Entropy Generation of Forced Convection during Melting of Ice Slurry
Abstract
:1. Introduction
2. Entropy Generation Rate during Flow in a Straight Pipe
2.1. Entropy Generation during the Melting of Ice Slurry; Flow with Phase Separation
2.2. Ice Slurry Flow and Heat Transfer in Pipes
2.3. Results of Calculations
- ○
- During pipe flow, the lowest entropy generation rates were characteristic of small mass fractions of ice in the turbulent flow area and for the flow velocity of 1.5 < w < 2 ms−1.
- ○
- In the laminar flow area, the lowest entropy generation rates corresponded to the highest analyzed mass fraction of ice xs = 30%.
- ○
- Regardless of the share of solid particles, the minimum entropy generation rate criterion requires the application of high flow velocities, which for heat flux density values of 10 kWm−2 are greater than w > 1 ms−1.
3. Entropy Generation in Heat Exchangers Fed with Ice Slurry
3.1. Air Cooler
- ○
- constant thermal efficiency values 20; 40 kW,
- ○
- constant air flow stream 2.2 kgs−1,
- ○
- constant inlet air temperature Ta-in = 20 °C,
- ○
- various ice slurry mass flux values 0.3 1.25 kgs−1,
- ○
- various mass fractions of ice 5 ≤ xs ≤ 30%,
- ○
- constant number of pipes and feeds in the heat exchanger made of di = 0.01 m pipes.
3.2. Fluid Cooler
- ○
- constant thermal efficiency values 20; 30, 40 kW,
- ○
- a change in the temperature of the fluid cooled in the exchanger between Tf−in = 12, 20 °C and Tf−in = 2, 5 °C (Tf = 10, 15 K),
- ○
- various ice slurry mass flux values 0.312 kgs−1,
- ○
- various mass fractions of ice 5 ≤ xs ≤ 30%,
- ○
- two geometrical configurations of the exchanger: np = 6, ns = 1; np = 12, ns = 2.
4. Conclusions
Funding
Conflicts of Interest
Nomenclature
A | heat transfer surface, m2 |
Be | Bejan number, |
Bi | coefficients in Equations (11) and (12) (Table 2) |
cf | Fanning friction factor, |
Ci | coefficients in Equations (15) and (16) (Table 3) |
cp | specific heat, Jkg−1K−1 |
d | diameter, m |
mass flux density, kgm−2s−1 | |
Gz | Graetz number, |
He | Hedström number, |
i | specific enthalpy, Jkg−1 |
K* | consistency index |
KF | phase change number, |
l | length, m |
mass flux, kgs−1 | |
n* | flow behavior index |
np | plate number |
ns | number of feeds |
Nu | Nusselt number, |
p | pressure, Pa |
P | circumference, m |
PCM | phase change materials |
heat flux density, Wm−2 | |
heat flux, W | |
R | individual gas constant, Jkg−1K−1 |
ReIS | Reynolds number for Bingham fluid, |
ReK | generalized Reynolds number according to Kozicki, |
s | specific entropy, Jkg−1K−1 |
entropy generation rate referred to a unit of length, WK−1m−1 | |
entropy generation rate, WK−1 | |
T | temperature, K |
mean temperature, K | |
volumetric flow rate, m3s−1 | |
w | mean velocity, ms−1 |
thermal capacity, WK−1 | |
xs | mass fraction of ice, % |
volume fraction of ice, % | |
Greek symbols | |
ν | specific volume, m3kg−1 |
α | heat transfer coefficient, Wm−2K−1 |
ε | enhancement efficiency |
η | exchanger efficiency |
λ | thermal conduction coefficient, Wm−1K−1 |
μp | dynamic plastic viscosity, Pas |
ρ | density, kgm−3 |
τp | yield shear stress, Pa |
τw | shear stress at pipe wall, Pa |
Subscripts | |
a | air |
ai | carrier fluid |
calc | calculated value |
crit, C | critical value |
et | ethanol |
F | fluid |
h | hydraulic |
H | heat transfer |
i | internal, ordinal number |
in | inlet |
IS | ice slurry |
l | length |
L | laminar |
o | baseline value |
out | outlet |
ref | reference value |
S | ice, ice crystal |
T | turbulent |
w | wall |
Δp | flow resistance |
References
- Kitanovski, A.; Poredos, A. Concentration distribution and viscosity of ice-slurry in heterogeneous flow. Int. J. Refrig. 2002, 25, 827–835. [Google Scholar] [CrossRef]
- Niezgoda Żelasko, B. Heat transfer of ice slurry flows in tubes. Int. J. Refrig. 2006, 29, 437–450. [Google Scholar] [CrossRef]
- Niezgoda-Żelasko, B.; Zalewski, W. Momentum transfer of ice slurries flows in tubes. Experimental investigation. Int. J. Refrig. 2006, 29, 418–428. [Google Scholar] [CrossRef]
- Kitanovski, A.; Vuarnoz, A.; Ata-Caesar, D.; Egolf, P.W.; Hansen, T.M.; Doetsch, C. The fluid dynamics of ice slurry. Int. J. Refrig. 2005, 28, 37–55. [Google Scholar] [CrossRef]
- Gulipart, J. Experimental study and calculation method of transport characteristics of ice slurries. In First Workshop on Ice Slurries of the International; Institute of Refrigeration: Yverdon-Les-Bains, Switzerland, 1999; pp. 74–82. [Google Scholar]
- Christensen, K.G.; Kauffeld, M. Heat transfer measurements with ice slurry. In International Conference of the International Institute of Refrigeration; University of Maryland: Washington, DC, USA, 1997; pp. 127–141. [Google Scholar]
- Jensen, E.; Christensen, K.; Hansen, T.; Schneider, P.; Kauffled, M. Pressure drop and heat transfer with ice slurry. In Proceedings of the 2000 International Refrigeration Conference at Purdue; Tree, D.R., Ed.; Purdue University: West Lafayette, IN, USA, 2000; pp. 521–529. [Google Scholar]
- Illán, F.; Viedma, A. Experimental study on pressure drop and heat transfer in pipe lines for brine based ice slurry Part II: Dimensional analysis and rheological model. Int. J. Refrig. 2009, 32, 1024–1031. [Google Scholar] [CrossRef]
- Mellari, S. Experimental investigations of ice slurry flows in horizontal pipe based on monopropyleneglycol. Int. J. Refrig. 2016, 65, 27–41. [Google Scholar] [CrossRef]
- Doetsch, C. Experimentelle Untersuchung und Modellierung des Rheologischen Verhaltens von Ice-Slurries. Ph.D. Thesis, Frauenhofer Institut-UMSICHT, Fachbereich Chemie Technikder Universität, Dortmund, Germany, 2001. [Google Scholar]
- Egolf, P.W.; Kitanovski, A.; Ata-Caesar, D.; Stamatiou, E.; Kawaji, M.; Bedecarrats, J.P.; Strub, F. Thermodynamics and heat transfer of ice slurries. Int. J. Refrig. 2005, 28, 51–59. [Google Scholar] [CrossRef]
- NiezgodaŻelasko, B.; Żelasko, J. Melting of ice slurry under forced convection conditions in tubes. Exp. Therm. Fluid Sci. 2008, 32, 1597–1608. [Google Scholar] [CrossRef]
- Sari, O.; Vuarnoz, D.; Meili, F.; Egolf, P.W. Visualization of ice slurries and ice slurry flows. In Second Workshop on Ice-Slurries of the International; Institute of Refrigeration: Paris, France, 2000; pp. 68–80. [Google Scholar]
- Dong, W.I. Experimental study on flow and pressure drop of ice slurry for various pipes. In Fifth Workshop on Ice-Slurries of the International; Institute of Refrigeration: Stockholm, Sweden, 2002. [Google Scholar]
- Niezgoda-Żelasko, B. Nowoczesne Systemy Chłodzenia Pośredniego; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2017; pp. 163–176. [Google Scholar]
- Doron, P.; Granica, D.; Barnea, D. Slurry flow in horizontal pipes-experimental and modeling. Int. J. Multiph. Flow 1987, 19, 535–547. [Google Scholar] [CrossRef]
- Orzechowski, Z. Przepływy Dwufazowe; PWN: Warszawa, Poland, 1990; pp. 61–86. [Google Scholar]
- Richardson, J.F.; Zaki, W.N. Sedimentation and fluidisation: PART 1. Trans. Inst. Chem. Eng. 1954, 32, 35–53. [Google Scholar] [CrossRef]
- Niezgoda-Żelasko, B.; Żelasko, J. Generalized non-Newtonian flow of iceslurry. Chem. Eng. Process. 2007, 46, 895–904. [Google Scholar] [CrossRef]
- Grozdek, M.; Rahmatollah Khodabandeh, R.; Per Lundqvist, P. Experimental investigation of ice slurry flow pressure drop in horizontal tubes. Exp. Therm. Fluid Sci. 2009, 33, 357–370. [Google Scholar] [CrossRef]
- Onokokoa, L.; Poirierb, M.; Galanisa, N.; Ponceta, S. Experimental and numerical investigation of isothermal ice slurry flow. Int. J. Therm. Sci. 2018, 126, 82–95. [Google Scholar] [CrossRef]
- Skelland, A.H.P. Non-Newtonian Flow and Heat Transfer; John Wiley & Sons Inc.: New York, NY, USA, 1967; pp. 5–469. [Google Scholar]
- Alsarraf, J.; Moradikazerouni, A.; Shahsavar, A.; Afrand, M.; Salehipour, H.; Tran, M.D. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Physica A 2019, 520, 275–288. [Google Scholar] [CrossRef]
- Charunkyakorn, P.; Sengupta, S.; Roy, S.K. Forced convective heat transfer in microencapsulated phase change material slurries: Flow in circular ducts. Int. J. Heat Mass Transf. 1991, 34, 819–833. [Google Scholar] [CrossRef]
- Niezgoda Żelasko, B.; Żelasko, J. Generalized non-newtonian heat exchange. Flow of ice slurry in pipes. Chem. Process Eng. 2009, 30, 453–473. [Google Scholar]
- Mogaji, T.S.; Kanizawa, F.T.; Filho, E.P.B.; Ribatski, G. Experimental study of the effect of twisted-tape insertson flow boiling heat transfer enhancement and pressure drop penalty. Int. J. Refrig. 2013, 36, 504–515. [Google Scholar] [CrossRef]
- Gunes, S.; Ozceyhan, V.; Buyukalaca, O. The experimental investigation of heat transfer and pressure drop in a tube with coiled wire inserts placed separetely from tube wall. Appl. Therm. Eng. 2010, 30, 1719–1725. [Google Scholar] [CrossRef]
- Akhavan-Behabadi, M.A.; Salimpour, M.R.; Pazouki, V.A. Pressure drop increase of forced convective condensation inside horizontal coiled wire inserted tubes. Int. Commun. Heat Mass Transf. 2008, 35, 1220–1226. [Google Scholar] [CrossRef]
- Zimparov, V.D.; Penchev, P.J. Performance evaluation of some tube inserts as heat transfer enhancement techniques. Heat Transf. Eng. 2006, 28, 39–46. [Google Scholar] [CrossRef]
- Bejan, A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev. Gén. Therm. 1996, 35, 637–646. [Google Scholar] [CrossRef]
- Balaji, C.; Hölling, M.; Herwig, H. Entropy generation minimization in turbulent mixed convection flows. Int. Commun. Heat Mass Transf. 2007, 34, 544–552. [Google Scholar] [CrossRef]
- Yilbas, B.S.; Yürüsoy, M.; Pakdemirli, M. Entropy Analysis for non-Newtonian fluid flow in annular pipe: Constant viscosity case. Entropy 2004, 6, 304–315. [Google Scholar] [CrossRef]
- Chang, T.B.; Wang, F.J. An analytical inbestigation into the Nusselt number and entropy generation rate of film condensation on horizontal plate. J. Mech. Sci. Technol. 2008, 22, 2134–2141. [Google Scholar] [CrossRef]
- Chen, B.C.; Wu, J.R.; Yang, S.A. Entropy generation of forced convection film condensation from downward flowing vapors onto a horizontal tube. J. Chin. Inst. Eng. 2008, 31, 349–354. [Google Scholar] [CrossRef]
- Eshafani, J.A.; Modirkhazeni, M. Entropy generation of forced convection film condensation on horizontal elliptical tube. C. R. Mec. 2012, 340, 543–551. [Google Scholar]
- Revellin, R.; Lips, S.; Khandekar, S.; Bonjour, J. Local entropy generation for saturated two-phase flow. Energy 2009, 34, 1113–1121. [Google Scholar] [CrossRef]
- Ezeora, O.S. Entropy generation analysis and optimum tube length of two-phase flow evaporator tube. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2008; pp. 2320.1–2320.8. [Google Scholar]
- Porras, F.; Guevara, P.; Soriano, G. A study for entropy generation of heat transfer fluid containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials. In Proceedings of the 11 LACCEI Latain American and Caribbean Conference for Engineering and Technology, Cancun, Mexico, 14–16 August 2013. [Google Scholar]
- Bouzid, N.; Saouli, S.; Aiboud-Saouli, S. Entropy generation in ice slurry pipe flow. Int. J. Refrig. 2008, 31, 1453–1457. [Google Scholar] [CrossRef]
- Kaymar, A.; Aminossadati, S.M.; Leonardi, C.R. Thermo-hydrodymanics of a helical coil heat exchanger operated with a phase-change ice slurry as a refrigerant. Heat Transf. Eng. 2019, 40, 283–294. [Google Scholar] [CrossRef]
- Singh, V.; Aute, V.; Radermacher, R. Usefunles of entropy generation minimization through a heat exchanger modelig tool. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2008; pp. 2199.1–2199.8. [Google Scholar]
- Ahmadi, P.; Hajabdollahi, H.; Dincer, I. Cost and entropy generation minimization of a cross-flow plate heat exchanger using multi-objective genetic algorithm. J. Heat Transf. 2011, 133, 021801. [Google Scholar] [CrossRef]
- Qun, C.; Jing, W.; MoRan, W.; Ning, P.; Yuan, G.Z. A comparison of optimization theories for energy conservation in heat exchanger groups. Chin. Sci. Bull. 2011, 56, 449–454. [Google Scholar] [Green Version]
- Laskowski, R.; Jaworski, M.; Smyk, A. Entropy generation in a condenser and related correlations. Arch. Thermodyn. 2015, 36, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.F.; Jiang, C.; Zhang, Y.F.; Zhou, W.X.; Bai, B.F. Virtual entropy generation (VEG) method in experiment reliability control: Implications for heat exchanger measurement. Appl. Therm. Eng. 2017, 110, 1476–1482. [Google Scholar] [CrossRef]
- Strub, F.; Castaing-Lasvignottes, J.; Bedecarrats, J.P.; Peuvrel, C. Application of the second law analysis to a heat exchanger working with ethanol/water ice slurry. Int. J. Thermodyn. 2004, 7, 183–188. [Google Scholar]
- Torabi, M.; Zhang, K.; Karimi, N.; Peterson, G.P. Entropy generation in thermal systems with solid structures—A concise review. Int. J. Heat Mass Transf. 2016, 97, 917–931. [Google Scholar] [CrossRef]
- Biswa, P.; Basak, T. Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review. Renew. Sustain. Energy Rev. 2017, 80, 1412–1457. [Google Scholar] [CrossRef]
- Naterer, G.F.; Camberos, J.A. Entropy and second low fluid flow and heat transfer simulation. J. Thermophys. Heat Transf. 2003, 17, 360–371. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Aghakhani, S.; Pordanjani, A.H.; Bakhtiari, R.; Asadi, A.; Tran, M.D. Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: Considering the radiation effect. Int. J. Heat Mass Transf. 2019, 133, 256–267. [Google Scholar] [CrossRef]
- Bel, O.; Lallemand, A. Etiude d’un fluide frigoporteur diphasique. 2: Analyse expérimentale du comportement thermique et rhéologique. Int. J. Refrig. 1999, 22, 175–187. (In French) [Google Scholar] [CrossRef]
- Melinder, A.; Granryd, E. Using property values of aquaous solutions and ice to estimate ice concentrations and enthalpies of ice slurries. Int. J. Refrig. 2005, 28, 13–19. [Google Scholar] [CrossRef]
- Melinder, A. Thermophysical properties of liquid secondary refrigerants. Tables and diagrams for the refrigerants industry. In Tables and Diagrams for the Refrigerants Industry; International Institute of Refrigeration: Paris, France, 1997; pp. 34–36 and 97. [Google Scholar]
- Kozicki, W.; Chou, C.H.; Tiu, C. Non-Newtonian flow in ducts of arbitrary cross-sectional shape. Chem. Eng. Sci. 1966, 21, 665–679. [Google Scholar] [CrossRef]
- Niezgoda-Żelasko, B. Flow behaviour of ice slurry–experimental investigation. Trans. Inst. Fluid-Flow Mach. 2006, 118, 71–89. [Google Scholar]
- Bejan, A. Entropy generation minimization the method and its applications. J. Mech. Eng. 2001, 47, 345–355. [Google Scholar]
- VDI-Wärmeatlas. Wärmeübergang an Berippten Oberflächen; VDI Verlag: Düsseldorf, Germany, 1991; pp. Mb1–Mb4. (In Germany) [Google Scholar]
- Idielcik, I.E. Handbook of Hydraulic Resistance; CRC Press: London, UK, 1994; pp. 714–756. [Google Scholar]
- Niezgoda-Żelasko, B.; Zalewski, W. Chłodnicze i Klimatyzacyjne Wymienniki Ciepła. Obliczenia Cieplne; Wydawnictwo Politechniki Krakowskiej: Kraków, Poland, 2013; pp. 90–97. (In Polish) [Google Scholar]
- Tarasov, F.M. O dal’nejšem ulučšenii konstrukcij teploobmennych apparatov piščevoj promyšlennosti. Izvuz Piščevaja Technol. 1970, 1, 127–133. (In Czech) [Google Scholar]
- Tarasov, F.M. Teploobmen v plastinčatych apparatch. Izvuz Piščevaja Technol. 1969, 3, 143–147. [Google Scholar]
Properties | Formula | Comments |
---|---|---|
Enthalpy of ice slurry [51,52] | - | |
Enthalpy of carrier liquid [51,52] | Tref = 273.15 K, ia = ia(xa,T) [51] | |
Enthalpy of ice [52] | r = 332.4 kJ kg−1 | |
Mean specific heat of ice slurry [51] | cpa [53], cps [51] | |
Heat conductivity of ice slurry λIS,w=0 [22] | λa [53], λs [51] | |
Ice slurry density | ρa [53], ρs [51] | |
Yield shear stress of ice slurry for xai = 10.6%; ds = 0.1–0.15 mm [3] | - | |
Plastic viscosity of ice slurry for xai = 10.6%; ds = 0.1–0.15 mm [3] | - | |
Parameter K* | εB= τp/τw c,d [54] | |
Parameter n* | ||
- |
Cross Section | Type of Flow | Parameter | Value | Applicability Range |
---|---|---|---|---|
Pipe | laminar | B1 | 2.52 | 3% < xs < 30% wm > 0.1 ms−1 200 < ReK < 2100 |
B2 | 0.11 | |||
B3 | −0.10 | |||
B4 | −0.35 | |||
B5 | 0.052 | |||
turbulent | B1 | 0.0096 | 3% < xs < 30% wm <4.5 ms−1 2100 < ReK < 11,000 | |
B2 | 0.70 | |||
B4 | −0.10 | |||
Rectangular and slit cross-section | laminar | B1 | 3.66 | 5.6% < xs <3 0% wm > 0.5 ms−1 30 < ReK < 2300 |
B2 | 0.16 | |||
B3 | −0.28 | |||
B4 | −0.12 | |||
B5 | 0.16 | |||
turbulent | B1 | 0.0032 | 3% <xs < 30% wm < 3.1 ms−1 1900 < ReK < 6000 | |
B2 | 0.86 |
Parameter | Value |
---|---|
C1 | ; c11 = −2292.0231, c12 = 10,483.068, c13 = −4879.7335 |
C2 | ; c21 = −0.0708, c22 = 0.2925, c23 = 0.6583 |
C3 | 11.3766 |
C4 | 1.15317 |
C5 | 52.0511 |
10,000 | |
380 | |
dio | 0.01 |
q | wtube | wHE | Betube | BeHE |
---|---|---|---|---|
8 | 0.93 | 0.72 | 0.08 | 0.08 |
10 | 1.19 | 1.23 | 0.125 | 0.14 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niezgoda-Żelasko, B. Entropy Generation of Forced Convection during Melting of Ice Slurry. Entropy 2019, 21, 514. https://doi.org/10.3390/e21050514
Niezgoda-Żelasko B. Entropy Generation of Forced Convection during Melting of Ice Slurry. Entropy. 2019; 21(5):514. https://doi.org/10.3390/e21050514
Chicago/Turabian StyleNiezgoda-Żelasko, Beata. 2019. "Entropy Generation of Forced Convection during Melting of Ice Slurry" Entropy 21, no. 5: 514. https://doi.org/10.3390/e21050514
APA StyleNiezgoda-Żelasko, B. (2019). Entropy Generation of Forced Convection during Melting of Ice Slurry. Entropy, 21(5), 514. https://doi.org/10.3390/e21050514