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Abstract: The refined multiscale entropy (RMSE) approach is commonly applied to assess complexity
as a function of the time scale. RMSE is normally based on the computation of sample entropy
(SampEn) estimating complexity as conditional entropy. However, SampEn is dependent on the
length and standard deviation of the data. Recently, fuzzy entropy (FuzEn) has been proposed,
including several refinements, as an alternative to counteract these limitations. In this work, FuzEn,
translated FuzEn (TFuzEn), translated-reflected FuzEn (TRFuzEn), inherent FuzEn (IFuzEn), and
inherent translated FuzEn (ITFuzEn) were exploited as entropy-based measures in the computation
of RMSE and their performance was compared to that of SampEn. FuzEn metrics were applied to
synthetic time series of different lengths to evaluate the consistency of the different approaches. In
addition, electroencephalograms of patients under sedation-analgesia procedure were analyzed based
on the patient’s response after the application of painful stimulation, such as nail bed compression or
endoscopy tube insertion. Significant differences in FuzEn metrics were observed over simulations
and real data as a function of the data length and the pain responses. Findings indicated that FuzEn,
when exploited in RMSE applications, showed similar behavior to SampEn in long series, but its
consistency was better than that of SampEn in short series both over simulations and real data.
Conversely, its variants should be utilized with more caution, especially whether processes exhibit an
important deterministic component and/or in nociception prediction at long scales.

Keywords: fuzzy entropy; conditional entropy; complexity; electroencephalography; pain assessment;
refined multiscale entropy; sample entropy; sedation-analgesia
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1. Introduction

Recently, fuzzy entropy (FuzEn) has been proposed as an entropy measure that is more consistent
and less dependent on the data length [1,2]. Indeed, FuzEn applys the concept of “fuzzy sets” and
membership functions, introduced by Zadeh in 1965, to characterize input–output relations with
stochastic components [3]. Some applications of FuzEn in biomedical signal processing has been
presented in [4–8]. In order to improve the performance of FuzEn in short time series, several variations
have been included in its computation. Some of them are centered and averaged fuzzy entropy [9] and
inherent fuzzy entropy [10].

FuzEn, as sample entropy (SampEn) and other entropy rates, gives only a single scale representation
of the behavior of a time series. However, these measurements can be extended to provide a multiscale
assessment of irregularity of the time series. Refined multiscale entropy (RMSE), proposed in [11], is a
technique that uses SampEn as an entropy-based measure in order to quantify the complexity of a time
series in different time scales, which has been applied in processing of electrocardiogram (ECG) and
electroencephalogram (EEG) signals [12–15]. Computation of RMSE is similar to multiscale entropy
(MSE) [16] except for two significant modifications: (i) RMSE improves the procedure applied to
remove the fast time scales in the signal, avoiding the aliasing, and; (ii) it modifies the coarse-graining
procedure to avoid an artificial decrease of the entropy as the fast time scales in the signal are eliminated,
which is caused by the reduction of the standard deviation that is generated by the filtering process.

Characterization of time series by means of RMSE requires relatively long length series, which
increases the computation time and makes difficult the implementation of this algorithm in real time
monitoring systems. The implementation of FuzEn and its variants, which offer an entropy-based
measure that is less dependent on the data length, emerges as alternative to the traditional SampEn
for the real-time multiscale analysis. This can be very useful, for example, to monitor patients, using
physiological signals as the EEG in critical settings such as critical care units. For example, under
sedation/anesthesia during surgery the assessment of complexity of the EEG via RMSE was found
useful for monitoring the level of consciousness and preventing pain [15]. The assessment of EEG
complexity as a function of time scales using of RMSE is motivated by the observation that the EEG
contains oscillations at particular frequency bands, and these oscillations become slower and more
regular at higher doses of intravenous anesthetic such as the propofol. In this sense, slower and less
unpredictable oscillations can be associated with a deeper state of sedation [15].

The aim of this study is to compare the performance of SampEn and FuzEn metrics, with its
different variants, when they are exploited for a multiscale analysis by means of RMSE. Synthetic and
experimental time series are analyzed in order to evaluate the behavior of RMSE metrics in signals
with different characteristics: stochastic without or with long-range correlation, stochastic but partially
predictable, fully predictable determinist or chaotic. The study also involves the analysis of time series
with different lengths and the application of RMSE to assess the prediction probability of pain response
in patients under sedation-analgesia.

2. Methods

2.1. Database

2.1.1. Synthetic Time Series

Synthetic signals were categorized in:

(a) Type-1, which included (i) Gaussian white noise (GWN) to simulate a fully unpredictable
process; (ii) 1/f noise or pink noise (1/f) to generate a stochastic signal with long-range correlation;
(iii) second-order autoregressive process (AR025), driven by GWN, to simulate a partially
predictable stochastic process. The AR025 was shaped to have a power spectrum peak with
central frequency at 0.25 cycles per sample and pole modulus p = 0.98. The parameters in AR025
were proposed to check the ability of RMSE to avoid aliasing when the downsampling procedure
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is applied [11]. Sixty realizations of 100,000 samples were generated for each process (GWN, 1/f,
and AR025).

(b) Type-2, which included signals generated from (i) logistic map (LM), defined by xn+1 = axn(1− xn),
where the parameter ”a” controls the value of the samples such that the signals converges to a
single fixed point if a ≤ 3, oscillates if 3 < a < 3.54, and becomes increasingly chaotic and more and
more complex structures emerge for larger a [17]. In this study, LM with values of the parameter
a equals to 3.5 (oscillation condition, LM-3.5), 3.7 (chaotic condition, LM-3.7), and 3.9 (chaotic
condition, LM-3.9) were considered; (ii) Henon map (HM), defined by xn+1 = 1−αxn

2 + βxn−1 [18],
was exploited to conduct more detailed exploration of the chaotic dynamics, using α = 1.4 and
β = 0.3. Thirty realizations of 50,000 samples were generated for each process (LM-3.5, LM-3.7,
LM-3.9, and HM).

2.1.2. Experimental Time Series

The different approaches of RMSE were applied to EEG signals recorded from 378 patients under
sedation-analgesia during an ultrasonographic endoscopy (USE) of the upper gastrointestinal tract.
USE is a procedure with an approximate duration of 1 h, which includes periods of stability in the
concentration of the anesthetic drugs, allowing the outcome of painful stimulus to be studied in relation
with the level of sedation. This exploration required at least two endoscopy tube insertions: the first
component carrying a regular gastroscope and a second component carrying the needle for biopsy.
This study was approved by the Ethic Committee of Clinical Research of Hospital Clinic de Barcelona
and all patients signed a written informed consent.

Patients were routinely monitored in the USE room. A single channel of the raw EEG signal was
acquired using three electrodes: the positive electrode in the middle forehead; the negative electrode
in the malar bone, and; the reference electrode in the left forehead. The recorded EEGs had an average
duration of 60 m and were sampled at 900 samples per second with a resolution of 16 bits per sample.
Propofol and remifentanil were infused as, respectively, anesthetic and analgesic agents by means
of a target-controlled infusion system (FreseniusVial, Chemin de Fer, Béziers, France). The Ramsay
sedation scale (RSS) score [19] was evaluated, by the attending anesthesiologist, at random times
during the procedure. Random times were decided instead of a predefined schedule to avoid that
factors associated with time, such as the infusion volume of propofol and remifentanil, could affect the
results of the RSS measurements. Table 1 contains information about the annotated RSS scores in the
database, which are between 2 and 6.

Table 1. Observed categorical responses in the database.

Groups Score Description No. EEG Windows

2 ≤ RSS ≤ 5

RSS = 2 The patient is awake, quiet and cooperative 422
RSS = 3 The patient is drowsy but responds to commands 641
RSS = 4 The patient is asleep with brisk response to stimulus 428
RSS = 5 The patient is asleep with sluggish response to stimulus 360

RSS = 6 No response (absence of movement) to firm nail-bed pressure. 782

GAG = 0 Absence of nausea reflex after endoscopy tube insertion 411

GAG = 1 Presence of nausea reflex after endoscopy tube insertion 125

No. EEG windows: number of EEG segments with a duration between 50 and 60 s recorded just before the response
annotation according to RSS or GAG classification.

After the application of painful stimulation, two observed categorical responses were selected
in the database (see Table 1): (i) the presence (RSS score between 2 and 5) or the absence (RSS = 6)
of movement after nail bed compression, and; (ii) the presence or absence of gag reflex (GAG) after
endoscopy tube insertion, where GAG = 1 corresponds to a positive nausea reflex, while GAG = 0
corresponds to no response after tube insertion. As the evaluation of RSS scores was done at random
times, and the duration of every exploration was determined by the procedure per se, the number of



Entropy 2019, 21, 706 4 of 21

RSS measurements were not equal in all patients (the median number of RSS score evaluations was 11
per patient). The number of GAG evaluations was between one and two per patient, according to the
number of endoscopy tube insertion.

The next preprocessing steps were applied to EEG signals:

(i) They were resampled at 128 Hz after applying a band-pass finite impulse response (FIR) filter of
10th order with cut-off frequencies of 0.1–45 Hz, in order to limit the EEG signal to the traditional
frequency bands: δ (0.1–4 Hz), θ (4–8 Hz), α (8–14 Hz), and β (14–30 Hz).

(ii) The filtered and resampled EEG signals were divided into windows of 1-min duration taken just
before the response annotation according to RSS or GAG classification.

(iii) The 1-min EEG segments were associated to the correspondent annotated response (RSS or
GAG) by considering that the sedation level should remain constant if the plasma concentration
of remifentanil (CeRemi) and propofol (CeProp) remains unvaried. In this work, CeRemi
and CeProp were considered constant if the variation of them (∆CeRemi, ∆CeProp), between
the first and the last second of the 1-min length window, was ∆CeRemi < 0.1 ng/mL and
∆CeProp < 0.1 µg/mL.

(iv) If CeRemi and CeProp were not constant during the 1-min length window, the window was
maintained but cut at the sample where the conditions were satisfied. If the total useful length
was less than 50 s the overall segment was excluded from the analysis.

(v) Windows of EEG were filtered with a filter based on the analytic signal envelope in order to
reduce high-amplitude peaks of noise [20].

(vi) If the difference between adjacent samples was higher than 10% of the mean of the differences of
the previous ten samples, the window was cut at the sample where the artifact was detected. If the
total useful length was less than 50 s the overall segment was excluded from the analysis. After
that, only the EEG windows with a duration between 50 and 60 s were included in the analysis.

Table 1 contains information about the number of EEG windows exploited in the present study
for each annotated response.

2.2. SampEn and Fuzzy Approaches as Entropy Rates

Let x =
{
x(i), i = 1, . . . , N

}
be a time series where i represents the number of the sample and N is the

length of the series, any estimate of an entropy rate (rate of information generation) is based on a method
for measuring the probability that two patterns of length m, xm(i) = (x(i), x(i− 1), . . . , x(i−m + 1)) and
xm( j) = (x( j), x( j− 1), . . . , x( j−m + 1)), that are similar in the m-dimensional phase-space continue
being similar after adding a new sample in the pattern, i.e., xm+1(i + 1) and xm+1( j + 1) are also similar
in the (m + 1)-dimensional phase-space. In this sense, entropy rates allow the regularity of the time
series x(i) to be quantified, showing high values for irregular or unpredictable series (series with low
probability that two similar patterns xm(i) and xm( j) remain similar after adding new samples) and
low values for regular or predictable series.

2.2.1. SampEn

In SampEn [21], two patterns (xm(i), xm( j)) are considered similar or indistinguishable if the
distance (dm

ij ) between them is less than a tolerance parameter r in the multidimensional phase-space. In
this sense, the pattern similarity is determined by the Heaviside function Θ(dm

ij − r) given in Equation (1),
which acts like a two-state classifier that generates two possible categories: the patterns are similar
or not.

Θ
(
dm

ij − r
)
=

 1, i f dm
ij ≤ r, patterns are similar

0, i f dm
ij > r, patterns are dissimilar

. (1)
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The distance dm
ij is defined as:

dm
ij = max

{∣∣∣(x(i) − x( j)
∣∣∣, ∣∣∣x(i− 1) − x( j− 1)

∣∣∣, . . . , ∣∣∣x(i−m + 1) − x( j−m + 1)
∣∣∣}, (2)

namely the maximum absolute difference between the corresponding scalar components of the patterns
xm(i) and xm( j) (Chebyshev distance). According to [21], SampEn is defined as Equation (3):

SampEn(m, r, N) = −ln
(

Am
r

Bm
r

)
, (3)

where:

Bm
r =

1
N −m

N−m∑
i=1

1
N −m− 1

N−m∑
j=1, j,i

Θ(dm
ij − r), (4)

Am
r =

1
N −m

N−m∑
i=1

1
N −m− 1

N−m∑
j=1, j,i

Θ(dm+1
i j − r). (5)

Bm
r represents the probability that two patterns will match for m samples, and Am

r the probability
that two patterns will match for m + 1 samples. The parameter r is usually set as a percentage of
the standard deviation (SD) of the time series [22], which allows series with different amplitudes to
be compared.

2.2.2. FuzEn

Considering that in the real world the limits between categories may be ambiguous, thus making
the decision on whether a pattern completely belongs to a specific category difficult, FuzEn employs a
fuzzy membership function to obtain the degree of similarity between two patterns of length m [1,2].
The family of fuzzy functions should include the following characteristics: (i) continuous functions in
order to avoid that the similarity change abruptly; (ii) convex functions to guarantee that self-similarity
is the maximum. In FuzEn, the degree of similarity Dm

ij = λ(dm
ij , n, r) between two patterns xm(i) and

xm( j) is determined by the following fuzzy membership function [1,4]:

λ(dm
ij , n, r) = exp


−

(
dm

ij

)n

r

, (6)

where dm
ij is the Chebyshev distance between patterns given in Equation (2), r is the tolerance parameter,

and n defines the membership function shape. The membership function corresponds to a Gaussian
function for n = 2, and to rectangular function for n = ∞. Similar to the definition of SampEn, the
probability that two patterns xm(i) and xm( j) or xm+1(i) and xm+1( j) will match is given, respectively, as

ϕm
r =

1
N −m

N−m∑
i=1

 1
N −m− 1

N−m∑
j=1, j,i

Dm
ij

, (7)

ϕm+1
r =

1
N −m

N−m∑
i=1

 1
N −m− 1

N−m∑
j=1, j,i

Dm+1
i j

. (8)

Finally, FuzEn can be estimated by:

FuzEn(m, r, N) = − ln

ϕm+1
r

ϕm
r

. (9)
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In this work, n = 2 was taken as a fixed parameter. It is important to mention that, although in
previous works [1,2,4] xm(i) is generalized by removing a baseline, in the present study FuzEn was
computed without removing a baseline of xm(i).

2.2.3. Increasing Consistency of FuzEn Estimate

According to [9], although FuzEn offers a more accurate, more consistent, and less dependent on
the data length entropy rate, the length of the series is still an important factor in the precision of FuzEn.
In order to address this issue, authors in [9] presented new approaches to calculate FuzEn. These tried
to improve FuzEn precision by increasing the number of patterns that are used in the computation,
without changing the original length of the series. In this work, two of those approaches were taken
into account: translated FuzEn (TFuzEn) and translated-reflected FuzEn (TRFuzEn).

TFuzEn calculates entropy rate in the same way as FuzEn but defines xm(i) by eliminating the
mean value of the m-patterns, which can increase the number of similar patterns. The procedure to
eliminate the baseline takes the vector xm(i) and subtracts from each component the temporal mean
computed over the entire pattern as follows:

xm(i) = (x(i), x(i + 1), . . . , x(i + m− 1)) − (µ(i),µ(i), . . . ,µ(i)), (10)

where µ(i) is defined as

µ(i) =
1
m

m−1∑
j=0

x(i + j). (11)

The second approach given in [9] involves one additional transformation over the m-dimensional
patterns, in order to increase the matches of similar patterns. The additional transformation is “reflection”
that implies to perform a reflection operation on xm(i), resulting in the reflected subsequence xm

R(i)
over the translated pattern as follows:

xm
R(i) = (x(i + m− 1), x(i + m− 2), . . . , x(i + 1), x(i)) − (µ(i),µ(i), . . . ,µ(i)), (12)

leading to the elimination of the mean value of the reflected m-dimensional pattern and to the
computation of TRFuzEn.

2.2.4. Eliminating Trends before FuzEn Computation

Inherent FuzEn (IFuzEn) [10] computes inherent functions, namely intrinsic mode functions
(IMFs), obtained from the empirical mode decomposition (EMD), for eliminating superimposed trends
in time series [23–28]. As superimposed trends in physiological signals is very common, and these
trends could affect the estimation of entropy-based analysis by increasing the standard deviation
of the signal, IFuzEn was proposed to increase the reliability of complexity evaluation in realistic
EEG applications [10]. Indeed, before applying fuzzy entropy-based methods, IFuzEn implements
a preprocessing stage to eliminate superimposed trends in the time series. In this work, FuzEn and
TFuzEn were applied on time series after trend filtering, and they were represented as IFuzEn and
ITFuzEn, respectively. The concepts about EMD and IMFs are described in Appendix A.

2.3. MSE and RMSE

RMSE is a technique based on the MSE approach [16], which applies SampEn as a function of time
scale (TS) in order to perform a multiscale irregularity assessment. In order to do that, MSE follows
the next three steps:
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(a) Elimination of the fast temporal scales to focus on gradually slower time scales, applying a
low-pass finite impulse response (FIR) filter. This FIR filter is based on the average of TS samples,
as it is indicated in Equation (13):

xTS( j) =
1

TS

TS−1∑
k=0

x( j− k), 1 ≤ j ≤ N, (13)

where xTS( j) represents the original series x(i) filtered at the time scale TS. This filter has (i) slow
roll-off of the main lobe; (ii) large transition band; (iii) important side lobes, and; (iv) cutoff

frequency fc = 0.5/TS cycles per sample.
(b) Downsampling the filtered series xTS( j) by the scale factor TS, so that xTS( j) has the same time

duration of x(i) but with a smaller number of samples as a function of the factor TS. Due to
the large transition band and the important side lobes, the FIR filter given in Equation (13) is
inefficient to prevent aliasing when the filtered series are downsampled [11], and therefore, signals
with high-power frequency components, near the center frequency of 0.25 cycles per sample,
could generate artifactual components in the downsampled signals.

(c) Calculation of the SampEn in each filtered series xTS( j), according to the Section 2.2.1. In MSE,
the tolerance parameter r is fixed as a percentage of the SD of the original series x(i) (usually 15%)
and it is kept constant for all the series xTS( j). Due to that, and considering that the SD of filtered
series is reduced by the low-pass filtering procedure, MSE measures not only the variations of
signals regularity with TS but also the variations in the SD of the series xTS( j).

RMSE introduces two substantial variations in relation with MSE:

(a) The suboptimal FIR filter of MSE is substituted with a sixth order low-pass Butterworth filter to
obtain the filtered series xTS( j). This Butterworth filter has the following characteristics: (i) flat
response in the pass band; (ii) faster roll-off; (iii) no side lobes in the stop band, and; (iv) cutoff

frequency fc = 0.5/TS cycles per sample. This filter, in comparison with the FIR filter given in
Equation (13), limits as much as possible the aliasing for any TS during downsampling.

(b) The tolerance parameter r, used for comparing patterns, is updated for each time scale according
to an assigned fraction of the SD of each filtered series xTS( j). Therefore, RMSE does not depend
on the reduction, generated by the low-pass filtering procedure, of the SD of the xTS( j). We make
reference to [11] for specific details on the method.

In the present study, RMSE was applied as a technique of multiscale analysis according to
(i) the original definition of RMSE (i.e., using a low-pass Butterworth filter, downsampling, and
applying SampEn with tolerance parameter r updated for each time scale over the filtered series), and;
(ii) replacing SampEn with FuzEn approaches as FuzEn, TFuzEn, TRFuzEn, IFuzEn, and ITFuzEn.
RMSE in its several variants was computed at different TS of the proposed synthetic and experimental
time series. According to previous works [11–16], in this study r = 0.15 × SD and m = 2 were taken as
fixed parameters (in SampEn and FuzEn approaches) to compare RMSE values of the synthetic series
for different lengths N. In order to evaluate how the tolerance parameter r affects the performance of
RMSE values of the EEG signals, this parameter was also varied between 0.10 and 0.30 in steps of 0.05.

The different time scales in RMSE can be associated with the traditional EEG-frequency bands δ,
θ, α, and β. Indeed, since EEG signals were resampled to 128 Hz, the time scale TS = 1 corresponds
to the original EEG signal (with theoretical frequencies from 0 to Nyquist frequency ( fN), i.e.,
128/2 = 64 Hz), TS = 2 contains frequencies from 0 to fN/TS = 64/2 = 32 Hz, TS = 3 contains frequencies
from 0 to fN/3 = 21.3 Hz, and so on. Therefore, the following approximate association between
EEG-frequency bands and TS was done: (i) β band corresponds to 2 ≤ TS ≤ 5; (ii) α band corresponds
to 5 ≤ TS ≤ 8; (iii) θ band corresponds to 8 ≤ TS ≤ 16, and; (iv) δ band corresponds to TS ≥ 16.
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Statistical Analysis

In this work, synthetic time series x(i) (see Section 2.1.1) of N = 10,000, N = 1000, and N = 100
were analyzed with RMSE. Time scales varied from TS = 1 to TS = 20. Bearing in mind that the length
of the filtered series xTS( j) is reduced by the scale factor TS, the shorter series (with TS = 20) for
N = 10,000 was of 500 samples, for N = 1000 was of 50 samples, and for N = 100 was of five samples.
Consistency of RMSE values, in relation to the length N of the series, was evaluated graphically. In this
sense, the RMSE metric was consistent whether the plots of RMSE values in different synthetic time
series held the same relative behavior for different values of N. In other words, if the RMSE values of a
time series x1(i) were higher than the RMSE values of a time series x2(i), for a specific TS and length N,
that situation had to be maintained for the same TS at different values of N.

The prediction probability score (Pk) was applied to measure how well RMSE of EEG signal
predicted the pain response of the patients. The Pk was proposed in [29] as statistical measurement to
assess the performance of anesthetic depth indicators. Indeed, given two random data points with
different observed anesthetic states, Pk is the probability that the values of a monitor or indicator in
those data points predict correctly the observed anesthetic states, namely.

Pk =
Pc + Ptx/2

Pc + Pd + Ptx
, (14)

where Pc, Pd, and Ptx are the respective probabilities of concordance, discordance or x-only tie, between
the values of an indicator and the observed anesthetic states. Pk values ranges from 0 to 1, where
(i) Pk = 0.5 represents a complete randomness (concordance equal to discordance); (ii) 0.5 < Pk < 1,
concordance is more likely than discordance; (iii) Pk = 1 corresponds to perfect concordance (Pd and
Ptx are both equal to zero); (iv) 0 < Pk < 0.5, concordance is less likely than discordance; (v) Pk = 0
means perfect discordance (Pc and Ptx are both equal to zero).

In this work, EEG segments were classified according to the noxious stimuli applied to the patient
during the USE procedure, as follows (see Table 1):

(a) Response after a firm nail-bed pressure: (i) group 2 ≤ RSS ≤ 5, which included patients that
moved (feel pain) in response to the noxious stimuli; (ii) group with RSS = 6, which did not move
in response to the noxious stimuli.

(b) Response after endoscopy tube insertion: (i) group with GAG = 1, which felt pain; (ii) group with
GAG = 0, which did not feel pain.

3. Results

3.1. RMSE of Synthetic Time Series

RMSE, using SampEn, FuzEn, TFuzEn, TRFuzEn, IFuzEn, and ITFuzEn, was calculated on all
the realizations of the synthetic time series that were defined in Section 2.1.1. For this analysis,
r = 0.15 × SD and m = 2 were taken as fixed parameters in SampEn and FuzEn approaches in order to
compare RMSE values of the synthetic series for different lengths N.

Figure 1 shows, for N = 100, N = 1000, and N = 10,000, the course of RMSE metrics as a function
of TS. derived from the 60 realizations of the type-1 simulated series: GWN (black line with asterisk
marker), 1/f (blue line with squared marker), and AR025 (red line with circle marker). In this analysis,
the performance of RMSE for each simulated series was tested, including changes in the time series
length N. As the courses of RMSE for TFuzEn and TRFuzEn were very similar, the last one was not
included in Figure 1.
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In this work, EEG segments were classified according to the noxious stimuli applied to the 
patient during the USE procedure, as follows (see Table 1): 

(a) Response after a firm nail-bed pressure: (i) group 2 ≤ RSS ≤ 5, which included patients that moved 
(feel pain) in response to the noxious stimuli; (ii) group with RSS = 6, which did not move in response 
to the noxious stimuli. 
(b) Response after endoscopy tube insertion: (i) group with GAG = 1, which felt pain; (ii) group with 
GAG = 0, which did not feel pain.  

3. Results 

3.1. RMSE of Synthetic Time Series 

RMSE, using SampEn, FuzEn, TFuzEn, TRFuzEn, IFuzEn, and ITFuzEn, was calculated on all 
the realizations of the synthetic time series that were defined in Section 2.1.1. For this analysis, r = 
0.15 × SD and m = 2 were taken as fixed parameters in SampEn and FuzEn approaches in order to 
compare RMSE values of the synthetic series for different lengths N. 

Figure 1 shows, for N = 100, N = 1000, and N = 10,000, the course of RMSE metrics as a function 
of 𝑇𝑆 derived from the 60 realizations of the type-1 simulated series: GWN (black line with asterisk 
marker), 1/f (blue line with squared marker), and AR025 (red line with circle marker). In this analysis, 
the performance of RMSE for each simulated series was tested, including changes in the time series 
length N. As the courses of RMSE for TFuzEn and TRFuzEn were very similar, the last one was not 
included in Figure 1. 
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Figure 1. Multiscale analysis with refined multiscale entropy (RMSE), using sample entropy (SampEn)
(a–c), fuzzy entropy (FuzEn) (d–f), translated FuzEn (TFuzEn) (g–i), inherent FuzEn (IFuzEn) (j–l),
inherent translated FuzEn (ITFuzEn) (m–o), from 60 realizations of the type-1 simulated series (Gaussian
white noise (GWN), 1/f, and AR025) for length N = 100 (left column), 1000 (middle column), and 10,000
(right column). In each case, the length of the simulated series was cropped up to the Nth sample.

We considered the course of RMSE with SampEn and N = 10,000 as a reference (Figure 1c). The
panel of Figure 1c shows that (i) the course was flat in the case of GWN; (ii) it had a slow but progressive
increase in the case of 1/f noise, and; (iii) it was low and almost constant in short time scales (TS = 1–2)
and rapidly increased in TS = 3, reaching a plateau in the case of AR025 process. From the comparison
of Figure 1c with the other cases that are plotted in Figure 1, it was observed that:

(a) at N = 10,000, FuzEn (Figure 1f), and IFuzEn (Figure 1l) had a similar behavior of SampEn
(Figure 1c) for all the synthetic time series, but the courses of TFuzEn (Figure 1i) and ITFuzEn
(Figure 1o) showed a different behavior for the AR025 series, particularly in TS = 1 where the
entropy value was higher than TS = 2, presenting a kind of ripple.

(b) at N = 1000, SampEn (Figure 1b) lost consistency in long scales (TS ≥ 10), which was evidenced
specially in GWN and AR025 signals where the entropy value, that was higher than 1/f signal for
N = 10,000, now was equal or lower that 1/f signal for N = 1000. On the contrary, all the fuzzy
approaches (Figure 1e,h,k,n) showed a relative consistency for all the synthetic series at any time
scale TS. TFuzEn (Figure 1h) and ITFuzEn (Figure 1n) continued showing a kind of ripple for the
AR025 series between TS = 1 and TS = 2;
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(c) at N = 100, all the RMSE metrics lost consistency. Although SampEn values (Figure 1a) could not
be obtained for time scales TS ≥ 7 (short series with less than 14 samples), all the fuzzy approaches
could be computed for TS values between 1 and 20.

Figure 2 shows, for N = 100, 1000, and 10,000, the course of RMSE approaches as a function of TS
derived from the 30 realizations of the type-2 synthetic series: Logistic Map with a = 3.5 (LM-3.5, blue
line with asterisk marker), a = 3.7 (LM-3.7, pink line with circle marker), a = 3.9 (LM-3.9, black line
with diamond marker), and Henon Map with α = 1.4 and β = 0.3 (HM, red line with square marker).Entropy 2019, 21, 706 10 of 20 
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corresponds to the Logistic map in oscillation condition (totally predictable signal) and, therefore, it 
was expected to have a low value of entropy; (ii) the course exhibited an initial increase at short time 
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SampEn (Figure 2c) for the chaotic series (LM-3.7, LM-3.9, and HM signals), i.e., the courses 
exhibited an initial increase and then reached a plateau, the entropy values were lower and with 
smaller span than SampEn; (ii) only FuzEn (Figure 2f) had a similar behavior than SampEn in 
the totally predictable signal (LM-3.5); (iii) the course for LM-3.5 showed ripples in TFuzEn 
(Figure 2i), TRFuzEn (Figure 2l), IFuzEn (Figure 2o) and ITFuzEn (Figure 2r), being TRFuzEn 
the one with the most prominent ripple; 

Figure 2. Multiscale analysis with RMSE, using SampEn (a–c), FuzEn (d–e), TFuzEn (g–i),
anslated-reflected FuzEn (TRFuzEn) (j–l), IFuzEn (m–o), and ITFuzEn (p–r), from 30 realizations
of the type-2 simulated series (LM-3.5, LM-3.7, LM-3.9, and Henon map (HM)) for length N = 100 (left
column), 1000 (middle column), and 10,000 (right column).

We considered the course of RMSE with SampEn and N = 10,000 as a reference (Figure 2c).
The panel of Figure 2c shows that (i) the course was flat at zero value for the LM-3.5 signal, which
corresponds to the Logistic map in oscillation condition (totally predictable signal) and, therefore, it
was expected to have a low value of entropy; (ii) the course exhibited an initial increase at short time
scales (1 ≤ TS ≤ 7) and reached a plateau at long time scales for LM-3.7, LM-3.9, and HM signal, which
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are signals belonging to Logistic and Henon maps in chaotic conditions. From the comparison of
Figure 2c with the other cases that are plotted in Figure 2, it was observed that:

(a) at N = 10,000: (i) although all the fuzzy approaches (Figure 2f,i,l,o,r) had a similar behavior of
SampEn (Figure 2c) for the chaotic series (LM-3.7, LM-3.9, and HM signals), i.e., the courses
exhibited an initial increase and then reached a plateau, the entropy values were lower and with
smaller span than SampEn; (ii) only FuzEn (Figure 2f) had a similar behavior than SampEn in
the totally predictable signal (LM-3.5); (iii) the course for LM-3.5 showed ripples in TFuzEn
(Figure 2i), TRFuzEn (Figure 2l), IFuzEn (Figure 2o) and ITFuzEn (Figure 2r), being TRFuzEn the
one with the most prominent ripple;

(b) at N = 1000: (i) SampEn (Figure 2b) lost consistency in long scales (TS ≥ 10), which was evidenced
specially in the LM-3.9 signal where the entropy value, that was higher or equal than the other
signals for N = 10,000, now was lower than LM-3.7 and HM signals at long scales for N = 1000;
(ii) all the fuzzy approaches (Figure 2e,h,k,n,q) showed a relative consistency for all the synthetic
series at any time scale TS; (iii) only SampEn and FuzEn (Figure 2e) showed zero value for LM-3.5
in all the time scales; (iv) TFuzEn (Figure 2h), TRFuzEn (Figure 2k), IFuzEn (Figure 2n), and
ITFuzEn (Figure 2q) continued showing a ripple in the course of LM-3.5;

(c) at N = 100: (i) entropy values decreased in long time scales for SampEn (Figure 2a), while entropy
values in fuzzy approaches tended to increase in long time scales; (ii) only SampEn and FuzEn
(Figure 2d) showed a zero value for LM-3.5 in all the time scales; (iii) SampEn values could not be
obtained for time scales TS > 4 (short series with less than 25 samples) in LM-3.9 and for TS > 10
for the other series, but all the fuzzy approaches could be computed for all the TS values.

3.2. RMSE of EEG Signals

Firstly, N = 6400, r = 0.15 × SD and m = 2 were taken as fixed parameters in SampEn and
FuzEn approaches, in order to compare the prediction probability (Pk values) of the RMSE metrics
for nociception assessment, using EEG signals (Figures 3–5). Secondly, the tolerance parameter r was
varied between 0.10 and 0.30, in steps of 0.05, to evaluate how this parameter affects the performance
of RMSE metrics in the nociception assessment (Figure 6).

Figures 3 and 4 show, as a function of time scales TS, the Pk values that were obtained to predict
groups 2 ≤ RSS ≤ 5 vs. RSS = 6 and GAG = 1 vs. GAG = 0, respectively, using RMSE with SampEn and
FuzEn approaches. As the courses of Pk values for TFuzEn and TRFuzEn were very similar, the last
one was not included in Figures 3 and 4. In both figures it is shown that:

(i) For long scales (6 ≤ TS ≤ 20), FuzEn, followed by SampEn, had the best Pk values, while ITFuzEn
and IFuzEn had the worst performance.

(ii) For short scale (TS = 1), the best Pk value was for SampEn, followed by IFuzEn and FuzEn. The
lowest Pk values were obtained at TS = 3 for all the approaches in Figure 3 (2 ≤ RSS ≤ 5 vs.
RSS = 6), while, for Figure 4 the lowest Pk were at TS = 2 for ITFuzEn, TFuzEn and TRFuzEn,
and at TS = 3 for SampEn, FuzEn, and IFuzEn.

(iii) When the Pk values were computed using FuzEn, the highest Pk values were obtained in
time-scales larger than TS = 10. Since EEG signals were resampled to 128 Hz, time scales between
TS = 10 and TS = 20 represent a EEG signal with frequency components that reduces the superior
limit of the pass-band from 6.4 (TS = 10) to 3.2 Hz (TS = 20), gradually removing contributions in
the β (14–30 Hz), α (8–14 Hz), and θ (4–8 Hz) bands of the EEG, and leaving the fluctuations in
the δ (0.1–4 Hz) band of the EEG.

Since FuzEn and SampEn had the best Pk values at long time scales, Figure 5 was designed to
show the mean values of the SampEn and FuzEn as a function of the time scales TS, obtained from
the EEG segments divided into responsive (2 ≤ RSS ≤ 5) vs. unresponsive (RSS = 6) classes. It was
observed that:
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(i) SampEn showed higher entropy values than FuzEn in all the scales for both groups (2 ≤ RSS ≤ 5
and RSS = 6).

(ii) The courses of RMSE had a similar behavior in both metrics (SampEn and FuzEn) with an initial
increase at short time scales (1 ≤ TS ≤ 3), a maximum near to TS = 4, and, then, a slow decrease at
long time scales.

(iii) In both metrics (SampEn and FuzEn), the entropy value was higher in responsive than in
unresponsive state at short scales (1 ≤ TS ≤ 2), but this situation changed at longer scales
(4 ≤ TS ≤ 20), i.e., the entropy value was lower in responsive than in unresponsive state.
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Figure 6. Pk values as a function of the time scales TS, for different values of the tolerance parameter r
(0.10, 0.15, 0.20, 0.25, and 0.30). Results were obtained comparing responsive states (2 ≤ RSS ≤ 5) vs.
unresponsive state (RSS = 6), using RMSE with (a) SampEn; (b) FuzEn.

Figure 6 shows the Pk values as a function of the time scales TS, that were obtained to predict
groups 2 ≤ RSS ≤ 5 vs. RSS = 6. Different values of the tolerance parameter r (0.10, 0.15, 0.20, 0.25, and
0.30) were considered, using RMSE with (a) SampEn; (b) FuzEn. It was observed that:

(i) When SampEn was computed (Figure 6a), the Pk values were almost equal at short scales
(1 ≤ TS ≤ 5) for all the values of the parameter r, but not for long scales.

(ii) When FuzEn was computed (Figure 6b), the Pk values were practically equal for all the time
scales TS and for all the values of the parameter r.
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(iii) The best Pk values were obtained for long scales in both RMSE using SampEn and using FuzEn.

4. Discussion

In previous works [1,2], FuzEn has been proposed as an entropy measure that is more consistent
and less dependent on the data length than SampEn, and several variants have been designed to
further improve FuzEn performance over short time series. Indeed, approaches as TFuzEn, TRFuzEn,
IFuzEn, and ITFuzEn have been introduced [9,10] to increase the number of patterns that are compared
without changing the length of the time series and limiting the effect of local variation of the mean.
In the present work, these metrics were included in a multiscale analysis, using RMSE applied to
signals with different characteristics (fully stochastic, stochastic with long-range correlation, stochastic
with some deterministic parts and thus partially predictable, totally predictable, chaotic and real EEG
signals). The study was mainly focused to compare the performance of RMSE, with SampEn and
FuzEn approaches, as a function of the length of the data and the type of the series. Additionally,
metrics were compared according to the prediction probability value (Pk) of pain response in patients
under sedation-analgesia, while varying the tolerance parameter r.

In relation with long data series (N = 10,000), the results showed that the course of RMSE had the
same tendency with FuzEn approaches as with SampEn, when they were applied to signals with the
following behavior (Figures 1 and 2): fully stochastic (GWN), stochastic with long-range correlation
(1/f), and chaotic (LM-3.7, LM-3.9, and HM). However, there were important differences between some
of the RMSE courses obtained from partially predictable (AR025) and totally predictable (LM-3.5)
signals. The more relevant case was the one related to the totally predictable (LM-3.5) signal. LM-3.5
is a periodic signal with a deterministic behavior, which should have a very low entropy rate value
resulting from its periodic nature that does not generate new information. However, all the FuzEn
variants, with the exception of FuzEn, showed ripples with values different from zero in this type
of signal. This suggests that metrics such as TFuzEn, TRFuzEn, IFuzEn, and ITFuzEn introduce
some kind of irregularity with different levels of predictability, especially in the longer time scales.
Approaches as TRFuzEn and ITFuzEn are based on TFuzEn [9], so that all of them remove the mean
value of m-dimensional patterns before computing the probability of finding matched patterns, thus
suggesting that removing the mean over patterns might be responsible for the introduction of some
degree of randomness.

Comparing the performance of RMSE courses as a function of the series length N, SampEn metric
lost consistency using series with length N = 1000 in comparison to series of length N = 10,000. On the
contrary, all the fuzzy approaches showed a relative consistency for all the synthetic series at any time
scale TS, demonstrating to be less dependent on the data length as it was indicated in [1,2]. The loss of
consistency in SampEn was more evident for long scales (TS ≥ 10), where the series has reduced its
length to N/TS = 1000/10 = 100 samples or less. This result is in agreement with [21], where it was
reported the dependence of SampEn with the series length and how this metric loses consistency when
data length is smaller than 300.

The analysis with series of length N = 100 allowed the performance of RMSE metrics in short
time series to be evaluated. Although all the metrics lost consistency compared to series with length
N = 10,000, the most relevant finding was that, while SampEn values could not be obtained for long
time scales, fuzzy approaches could be computed for all the TS values (from 1 to 20). For example,
in this study, SampEn could not be computed for short series with less than 25 samples in LM-3.9
signals. By its definition, SampEn depends of the logarithm of the ratio (Am

r /Bm
r ), and this logarithm

is indeterminate if there are not patterns that match for m and m + 1 samples at the same time. This
condition is minimized in Fuzzy entropy definition and in its variants that increment the number of
patterns that are compared without changing the length of the time series, allowing the computation
of the metrics even in very short series.

About the nociception assessment using EEG signals for classifying RSS values and GAG responses
(2≤RSS≤ 5 vs. RSS = 6 and GAG = 1 vs. GAG = 0 in Figures 3 and 4, respectively), the best performance
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was obtained with FuzEn, followed by SampEn, in middle and long scales. These results suggest that
although the variants of FuzEn are metrics less dependent on the data length, this does not mean
that they provide an estimate of conditional probability better than SampEn or FuzEn. The methods
used for these metrics to create new patterns increase the probability of finding similar patterns, thus
increasing the regularity of the series and reducing conditional entropy, and this attitude reduces
the possibility to differentiate nociceptive states. Considering that the procedure to compute RMSE
reduces the time series length as a function of TS, the best Pk values that were obtained with FuzEn
can be related with the fact that FuzEn was more consistent and less dependent on the data length than
SampEn. On the other hand, ITFuzEn and IFuzEn had the worst performance in middle and long
scales. These two approaches are based on the EMD as a method to reduce superimposed trends in
time series, in order to moderate the effect of trends in the increment of the standard deviation of the
data. However, this procedure seems to worsen the performance of RMSE in middle and long scales in
comparison with approaches that do not eliminate the trends as SampEn. This can be related with the
fact that RMSE adjusts the tolerance for comparing patterns as function of the standard deviation of
each the time series, thus limiting the dependence of RMSE on the reduction of variance due to the
elimination of the fast temporal scales [11].

In relation to the results of RMSE obtained from the EEG segments when they were divided into
responsive (2 ≤ RSS ≤ 5) and unresponsive (RSS = 6) classes (Figure 5), we conclude that (i) the lower
values of FuzEn compared to SampEn are linked to the fact that the fuzzy membership functions
increases the probability of finding similar patterns that match for m and m + 1 samples at the same
time, thus increasing the regularity in the series; (ii) the regularity of the EEG signal was higher at
short time scales (TS < 3) than in long time scales, which indicates that the lower frequency bands as α,
θ and δ contain the more complex activity of the EEG in those patients; (iii) the complexity of the EEG
segments relevant to the responsive class was higher at short time scales (TS = 1) and lower at long
time scales than those relevant to the unresponsive class. As was discussed in [15], the scalp and facial
muscle activity, in patients of the responsive group (patients with low sedation level), is associated to
the higher complexity of the EEG in short time scales and to a greater probability of feel pain than
the unresponsive group. At long time scales, the higher complexity in unresponsive group (patients
with higher sedation level than the responsive group) is associated with the displacement of the EEG
activity to low frequency bands as the level of sedation increases.

The impact of the tolerance parameter r, used to determine the similarity between patterns in
SampEn and FuzEn, on the Pk statistic was evaluated. Indeed, the Pk was computed for different
values of r, between r = 0.10 and 0.30, for each one of the RMSE metrics as a function of the TS, in
relation to the ability of predicting responsive (2 ≤ RSS ≤ 5) and unresponsive (RSS = 6) subjects. At
long time scales, RMSE with SampEn showed important variations in the Pk statistic for different r
values at the same TS, while the Pk was practically equal in FuzEn for all the r values at the same
TS. This multiscale analysis evidenced the low dependence of FuzEn with the value of the tolerance
parameter r, in comparison with SampEn. As was pointed out in [1,2], the Heaviside function used by
SampEn creates a rigid boundary that can lead to sudden variations of the entropy values when the
tolerance parameter r varies. As a result, SampEn may rise or fall dramatically when the tolerance r is
slightly changed. Conversely, FuzEn employs an exponential function with soft boundaries, in such a
way that entropy values are more stables to changes in r.

5. Conclusions

This work validated the RMSE performance when FuzEn, with different refinements, was
implemented instead of SampEn for computing the entropy-based measure. Indeed, SampEn, FuzEn,
TFuzEn, TRFuzEn, IFuzEn, and ITFuzEn were applied at different time scales to synthetic and
experimental time series. The results of the present study suggest that it is necessary to be cautious
with the application of some FuzEn variants, and with the interpretation of their findings. Indeed,
approaches based on the elimination of the mean value of the patterns before computing the probability
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of finding matches (TFuzEn, TRFuzEn, and ITFuzEn) showed high entropy values over predictable
process that should have low entropy values. Additionally, FuzEn methods using the EMD approach
to reduce the effect of superimposed trends in time series (ITFuzEn and IFuzEn) seem to worsen the
performance of RMSE at middle and long scales. In general, FuzEn showed a similar behavior to
SampEn in series with long lengths, with the advantage of being more consistent than SampEn over
short-length time series, less dependent on the tolerance parameter r, and stronger in the nociception
prediction especially at long time scales (6 ≤ TS ≤ 20). Therefore, because of that, FuzEn can be more
suitable in real-time and real-world applications.
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Appendix A Empirical Mode Decomposition (EMD)

The empirical mode decomposition (EMD) algorithm decomposes a time series into a series of
intrinsic mode functions (IMFs), which are simple oscillatory functions with varying amplitude and
frequency [23–25]. Given a time signal x(t), with an initialization step i = 1 and ρ0 = x(t), the EMD
obtains the IMFs of x(t) according to the following algorithm:

(1) Identify all the local extrema of the signal (local minima and local maxima of ρi−1).
(2) Interpolate between these local extrema, ending up with the upper and lower envelopes of ρi−1

(Eup(t) and Elow(t)). In this case a cubic spline interpolation was used according with work in [25].
(3) Find the local trend as the average of the upper and lower envelopes, Qi(t) = (Eup(t) +Elow(t))/2.
(4) Determine the local fluctuation as, h(t) = X(t) −Qi(t).
(5) Evaluate h(t) as a candidate of inherent functions; h(t) will be an IMF if it satisfies two conditions:

(i) the number of extrema and zero crossings must be either equal or differ at most by one; (ii) the
average value between the envelope defined by the local maxima and the envelope defined by
the local minima, must be zero at any point [23,25].

(6) If h(t) is not an IMF, then go to step (1) with ρi−1 = h(t).
(7) If h(t) is an IMF, save it as the ith intrinsic mode function mi = h(t), and calculate the residue

r = x(t) − h(t). Then, take ρi = r, increment i, and return to step (1).

The above algorithm halts when the residue becomes a monotonic function, it means, when residue
has no additional oscillations (there are not more local maxima or minima), and no more IMF can be
extracted [23–28]. In this decomposition, mi contains a “spectrum” of local oscillations in x(n), where
m1 corresponds to the highest frequency (shortest-period) oscillations and ml, where l represents the
largest index for which mi is defined, corresponds to the lowest frequency (longest-period) oscillations.
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Figure A1 shows the EMD results on a sinusoidal input signal with five frequency components:
10, 50, 100, 300, and 500 Hz, with an amplitude of 30, 10, 1, 20 and 5, respectively.

If we sum all IMFs and residue, we will obtain the original input signal. This is,

x(n) =

 l∑
i=1

mi

+ r. (A1)

However, the main purpose of using EMD on our input signal is performing a trend filtering.
This can be done choosing the best IMF index i∗ which allows to separate the trend from the
fluctuation [25–27]. In the presence of a trend, the IMF index i shows a rupture in two properties; (i) the
mean frequency of the successive IMFs of broadband processes decrease [24–26]; (ii) the “energy” of
the IMFs decreases as the index of the IMFs increases [25,27,28]. Taking into account the described
IMFs properties, the authors in [25] carried on a study to determine the best approach to estimate i∗.
Results in [25] showed that the best one is the energy-ratio approach. This approach combines the
energy approach and ratio approach in order to reduce the false detections of i∗.

The ratio approach depends on the zero crossing numbers of IMFs. Given a time series, the ith
ratio of the zero crossing numbers is defined as Ri = Zi−1/Zi, where Zi is the zero crossing number of
its ith IMF. The approximation Ri ≈ 2 holds if the time series under study is a realization of a generic
broadband process, as was observed in [24–26]. The approximation Ri ≈ 2 fails for i close the best IMF
index. Then, the best IMF index i∗ using ratio approach will be the smallest index i for which Ri is
“significantly different from 2”. In order to support the above, in this work, we took 2633 EEG signals,
each one with a length N = 6400 samples. We then computed the IMFs of each signal and found a
vector R which contained the Ri values. After, we plotted the empirical distribution of R vectors which
is shown in Figure A2. From this figure it is possible to conclude that, effectively, the mean of the
distribution is approximately 2, then Ri ≈ 2 holds.
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Figure A2. Ratio approach: empirical distribution of R vectors of EEG signals used in this work. The
vertical red line represents the mean of the distribution of the R vectors (Ri ≈ 2). Vertical black lines
represent the left and right thresholds using a value of p = 15.

The energy approach is based on an empirical property of the so-called “energy” of the IMFs,
which can be defined as:

Gi =
∑
|mi|

2, 1 ≤ i ≤ l. (A2)

Gi is a decreasing sequence in i if the time series under study are realizations of a generic broadband
process [27,28]. Thus, the best IMF index i∗, using energy approach, will be the smallest index i for
which Gi increases (the smallest index i ≥ 2 such that Gi > Gi−1). This was also supported using the
same EEG signals as in the ratio approach. In this case, Gi was calculated for each IMF of each signal,
creating a G vector. All G vectors were plotted, as is shown in Figure A3.
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Finally, the energy-ratio approach combines the energy approach and ratio approach, thus, the
best IMF index i∗ using energy-ratio approach will be the smallest index i where the ratio approach as
well as the energy approach are fulfilled.
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Therefore, trend T(t) and fluctuation F(t) are defined as:

T(t) =
l∑

i=i∗
mi, (A3)

F(t) =
i∗−1∑
i=1

mi. (A4)

An example of the above is presented in Figure A4.
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Figure A4 shows the trend filtering process on the same signal used in Figure A1. Additionally,
the plot of values is shown. In the Ri. plot, the mean value and lateral thresholds are represented with
a red-dashed line and black-dashed lines, respectively. In this example, the best IMF index is I = 4,
because, in this value, the ratio approach as well as energy approach are fulfilled.

References

1. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans.
Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [CrossRef] [PubMed]

2. Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn.
Med. Eng. Phys. 2009, 31, 61–68. [CrossRef] [PubMed]

3. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
4. Xie, H.; Chen, W.; He, W.; Liu, H. Complexity analysis of the biomedical signal using fuzzy entropy

measurement. Appl. Soft Comput. 2011, 11, 2871–2879. [CrossRef]
5. Ji, L.; Li, P.; Li, K.; Wang, X.; Liu, C. Analysis of short-term heart rate and diastolic period variability using a

refined fuzzy entropy method. Biomed. Eng. Online 2015, 14, 64. [CrossRef] [PubMed]
6. Chen, C.; Jin, Y.; Lo, I.L.; Zhao, H.; Sun, B.; Zhao, Q.; Zheng, J.; Zhang, X.D. Complexity Change in

Cardiovascular Disease. Int. J. Biol. Sci. 2017, 13, 1320–1328. [CrossRef]

http://dx.doi.org/10.1109/TNSRE.2007.897025
http://www.ncbi.nlm.nih.gov/pubmed/17601197
http://dx.doi.org/10.1016/j.medengphy.2008.04.005
http://www.ncbi.nlm.nih.gov/pubmed/18538625
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.asoc.2010.11.020
http://dx.doi.org/10.1186/s12938-015-0063-z
http://www.ncbi.nlm.nih.gov/pubmed/26126807
http://dx.doi.org/10.7150/ijbs.19462


Entropy 2019, 21, 706 20 of 21

7. Xie, H.; Guo, T. Fuzzy entropy spectrum analysis for biomedical signals de-noising. In Proceedings of
the 2018 IEEE International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA,
4–7 March 2018; Volume 1, pp. 50–53.

8. Ahmed, M.U.; Chanwimalueang, T.; Thayyil, S.; Mandic, D. A Multivariate Multiscale Fuzzy Entropy
Algorithm with Application to Uterine EMG Complexity Analysis. Entropy 2017, 19, 2. [CrossRef]

9. Girault, J.M.; Heurtier, A.H. Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision.
Entropy 2018, 20, 287. [CrossRef]

10. Cao, Z.; Lin, C.T. Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation. IEEE Trans.
Fuzzy Syst. 2016, 26, 1032–1035. [CrossRef]

11. Valencia, J.F.; Porta, A.; Vallverdú, M.; Claria, F.; Baranowski, R.; Orlowska, E.; Caminal, P. Refined multiscale
entropy: Application to 24-h Holter recordings of heart period variability in healthy and aortic stenosis
subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. [CrossRef]

12. Valencia, J.F.; Vallverdú, M.; Porta, A.; Voss, A.; Schroeder, R.; Vázquez, R.; de Luma, A.B.; Caminal, P.
Ischemic risk stratification by means of multivariate analysis of the heart rate variability. Physiol. Meas. 2013,
34, 325–338. [CrossRef]

13. Bari, V.; Valencia, J.F.; Vallverdú, M.; Girardengo, G.; Marchi, A.; Bassani, T.; Caminal, P.; Cerutti, S.;
George, A.L., Jr.; Brink, P.A.; et al. Multiscale complexity analysis of the cardiac control identifies asymptomatic
and symptomatic patients in long QT syndrome type 1. PLoS ONE 2014, 9, e93808. [CrossRef] [PubMed]

14. Bari, V.; Girardengo, G.; Marchi, A.; De Maria, B.; Brink, P.A.; Crotti, L.; Schwartz, P.J.; Porta, A. A Refined
Multiscale Self-Entropy Approach for the Assessment of Cardiac Control Complexity: Application to Long
QT Syndrome Type 1 Patients. Entropy 2015, 17, 7768–7785. [CrossRef]

15. Valencia, J.F.; Melia, U.; Vallverdú, M.; Borrat, X.; Jospin, M.; Jensen, E.W.; Porta, A.; Gambús, P.L.; Caminal, P.
Assessment of Nociceptive Responsiveness Levels during Sedation-Analgesia by Entropy Analysis of EEG.
Entropy 2016, 18, 103. [CrossRef]

16. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005,
71, 021906. [CrossRef] [PubMed]

17. Riihijarvi, J.; Wellens, M.; Mahonen, P. Measuring Complexity and Predictability in Networks with Multiscale
Entropy Analysis. In Proceedings of the EEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009;
Volume 1, pp. 1107–1115.

18. Wen, H. A Review of the Hénon Map and Its Physical Interpretations; School of physics, Georgia Institute of
Technology: Atlanta, GA, USA, 2014.

19. Ramsay, M.A.; Savege, T.M.; Simpson, B.R.; Goodwin, R. Controlled sedation with alphaxalone-alphadolone.
Br. Med. J. 1974, 2, 656–659. [CrossRef] [PubMed]

20. Melia, U.; Clariá, F.; Vallverdú, M.; Caminal, P. Filtering and thresholding the analytic signal envelope
in order to improve peak and spike noise reduction in EEG signals. Med. Eng. Phys. 2014, 36, 547–553.
[CrossRef]

21. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. 2000, 278, H2039–H2049. [CrossRef]

22. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88,
2297–2301. [CrossRef]

23. Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Stanley, H.E. Effect of trends on detrended fluctuation analysis.
Phys. Rev. E 2001, 64, 011114. [CrossRef]

24. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The
empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [CrossRef]

25. Moghtaderi, A.; Flandrin, P.; Borgnat, P. Trend filtering via empirical mode decompositions. Comput. Stat.
Data Anal. 2013, 58, 114–126. [CrossRef]

26. Flandrin, P.; Rilling, G.; Gonçalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett.
2004, 11, 112–114. [CrossRef]

27. Flandrin, P.; Gonçalves, P.; Rilling, G. Detrending and denoising with empirical mode decompositions.
In Proceedings of the EUSIPCO 2004, Vienna, Austria, 6–10 September 2004; pp. 1581–1584.

http://dx.doi.org/10.3390/e19010002
http://dx.doi.org/10.3390/e20040287
http://dx.doi.org/10.1109/TFUZZ.2017.2666789
http://dx.doi.org/10.1109/TBME.2009.2021986
http://dx.doi.org/10.1088/0967-3334/34/3/325
http://dx.doi.org/10.1371/journal.pone.0093808
http://www.ncbi.nlm.nih.gov/pubmed/24705789
http://dx.doi.org/10.3390/e17117768
http://dx.doi.org/10.3390/e18030103
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://www.ncbi.nlm.nih.gov/pubmed/15783351
http://dx.doi.org/10.1136/bmj.2.5920.656
http://www.ncbi.nlm.nih.gov/pubmed/4835444
http://dx.doi.org/10.1016/j.medengphy.2013.11.014
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.1073/pnas.88.6.2297
http://dx.doi.org/10.1103/PhysRevE.64.011114
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1016/j.csda.2011.05.015
http://dx.doi.org/10.1109/LSP.2003.821662


Entropy 2019, 21, 706 21 of 21

28. Rilling, G.; Flandrin, P.; Gonçalves, P. Empirical mode decomposition, fractional Gaussian noise, and Hurst
exponent estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing 2005, Philadelphia, PA, USA, 23–23 March 2005; pp. 489–492.

29. Smith, W.D.; Dutton, R.; Smith, N.T. Measuring the performance of anesthetic depth indicators. Anesthesiology
1996, 84, 38–51. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/00000542-199601000-00005
http://www.ncbi.nlm.nih.gov/pubmed/8572353
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Database 
	Synthetic Time Series 
	Experimental Time Series 

	SampEn and Fuzzy Approaches as Entropy Rates 
	SampEn 
	FuzEn 
	Increasing Consistency of FuzEn Estimate 
	Eliminating Trends before FuzEn Computation 

	MSE and RMSE 

	Results 
	RMSE of Synthetic Time Series 
	RMSE of EEG Signals 

	Discussion 
	Conclusions 
	Empirical Mode Decomposition (EMD) 
	References

