy generation of nanofluid flow with streamwise conduction in microchannels. Energy 2014, 64, 979–990. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Dinçer, İ.; Zamfirescu, C. Sustainable Energy Systems and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Elazhary, A.M.; Soliman, H.M. Entropy generation during fully-developed forced convection in parallel-plate micro-channels at high zeta-potentials. Int. J. Heat Mass Transf. 2014, 70, 152–161. [Google Scholar] [CrossRef]
- Naphon, P. Study on the exergy loss of the horizontal concentric micro-fin tube heat exchanger. Int. Commun. Heat Mass Transf. 2011, 38, 229–235. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Chua, K.J. Entropy generation analysis of H2/air premixed flame in micro-combustors with heat recuperation. Chem. Eng. Sci. 2013, 98, 265–272. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Chua, K.J.; Ouyang, J.; Teng, J.H. Analysis of entropy generation distribution in micro-combustors with baffles. Int. J. Hydrogen Energy 2014, 39, 8118–8125. [Google Scholar] [CrossRef]
- Elliott, A.; Torabi, M.; Karimi, N. Thermodynamics analyses of porous microchannels with asymmetric thick walls and exothermicity: An entropic model of microreactors. J. Therm. Sci. Eng. Appl. 2017, 9, 041013. [Google Scholar] [CrossRef]
- Hunt, G.; Karimi, N.; Torabi, M. Analytical investigation of heat transfer and classical entropy generation in microreactors—The influences of exothermicity and asymmetry. Appl. Therm. Eng. 2017, 119, 403–424. [Google Scholar] [CrossRef]
- Thess, A. The Entropy Principle; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Naterer, G.F.; Camberos, J.A. Entropy-Based Design and Analysis of Fluids Engineering Systems; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bejan, A. Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Khan, A.; Abro, K.A.; Tassaddiq, A.; Khan, I. Atangana-Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study. Entropy 2017, 19, 279. [Google Scholar] [CrossRef]
- Govone, L.; Torabi, M.; Hunt, G.; Karimi, N. Non-equilibrium thermodynamic analysis of double diffusive, nanofluid forced convection in catalytic microreactors with radiation effects. Entropy 2017, 19, 690. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; Wang, J.; Zhu, Z. Analysis and optimization of trapezoidal grooved microchannel heat sink using nanofluids in a micro solar cell. Entropy 2018, 20, 9. [Google Scholar] [CrossRef]
- Zhang, Z.; Drapaca, C.; Zhang, Z.; Zhang, S.; Sun, S.; Liu, H. Leakage evaluation by virtual entropy generation (VEG) method. Entropy 2018, 20, 14. [Google Scholar] [CrossRef]
- Ternet, F.; Louahlia-Gualous, H.; Le Masson, S. Impact of microgroove shape on flat miniature heat pipe efficiency. Entropy 2018, 20, 44. [Google Scholar] [CrossRef]
- Mondal, P.K.; Wonwises, S. Assesment of thermodynamic irreversibility in a micro-scale viscous dissipative circular couette flow. Entropy 2018, 20, 50. [Google Scholar] [CrossRef]
- Badillo-Ruiz, C.; Olivares-Robles, M.; Ruiz-Ortega, P. Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties. Entropy 2018, 20, 118. [Google Scholar] [CrossRef]
- Shui, L.; Sun, J.; Gao, F.; Zhang, C. Flow and Heat Transfer in the Tree-Like Branching Microchannel with/without Dimples. Entropy 2018, 20, 379. [Google Scholar] [CrossRef]
- Deng, D.; Pi, G.; Zhang, W.; Wang, P.; Fu, T. Numerical Study of Double-Layered Microchannel Heat Sinks with Different Cross-Sectional Shapes. Entropy 2018, 21, 16. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torabi, M.; Karimi, N.; Ghiaasiaan, M.; Wongwises, S. Non-Equilibrium Thermodynamics of Micro Technologies. Entropy 2019, 21, 501. https://doi.org/10.3390/e21050501
Torabi M, Karimi N, Ghiaasiaan M, Wongwises S. Non-Equilibrium Thermodynamics of Micro Technologies. Entropy. 2019; 21(5):501. https://doi.org/10.3390/e21050501
Chicago/Turabian StyleTorabi, Mohsen, Nader Karimi, Mostafa Ghiaasiaan, and Somchai Wongwises. 2019. "Non-Equilibrium Thermodynamics of Micro Technologies" Entropy 21, no. 5: 501. https://doi.org/10.3390/e21050501
APA StyleTorabi, M., Karimi, N., Ghiaasiaan, M., & Wongwises, S. (2019). Non-Equilibrium Thermodynamics of Micro Technologies. Entropy, 21(5), 501. https://doi.org/10.3390/e21050501