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Abstract: The Maximum Entropy Theory of Ecology (METE), is a theoretical framework of
macroecology that makes a variety of realistic ecological predictions about how species richness,
abundance of species, metabolic rate distributions, and spatial aggregation of species interrelate in
a given region. In the METE framework, “ecological state variables” (representing total area, total
species richness, total abundance, and total metabolic energy) describe macroecological properties of
an ecosystem. METE incorporates these state variables into constraints on underlying probability
distributions. The method of Lagrange multipliers and maximization of information entropy
(MaxEnt) lead to predicted functional forms of distributions of interest. We demonstrate how
information entropy is maximized for the general case of a distribution, which has empirical
information that provides constraints on the overall predictions. We then show how METE’s two core
functions are derived. These functions, called the “Spatial Structure Function” and the “Ecosystem
Structure Function” are the core pieces of the theory, from which all the predictions of METE follow
(including the Species Area Relationship, the Species Abundance Distribution, and various metabolic
distributions). Primarily, we consider the discrete distributions predicted by METE. We also explore
the parameter space defined by the METE’s state variables and Lagrange multipliers. We aim
to provide a comprehensive resource for ecologists who want to understand the derivations and
assumptions of the basic mathematical structure of METE.

Keywords: information entropy; information theoretics; macroecology; metabolic theory; scaling;
species abundance distribution; species-area relationship

1. The Maximum Entropy Theory of Ecology

Many of the central questions of macroecology ask how patterns of species richness, abundance,
and body size arise from ecosystems, how these patterns scale over increasing area, and how they
interrelate [1]. Many macroecological distributions that quantify aspects of community structure, such as
the Species–Area Relationship, the Species Abundance Distribution [2], size–density relationships [3–5],
and the allometric scaling of metabolic rates of biological organisms within a community [6–8] have
been studied independently, revealing general properties that may be universal across ecosystems.
The Maximum Entropy Theory of Ecology (METE) [9–11], is a theoretical framework of macroecology
that makes a variety of realistic ecological predictions about the diversity and structure of ecological
communities [12–20]. These predictions relate species richness and abundance to metabolic rate
distributions and spatial aggregation of species in a given region. Because METE makes a set of
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interrelated predictions about community structure, it has the potential to unify disparate parts of
macroecology into a single mathematical framework.

The underlying mathematics of METE relies on a method termed “MaxEnt”: the maximization of
information entropy. MaxEnt uses the method of Lagrange multipliers to find probability distributions
that underlie statistical phenomena. For METE, the MaxEnt method is applied to problems involving
measurable “ecological state variables” that describe macroecological properties of an ecosystem
(Section 3.1). METE is a “top-down” theory that makes no assumptions regarding the particular
details of, or mechanistic interactions between, the species being studied. This is different from
other “bottom-up” theories involving the combinatorics of micro-states that result in Boltzmann
distributions [21–23]. As such, its focus is the maximization of the Shannon information entropy [24,25].

In this paper, we will first demonstrate how information entropy is maximized for the general case
of a distribution, which has empirical information that provides constraints on the overall predictions.
We then introduce the ecological state variables A0, S0, N0, and E0, representing total area, total number
of species, total abundance, and total metabolic energy of an ecological system, and use them with the
method of information entropy maximization to show how METE’s two core functions are derived.
These functions, called the “Spatial Structure Function” and the “Ecosystem Structure Function” are the
core pieces of the theory, from which all the predictions of METE follow (including the Species–Area
Relationship, the Species Abundance Distribution, and various metabolic distributions). Primarily, we
consider the discrete distributions predicted by METE. These derivations are not provided in their
entirety in Harte (2011) [10], but are the derivations that will produce the core distributions of the
Spatial Structure Function and the Ecosystem Structure Function as presented in that work.

In the process of constructing the core structure functions, we derive the Lagrange multipliers
that arise from the MaxEnt process, and characterize the ecosystems modeled by METE. We investigate
the parameter space of these Lagrange multipliers, and evaluate some of the simplifying assumptions
that have been used previously to estimate the Lagrange multiplier values.

We aim to provide a comprehensive resource for ecologists who want to understand the
derivations and assumptions of the basic structure of METE. We hope that by providing explicit
derivations of METE, we will encourage other ecologists to modify the framework, apply it to their
own systems, and make progress in this valuable area of research.

2. Information Entropy Maximization: A Primer

In this section we present the equations that are necessary for information entropy maximization.
We then use these equations to derive the form of the probability distribution resulting from the
simplest case of a discrete, one-dimensional distribution. Although this derivation will not be new
for regular readers of Entropy, we include it for ecologists who are interested in this theoretical
framework, because this chain of logic will be applied to the constraints that characterize METE in
subsequent sections.

2.1. Writing Down the Constraints

As observed by Haegeman and Etienne (2010) [26], probability distributions with higher
information entropy encode less information. Therefore, a probability distribution that corresponds
to empirical data without imputing any additional information will maximize information entropy.
This is also true of a probability distribution that conforms to a constraint (as, for example, a constraint
on the value of the mean) without making additional assumptions or adding other information. In this
sense, maximum information entropy methods give the most impartial estimate of the shape of the
underlying probability distribution for an observable. MaxEnt also gives the least biased estimators of
the moments of a distribution (which include the range, mean, and variance) [25], meaning that there is
no difference, for example, between the estimated mean and the empirical mean of a distribution. This
feature of MaxEnt is by design, such that the moments of a probability distribution are constrained by
the empirical values of those moments.
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Here we present the primary equations that regularly occur in information entropy maximization.
The general expression for K constraints on the mean values of the variables fk(n), where n follows
the distribution p(n), is expressed as:

n=N

∑
n=1

fk(n)p(n) = 〈 fk〉. (1)

An additional constraint provides for the normalization of the probability distributions, and is
expressed as:

n=N

∑
n=1

p(n) = 1. (2)

The procedure of maximizing entropy results in a particular form of the probability distribution
and partition function, proven by Jaynes [25] to result in the least-biased probability p(n) that satisfies
the constraint equation of Equation (1) and the normalization constraint of Equation (2),

p(n) =
1
Z

exp

{
−

k=K

∑
k=1

λk fk(n)

}
, (3)

where Z is the partition function that serves to normalize the probability distribution, and is
expressed as,

Z =
n=N

∑
n=1

exp

{
−

k=K

∑
k=1

λk fk(n)

}
. (4)

Generally, when one wants to use the tools of MaxEnt, one will need to have data from which
constraints on the distributions can be inferred (such as average values). Then a process of algebra
and numerical methods will begin during which one solves for the Lagrange multipliers λk. Once the
Lagrange multipliers have been determined, then the form of the probability distributions can be
inferred (or graphed). For examples using Equations (1)–(4), see Appendix A.1. Equations (3) and (4)
are written here for reference, as we will use them repeatedly. In the next section we derive
Equations (3) and (4) by maximizing the Shannon information entropy.

2.2. The Method of Lagrange Multipliers and Optimization

Here we derive the generic probability distribution p(n) for the specific scenario of a discrete
variable with one constraint (beyond normalization). This will serve as a simpler example for deriving
the core distributions, or structure functions of METE.

What does it mean for us to “maximize Shannon information entropy”? While the explicit form
of the probability distribution, p(n), is unknown, we have information about some of its properties
that will serve to constrain its functional form. However, there may exist more than one function p(n)
that satisfies our constraints, so we must choose between them. By maximizing Shannon information
entropy we are maximizing the uncertainty inherent in our function p(n), and choosing the unique
form of p(n) that represents the least amount of bias in regard to our measurements. The expression
for Shannon information entropy [24] is:

H = −
Nmax

∑
n=Nmin

p(n) ln(p(n)). (5)
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We know that no matter what the form of the probability distribution is, it should be properly
normalized (that is, the sum of the probabilities of all possible outcomes will equal one). This gives us
our normalization constraint, which for a single, discrete variable takes the form of

Nmax

∑
n=Nmin

p(n) = 1. (6)

Finally, we will likely have some information about an aggregated measurement of the variable
in our system. This information constitutes our additional constraint, or constraints. Letting f (n)
represent a measured value dependent on n, and assuming that the aggregated measurement we
have is the mean value of f (n), then we can express our knowledge regarding this measurement of
an observable quantity that represents some aggregated or average value using the mathematical
definition of an average.

Nmax

∑
n=Nmin

f (n)p(n) = 〈 f 〉. (7)

Thus, the definition itself constitutes our constraint.
To maximize Shannon information entropy subject to our constraints, we employ the tools of

variational calculus and the method of undetermined Lagrange multipliers. A concrete example of
this is given in Appendix A.1. We begin by constructing the function F, which is an expression that
incorporates the measure of Shannon information entropy and the additional constraints.

F = −
Nmax

∑
n=Nmin

p(n) ln(p(n))− λ0

[
Nmax

∑
n=Nmin

p(n)− 1

]
− λ1

[
Nmax

∑
n=Nmin

f (n)p(n)− 〈 f 〉
]

. (8)

The constraints are written in such a way so that each constraint is independent of the other,
and each term inside the square brackets is zero. In this way, we can incorporate multiple constraints
without changing the overall value of F. When we perform the maximization step to find local optima,
the presence of the constraints will change the subsequent form of p(n). That is, maximizing F will
subsequently maximize the uncertainty represented by the Shannon information entropy, H, subject to
the constraints. Thus we seek to solve for the functional form of p(n) that results from variations in F,
due to variations in p(n). Mathematically this is expressed as δF/δp(n) = 0. Practically, this requires
evaluating derivatives of each term in F with respect to p(n), and setting the resulting equation equal
to zero,

0 = − [ln(p(n)) + 1]− λ0 − λ1 f (n). (9)

Note that we can drop the summations at this point. Solving for p(n) yields,

p(n) = k exp {−λ1 f (n)} , (10)

where k = exp {−(λ0 + 1)}. Imposing our normalization constraint ∑n p(n) = 1, we have

∑
n

k exp {−λ1 f (n)} = 1. (11)

Since k is independent of n, we can factor it out of the summation and solve for it to find,

k =
1

∑
n

exp {−λ1 f (n)}
. (12)
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The expression ∑n exp {λ1 f (n)} comes up so often that it is given its own variable representation
Z, the partition function, which will eventually just turn out to be a real-valued number,

Z = ∑
n

exp {−λ1 f (n)} . (13)

Thus, we can express the probability p(n) as,

p(n) =
1
Z

exp {−λ1 f (n)} = exp {−λ1 f (n)}
∑
n

exp {−λ1 f (n)}
. (14)

To find the explicit form of p(n), one needs further information in the form of data. Having data,
it is then possible to use the constraint equations to numerically solve for the undetermined Lagrange
multipliers, and thus identify the form of the probability distribution p(n). This relationship between
data, the Lagrange multipliers, and the resulting form of the probability distribution is revisited for
normal and log-normal distributions in Appendices A.3 and A.4, and is fundamental to the Maximum
Entropy Theory of Ecology.

3. The Structure of METE

In this section, we introduce and discuss the ecological state variables common to macroecology,
as used by METE. We apply the MaxEnt method to these ecological state variables to derive the
core distributions of METE, namely the Spatial Structure Function, and the Ecosystem Structure
Function [10,11].

3.1. A State Variable Theory

Much of macroecology is concerned with detecting patterns in ecosystems, either at large scale,
or as an emergent property of scaling over larger aggregates of individuals, species, area, or time [27].
To detect these patterns, we must work with variables that are sufficiently coarse that they capture
average conditions of some larger phenomena that is being modeled, or sufficiently aggregated
that they apply across systems and capture certain generalities. For example, we may examine
average abundance of all individuals in an area. The “average” may refer to an average of repeated
measurements in different plots or subplots, for example, which can smooth out heterogeneity and
model average conditions on a landscape. The “aggregated” nature of abundance refers to something
slightly different, in that abundance measured will be a result of multiple processes, such as birth,
death, emigration, and immigration [28]. Abundance therefore represents an “aggregate” metric of all
of these processes. Similarly, “species” as an observable may have an average value when measured in
many similar sized plots, but is itself an aggregate measure of biodiversity that ignores (or “coarse
grains”) genetic variation among individuals, and processes such as hybridization. These variables
are easily measured and compared across ecological systems, and have an overall generality and
transferability that make them relevant to ecological studies at large scales.

Within METE, variables representing total area, total number of species, total abundance,
and total metabolic energy of an ecological system are central to the definitions of the core probability
distributions. These ecological state variables are represented as A0, S0, N0, and E0, respectively.
They are static (not time-dependent), and can be used to model macroecological distributions of interest,
such as the Species–Area Relationship, the Species Abundance Distribution, and various metabolic rate
distributions, both within a species and across an entire community. This so-called “ASNE” version
of METE, where “ASNE" represents the four state variables above, has been the subject of the most
study [10], but other constraints featuring additional state variables are possible. In one case, METE
has been extended to include higher taxonomic constraints [29].

It is worth clarifying that although “ecological state variables” may call to mind the true
state variables of thermodynamics, the use of this term is merely an analogy to thermodynamics
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concepts [30], but differs in underlying justification and interpretation. Ecological state variables
capture information that defines the state of the system at a given point in time and space, but cannot
be interpreted as true macroscopic variables for many reasons, including the less-than-ideal behavior
of the variables themselves. For example, S0, the total number of species in an area, neither adds nor
averages when considering larger and larger areas. It is therefore neither truly an intensive nor an
extensive variable. “Species” as a defined concept only applies to a fraction of real organisms [31],
and is used in macroecology as an aggregating variable, either sorting organisms by their actual species
designation, or as a stand-in for phylogenetic relatedness or functional traits [32]. Because of these and
other issues, ecological state variables are seen to embody information at an aggregate level, and are
not interpreted as direct translation from countable microstates to macrostates, though this has been
the subject of some debate [30,33–35]. This raises a related issue, which is the use of the Shannon form
of entropy in METE and the information-entropy interpretation.

Work with applications of entropy maximization to macroecological patterns began in 2006
with Shipley, Vile, and Garnier’s use of Shannon information entropy in the problem of constructing
Species Abundance Distributions [33]. This advance sparked a small explosion of the use of entropy
maximization in macroecology, including applications to new problems (variously using frequentist
and Bayesian interpretations of MaxEnt), a search for generalities among ecosystems, and among
the approaches themselves [9,13,14,17,36–45]. It also sparked a debate about the use of information
entropy in macroecology, in which Shipley [30,33] and Haegeman and Loreau [34,35], discuss the
use and justification of Shannon information entropy in ecology. In this exchange, Shipley maintains
that ecological systems are more complex in their constraints than systems of particles, and that
we may never know (or be able to measure) all of the relevant constraints. He therefore suggests
focusing on the most important constraints, and using information entropy to evaluate the constraints
and distributions. Although Haegeman and Loreau make a clear argument that the frequentist
interpretation of MaxEnt should be complementary to the information entropy interpretation, Shipley
disagreed, arguing incorporating all relevant constraints may not be possible for ecological systems,
but would be needed for the constraint-based information entropy and state-counting, combinatorics
interpretations of entropy to be equivalent. A later exchange between Favretti [21,23] and Harte [22]
revisits this topic, and more productive work may be done to address the issues raised in all of
these exchanges.

METE follows the logic of Shipley’s arguments about the use of important constraints in complex
ecosystems, and uses the information entropy approach. In the following sections, we will demonstrate
how METE’s ecological state variables and their ratios are used with the MaxEnt procedure to
constrain patterns of individuals over area for the Spatial Structure Function, and patterns of metabolic
requirement (or body size) across individuals and abundances per species through the Ecosystem
Structure Function.

3.2. The Spatial Structure Function

This distribution goes by multiple names among practitioners, including the “Pi distribution”
(informally), the “Species-level Spatial Abundance Distribution” (SSAD) [14,46], and the Spatial
Structure Function (SSF) [47], which is how we will refer to it here. The SSF is a by-species prediction
of the clustering of individuals over space, and is defined as the “probability that n individuals of a
species are found in a cell of area A if it has n0 individuals in A0” [10]. We derive this distribution
before the Ecosystem Structure Function for pedagogical reasons, as it is a one-dimensional distribution
for a discrete variable. This variable is the the abundance of a single species, n, at a given scale, A,
where A is a smaller area within the total area under consideration, A0. The variables that are used
to constrain the system are A, A0, and the abundance of a single species at the total spatial scale, n0.
The derivation of the Spatial Structure Function will follow exactly the general approach provided in
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the previous section. We represent this function as Π(n|A, n0, A0). To ensure that the Spatial Structure
Function is properly normalized, we express our normalization constraint as,

n0

∑
n=0

Π(n) = 1. (15)

where we have dropped the conditional variables A, n0, and A0 for notational convenience. Note also
that the lower limit on the summation is set to n = 0. This is because n represents the per-species
abundance, and it is possible for a species that has n0 individuals to have zero abundance in an area A.

Our additional constraint comes from the simultaneous definition and measurement of the
average value of the per-species abundance n̄. From measurement, n̄ = n0 A/A0. From definition,
n̄ = ∑n0

n=0 nΠ(n). Combining these two expressions gives us our other constraint,

n0

∑
n=0

nΠ(n) =
n0 A
A0

. (16)

Now, as we want to maximize uncertainty, or Shannon information entropy, related to the Spatial
Structure Function subject to the above two constraints, we construct the function F in the form,

F = −
n0

∑
n=0

Π(n) ln(Π(n))− λ0

[
n0

∑
n=0

Π(n)− 1

]
− λΠ

[
n0

∑
n=0

nΠ(n)− n0 A
A0

]
. (17)

From here we maximize F by evaluating the expression δF/δΠ(n) = 0. This results in,

0 = − [ln(Π(n)) + 1]− λ0(1)− λΠn. (18)

From here we can solve for Π(n) to arrive at,

Π(n) = k exp{−λΠn} (19)

where k = exp{−(λ0 + 1)}. Imposing our normalization constraint, we can write,

n0

∑
n=0

k exp{−λkn} = 1. (20)

Because k is independent of n, we can factor it out of the summation and rewrite as,

k =
1

∑n0
n=0 exp{−λΠn}

. (21)

Conventionally this normalization constant is defined as 1/Z and denoted as the partition
function, where,

Z =
n0

∑
n=0

exp{−λΠn}. (22)

This brings us to the following compact expression for the Spatial Structure Function,

Π(n) =
1
Z

exp{−λΠn}. (23)

In order to actually calculate, or graph, the Spatial Structure Function for a given set of values
A0, n0, and A, we must first calculate the Lagrange multiplier λΠ using our constraint equation relating
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the measured average per-species abundance n̄ = n0 A/A0 to the definition of the average per-species
abundance n̄ = ∑n0

n=0 nΠ(n). This time, substituting our known expression for Π(n), we have,

n0

∑
n=0

n
Z

exp{−λΠn} = n0 A
A0

. (24)

Recalling that Z is independent of n, it can be pulled out of the summation.
Furthermore, substituting our definition of Z, but using m as a dummy index instead of n to avoid
mixing up our indices, we can write,

∑n0
n=0 n exp{−λΠn}

∑n0
m=0 exp{−λΠm}

=
n0 A
A0

. (25)

In principle, the above expression allows one to solve for the Lagrange multiplier λΠ.
However, analytical solutions for λΠ are intractable, thus one must resort to numerical methods.
We graph the parameter space of the state variables A0, n0, n and λΠ in Figure 1.

Figure 1. The relationship between the Maximum Entropy Theory of Ecology (METE)’s Lagrange
multipliers λ1, λ2, and λΠ, and the ecological state variables in the mathematical constraints that
produce them. Values for each λ were generated with the software package meteR [47] in the statistical
computing language R [48], and a surface was interpolated to aid in visualization. In panel (A), we
see the greater influence of log(N0) than S0 on the overall value of the Lagrange multiplier λ1, and a
compression of λ1 values at low N0. In panel (B), we can see a near-linear relationship on the log-log
scale between λ2 and log(E0), while S0 does not affect its value as greatly over this range of values.
In panel (C), we see a highly non-linear relationship between λΠ, the state variable A0, and the smaller
area under consideration, A.

3.3. The Ecosystem Structure Function

The Ecosystem Structure Function (ESF) is the second of METE’s core distributions. Unlike the SSF,
it does not have a simple definition, but can be described as a kind of “container function” that describes
the probability space, R(n, ε), of how abundances are assigned to species, n, and how metabolic energy,
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ε, is partitioned over individuals in a community. As described by Bertram (2015) [49], R(n, ε) is a joint
probability distribution, with R(n, ε)dε by definition being “the probability that a randomly selected
species has abundance n, and that a randomly selected individual from any species with abundance
n has metabolic requirement in the interval (ε, ε + dε)” (page 55). This definition differs from and
corrects the one given in Harte (2011) [10] (also used in [45]), and is consistent with a later correction
to the Harte (2011) definition [21] (accepted by Harte [22]). The ESF is the distribution from which the
Species Abundance Distribution, Species–Area Relationship, and metabolic rate distributions [14,18]
can eventually be derived. Constrained by empirical values measured from real systems, the ESF
produces actual predictions of these probability distributions.

As the ESF R(n, ε), depends on one discrete variable n, and one continuous variable ε, we will
this time need to integrate over ε in addition to summing over n. Thus, our normalization constraint
now takes the form of,

N0

∑
n=1

∫ E0

ε=1
R(n, ε)dε = 1. (26)

Note that in the above expression we have specified the lower limit of metabolism as,
εmin = 1. In so doing we have defined metabolism as a dimensionless quantity. This decision has
several consequences. For comparison against data, a researcher must standardize their metabolic
measurements to conform with this definition. That is, they divide all metabolic measurements by the
smallest measured value [10,14,19]. A second consequence of this decision is that it preempts the need
to incorporate reference distributions when expressing Shannon information entropy for a continuous
variable [10,25].

Our additional constraints are aggregated measures of variables n and nε, that is f1(n) = n,
and f2(nε) = nε. The measures themselves are the ratios N0/S0 and E0/S0, that is 〈 f1(n)〉 = N0/S0,
and 〈 f2(nε)〉 = E0/S0. This gives us the pair of constraints,

N0

∑
n=1

∫ E0

ε=1
nR(n, ε)dε =

N0

S0
(27)

N0

∑
n=1

∫ E0

ε=1
nεR(n, ε)dε =

E0

S0
. (28)

Now, the function F that we will want to maximize takes the form of

F = −
N0

∑
n=1

∫ E0

ε=1
R(n, ε) ln(R(n, ε))dε− λ0

[
N0

∑
n=1

∫ E0

ε=1
R(n, ε)dε− 1

]

− λ1

[
N0

∑
n=1

∫ E0

ε=1
nR(n, ε)dε− N0

S0

]
− λ2

[
N0

∑
n=1

∫ E0

ε=1
nεR(n, ε)dε− E0

S0

]
.

(29)

As before, we maximize F by evaluating δF/δR = 0. This results in,

0 = − [ln(R(n, ε)) + 1]− λ0 [1]− λ1 [n]− λ2 [nε] . (30)

Solving for R(n, ε) gives,
R(n, ε) = k exp{−λ1n− λ2nε}, (31)

where k = exp{−(1 + λ0)}. Using our normalization condition to define Z we have,

Z =
N0

∑
n=1

∫ E0

ε=1
exp{−λ1n− λ2nε}dε. (32)
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This allows us to express the full form of the Ecosystem Structure Function as,

R(n, ε) =
exp{−λ1n− λ2nε}

∑N0
m=1

∫ E0
ε′=1 exp{−λ1m− λ2mε′}dε′

, (33)

where we have replaced n with m and ε and ε′ in the denominator to ensure there is no confusion over
which variables belong in the numerator or denominator.

At this point we can simplify the expression for Z by performing the integral over ε′. Factoring out
the term in Z independent of ε′ we have,

Z =
N0

∑
m=1

exp{−λ1m}
∫ E0

ε′=1
exp{−λ2mε′}dε′. (34)

After integrating, we have

Z =
N0

∑
m=1

exp{−λ1m}
λ2m

[exp{−λ2m} − exp{λ2mE0}] , (35)

and with further simplification,

Z =
1

λ2

N0

∑
m=1

1
m

[exp{−mβ} − exp{−mσ}] , (36)

where β = λ1 + λ2 and σ = λ1 + E0λ2.
From here we can examine the constraint Equations (27) and (28). In particular, now that we have

an explicit form for the structure function, we can perform the integrals in the constraint equations to
fix the values of the unknown Lagrange multipliers in terms of the measured quantities N0, E0, and S0.
Upon substitution of our expression for R(n, ε) into Equation (27) we have,

N0

S0
=

1
Z

N0

∑
n=1

∫ E0

ε=1
n exp{−n(λ1 + λ2ε)}dε. (37)

Factoring from the integral the term independent of ε,

N0

S0
=

1
Z

N0

∑
n=1

n exp{−nλ1}
∫ E0

ε=1
exp{−nλ2ε}dε. (38)

Upon integration,

N0

S0
=

1
Z

N0

∑
n=1

n exp{−nλ1}
[

exp{−nλ2} − exp{−nλ2E0}
nλ2

]
, (39)

and with further simplification,

N0

S0
=

1
Zλ2

N0

∑
n=1

[exp{−nβ} − exp{−nσ}] , (40)

where β = λ1 + λ2 and σ = λ1 + E0λ2.
Turning our attention now to constraint Equation (28), upon substitution of R(n, ε) we have,

E0

S0
=

1
Z

N0

∑
n=1

∫ E0

ε=1
nε exp{−n(λ1 + λ2ε)}dε. (41)
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Factoring from the integral the term independent of ε,

E0

S0
=

1
Z

N0

∑
n=1

n exp{−nλ1}
∫ E0

ε=1
ε exp{−nλ2ε}dε. (42)

After integrating by parts we have,

E0

S0
=

1
Z

N0

∑
n=1

n exp{−nλ1}
[

exp{−nλ2} − E0 exp{−nλ2E0}
nλ2

+
exp{−nλ2} − exp{−nλ2E0}

(nλ2)2

]
, (43)

and with further simplification,

E0

S0
=

1
Z

N0

∑
n=1

[
exp{−nβ} − E0 exp{−nσ}

λ2
+

exp{−nβ} − exp{−nσ}
nλ2

2

]
, (44)

where β = λ1 + λ2 and σ = λ1 + E0λ2. Substituting in our expression for Z, we can write the
integrated versions of the constraint equations in full as,

N0

S0
=

∑N0
n=1 [exp{−nβ} − exp{−nσ}]

∑N0
m=1

[
exp{−mβ}−exp{−mσ}

m

] (45)

E0

S0
=

∑N0
n=1 [exp{−nβ} − E0 exp{−nσ}]

∑N0
m=1

[
exp{−mβ}−exp{−mσ}

m

] +
1

λ2
. (46)

The values of λ1 and λ2 are often difficult to calculate by conventional means, so some
approximations were used in Harte (2011). With the use of the software package meteR [47,48],
which implements a number of METE’s predictions and tests them against empirical data sets, these
approximations are no longer necessary. However, we consider them in more depth in Appendix B.

4. Relationships between State Variables and Lagrange Multipliers

By using the MaxEnt approach with the METE ecological state variables, we derive three Lagrange
multipliers: λΠ associated with the Spatial Structure Function, and λ1 and λ2, associated with the
Ecosystem Structure Function. The METE Lagrange multipliers represent all the possible relationships
between N0, S0, and E0, and METE’s predicted relationships of n, A, and A0. We graph these, along
with the ecological state variables in their respective constraints, in Figure 1.

Examining λ1 in panel (A), we see the greater influence of log(N0) than S0 on the overall value
of the Lagrange multiplier λ1, and a compression of λ1 values at low N0. This may correspond to
METE’s own stated limitations, and its requirement that N >> 1 [10]. It also implies that λ1 may
be quite sensitive to the total area being sampled in empirical studies, and that this factor should be
explicitly controlled for when comparing diversity patterns, such as Species Abundance Distributions,
across plots. In panel (B), we can see a near-linear relationship on the log-log scale between λ2 and
log(E0), while S0 does not affect its value as greatly over this range of values. It is apparent, then,
that the METE distributions that rely on λ2, such as the species-level energy distributions [14,18] are
driven by body size, and may be largely insensitive to species richness, which in turn implies that the
metabolic predictions of METE should hold equally well in very different ecosystems that share size
characteristics, such as boreal forests and tropical ones.

In panel (C), λΠ is clearly non-linear in both the state variable A0, and the smaller area under
consideration, A. The graph of λΠ shows that very different values of λΠ may be obtained by varying
the ratio of A to A0 slightly, and this may in turn suggest that it does not have the properties we
would desire in a metric describing clustering. It has been demonstrated that the SSF does not always
produce reliable predictions for clustering of individuals of a species within a a given area [16,46],
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and this area of METE could be extended and modified in future work. Further investigations of
the relationships of λ1 and λ2 with data from varied ecosystems may also allow us to investigate
patterns of diversity, abundance, body size, and the relationships between these macroecological
variables in new ways. These kinds of parameter space representations are also useful in generating
hypotheses about changing ecosystems, and what new distributions are expected as one or more state
variable changes.

In Figure 2, we graph the parameter space that is defined by the ESF through the Lagrange
multipliers λ1 and λ2. In this graph, the boundaries of the defined parameter space become interesting.
High values of λ1 always correspond to one or more “singleton species”, or species with a single
individual, where N0 = S0. This can only happen when a single individual is measured in order
to estimate the values of A0, N0, S0, and E0 (that is, small numbers of measurements), or in cases
where there are the most species possible given the number of individuals present (extreme diversity).
These cases therefore represent theoretical limits of possible outcomes of measurement. We expect that
most real systems will have many measurements of species with more than one individual, and will
fall into the range of low λ1 values. The behavior of the lower values of the graph may therefore be
worth investigating further in relation to spatial scale. Comparisons to empirical data sets may yield
new, emergent patterns in this parameter space.

Figure 2. The parameter space of ecosystems as defined by the METE Lagrange multipliers λ1,
corresponding to the constraint on N0

S0
, and λ2, corresponding to the constraint on E0

S0
. The highest

values of λ1 for any value of λ2 correspond to values of N0
S0

= 1 (shown in purple), or situations where
there is only one individual per species (small numbers of measurements or high diversity). Most real
ecosystems and empirical systems with more than a few individuals are expected to fall closer to the
low λ1 values for any given λ2 value (shown in green).

5. Summary

In this paper, we provide the explicit chain of logic that produces the core structure functions of
Maximum Entropy Theory of Ecology, or METE. These derivations fill a gap in the ecological literature
for researchers who would like to see the explicit construction and assumptions of the central equations
from which the predictions of METE follow. In presenting this theory, we take a different pedagogical
approach than is employed in Harte (2011) [10]. Namely, we provide a general case of a discrete
MaxEnt problem in one dimension. We then give worked examples of constraints on moments beyond
just the mean of a distribution (in Appendix A). From there, we first construct the simpler Spatial
Structure Function, which is a discrete probability distribution, and then work through the logic of the
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Ecosystem Structure Function, which contains more constraints, and has a combination of discrete and
continuous variables.

We do not cover the applications of METE to testing theory against empirical data, which has
been done extensively elsewhere [9–20], however, we explicitly show the MaxEnt process and how it
is applied to the ecological state variables of METE to produce the core structure functions from which
all the predictions of METE derive.

Finally, we discuss the three Lagrange multipliers that result from applying the MaxEnt procedure
to METE’s ecological state variables, and how these Lagrange multipliers characterize the system being
studied. We investigate (in Appendix B) some of the simplifying approximations that were previously
used to evaluate the Lagrange multipliers and assess their realism.

The equations presented here should make it easier for other researchers to make advances in
MaxEnt-based macroecology, and METE in particular, either by investigating new state variables,
or new functional forms of the mathematical constraints, and alternate forms of the entropy function.
The Lagrange multipliers, graphed for the first time here, form a parameter space that may be useful
to further studies involving comparisons between ecosystems and across scales.
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Appendix A. Examples of Applying MaxEnt to Known Distributions

Below we include basic equations for the application of MaxEnt to simple problems. This material
is included for pedagogical value, and we show it for context. Although regular readers of Entropy
may already be familiar with this material and versions available in textbooks (e.g., [50], Chapter 2),
we are not aware of any ecological textbooks that contain this information. Readers who come from an
ecology background may therefore not be familiar with these equations or approaches.

Appendix A.1. A Fair Three-Sided Die Constrained by the Mean

Consider the case of a three-sided die with sides labeled 1, 2, and 3. Suppose we perform an
experiment (that is, rolling a die), and measure the result (that is, reading and recording the outcome of
the roll in the form of the number on the face-up side). After performing enough of these experiments,
we can determine that the long-term average value of the rolls is to equal to two, by adding up all the
outcomes and then dividing by the number of rolls. We take note that this is also the true average of a
fair die, where all outcomes are equally probable. Because we chose a fair die in the first place, we
are not surprised that our empirical outcome matches the outcome for a fair die. However, we are
interested in determining the probability distribution that is associated with rolling any die, fair or
not. This mathematical approach will allow us to find our empirical average and figure out what the
probabilities of each outcome are, whether or not we have a fair die. To work through the logic, we
will use the tools presented in the form of equations Equations (1), (3) and (4).

First, we start by writing Equation (1), and substituting in the values corresponding to our problem.
Note that we have only one constraint (knowledge of the empirical mean), so K = 1, and all sums over k
vanish. Thus, fk(n) becomes f (n). Next, we can only make three possible observations, corresponding
to the values on the three sides of the dice. So f (1) = 1, f (2) = 2, and f (3) = 3. Finally, assuming that
we have performed this experiment and have a mean value for f (n) to calculate from the possible
observations, we can write that 〈 f (n)〉 = (3 + 2 + 1)/3 = 2. So, Equation (1) becomes,

1p(1) + 2p(2) + 3p(3) = 2. (A1)



Entropy 2019, 21, 712 14 of 22

This can be read as “the sum of the probabilities of a particular outcome of a roll times the value
of that roll equals the empirical average of all outcomes on repeated trials”. Next, we can substitute
our problem-specific values into the definitions of the probability distribution p(n) and the partition
function Z. Doing so makes Equation (3) take on the form:

p(n) =
1
Z

e−λn (A2)

for generic values of n, or specifically,

p(1) =
1
Z

e−λ

p(2) =
1
Z

e−λ2

p(3) =
1
Z

e−λ3 (A3)

We have one Lagrange multiplier, here denoted as λ, and the probability of each outcome is
expressed in terms of the partition function, as well as a term that involves the actual value of the
outcome multiplied by the Lagrange multiplier. The partition function, which is defined in Equation (4),
takes on the form:

Z =
n=3

∑
n=1

e−λn

Z = e−λ + e−λ2 + e−λ3. (A4)

Remember that in the end, we seek the specific form of the probability distribution function,
which means that we have to solve for the Lagrange multiplier, λ, that appears in both the probability
distribution and in the partition function. We can now substitute our specified version of the
partition function into the specified versions of the probability distributions, and substitute those
into the specified version of our constraint equation. We will do this step by step (and technically in
reverse order), starting with substituting the probabilities into the constraint, or Equation (A3) into
Equation (A2). This gives us,

1
Z

e−λ +
2
Z

e−λ2 +
3
Z

e−λ3 = 2. (A5)

Before substituting our partition function, Z, Equation (A4), into the constraint equation,
Equation (A2), we will first multiply both sides by the partition function, Z, to simplify the
expression, giving,

e−λ + 2e−λ2 + 3e−λ3 = 2Z. (A6)

Now we will substitute in the expression for the partition function, Z, to arrive at:

e−λ + 2e−λ2 + 3e−λ3 = 2(e−λ + e−λ2 + e−λ3). (A7)

Here we will make an extra substitution, simply for convenience. The equation above is, at heart,
a polynomial expression in e−λ. We can therefore substitute e−λ = x. Now we will solve for x, and at
the end we will see what this tells us about λ. Making this substitution, and performing the necessary
algebra, we have,

x + 2x2 + 3x3 = 2x + 2x2 + 2x3

0 = x− x3

0 = x(1− x2). (A8)



Entropy 2019, 21, 712 15 of 22

Thus, we have found that the solutions for x are x = 0, x = 1, or x = −1. Recalling that we made
the substitution x = e−λ, this means that we really have e−λ = 0, e−λ = 1, or e−λ = −1. With these
possibilities, we will need to check if one of these possible solutions is the true answer. The other two
solutions will prove to give non-sensible probability distributions (complex numbers or non-physical
solutions) for the problem that we have specified. To find out which one of the three is correct we
must examine the forms of the probability distributions that they yield. We could do this one of two
ways. We could use natural logarithm rules to determine the exact possible values of λ, and substitute
back into the probability distribution and partition function formulas to find their forms. Or, since
both the probability distribution and partition function formulas are functions of e−λ, we could simply
substitute the various known values of 0, −1, or 1 for each occurrence of e−λ. We will do the latter,
as it involves fewer steps.

If e−λ = 0 were the correct answer, then the partition function would take the form of
Z = 01 + 02 + 03 = 0, and the probability distributions would take the form of p(n) = 0n/Z = 0/0.
Dividing by zero is clearly a problem, so e−λ = 0 is not the correct answer. Alternatively,
if e−λ = −1 were the correct answer, then the partition function would take the form
of Z = −11 + (−1)2 + (−1)3 = −1, and the probability distribution would take the form of
p(n) = (−1)n/− 1 = −(−1)n. This is also a problem, as it means that every probability for rolling an
even number would be negative! So e−λ = −1 is also not the correct answer. This means that e−λ = 1
must be the correct answer. In this case, the partition function takes the form of Z = 11 + 12 + 13 = 3,
and the probability distribution takes the form of p(n) = 1n/3 = 1/3. Remembering that we have a
fair die, where fair means equal chances of rolling any number, we see that we have indeed found the
correct answer.

Appendix A.2. A Fair Three-Sided die Constrained by the Standard Deviation

Here we consider a case similar to that above, but with a minor variation. We will constrain
the problem with knowledge regarding the standard deviation of the rolls of the die, instead of
knowledge regarding the mean value of the rolls of the die. It is still a fair three-sided die, and we
will still use the true value one would get for the standard deviation of actual rolls so that we can
check our answer against reality at the end. This problem is of interest to us for several reasons.
First, it is possible to contrive a situation where all you may know about your data is the standard
deviation, and not the mean, yet you still want to determine the corresponding form of the probability
distribution functions (perhaps you are reconstructing data from faded paper articles that originally
reported both the mean and the standard deviation). Second, as a recent example of the importance
of understanding the moments of distributions, Trait-Driver Theory (TDT) in macroecology suggests
potential applications using MaxEnt [51,52]. In TDT, higher-order moments of trait distributions
are connected with patterns of variability in the local environment and climate. While efforts to
link MaxEnt with such environmental variables are ongoing, it may be that constraints based on
higher-order moments will prove to be of use in the near future in forecasting how biological organisms
will change in response to climate forcings. Finally, this problem is of interest because even though we
start with a different constraint equation than Equation (1), we arrive at the same final result that the
most fair distribution is the uniform distribution.

To begin we will point out that we will still be using Equations (A3) and (A4) for the specified
versions of the probability distributions and the partition function. However, we must express the
general form of our new constraint equation differently via the formula for the standard deviation of a
distribution of data as, √√√√n=N

∑
n=1

p(n)

[(
m=N

∑
m=1

fk(m)p(m)

)
− fk(n)

]2

= σk(n), (A9)
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where σk(n) is the standard deviation of our data corresponding to the kth constraint. Note that,
in Equation (A9), we have assumed that the mean value of our data, 〈 fk(m)〉 can be expressed as
m=N

∑
m=1

fk(m)p(m), which is the same starting expression we have in Equation (1), and thus may be the

reason why our approach is still consistent with the central assumptions of MaxEnt.
Continuing on as we did in the previous section, we will substitute everything we know into

Equation (A9), starting with the fact that σk(n) =
√

2/3 for a fair three-sided die (this can be calculated
with the definition of the standard deviation and a known, equal probability distribution of all
outcomes), and that K = 1 for only having one constraint, fk(n) = f (n) = n, fk(m) = f (m) = m,
and N = M = 3. Doing so gives us,√√√√n=3

∑
n=1

p(n)

[(
m=3

∑
m=1

mp(m)

)
− n

]2

=

√
2
3

. (A10)

From here, the steps are quite similar as before, only the algebra is more tedious. We will start
with squaring both sides of the equation and writing out the summations explicitly to arrive at,

p(1) [p(1) + 2p(2) + 3p(3)− 1]2 +

p(2) [p(1) + 2p(2) + 3p(3)− 2]2 + (A11)

p(3) [p(1) + 2p(2) + 3p(3)− 3]2 =
2
3

Substituting p(n) = 1/Ze−λn = 1/Zxn, where we have also made the substitution of e−λ = x for
simplification, we have,

x
Z

[
x
Z
+ 2

x2

Z
+ 3

x3

Z
− 1
]2

+

x2

Z

[
x
Z
+ 2

x2

Z
+ 3

x3

Z
− 2
]2

+ (A12)

x3

Z

[
x
Z
+ 2

x2

Z
+ 3

x3

Z
− 3
]2

=
2
3

Multiplying both sides of the above expression by Z3 to remove all denominators entirely gives,

x
[

x + 2x2 + 3x3 − Z
]2

+

x2
[

x + 2x2 + 3x3 − 2Z
]2

+ (A13)

x3
[

x + 2x2 + 3x3 − 3Z
]2

=
2
3

Z3

Now comes a lot of distributing and simplifying of terms. Starting with the left-hand-side,
and recalling that Z = e−λ + e−λ2 + e−λ3 = x + x2 + x3, we arrive at,

x
[

x2 + 2x3
]2

+ x2
[
−x + x3

]2
+ x3

[
−2x− x2

]2
=

2
3

[
x + x2 + x3

]3
. (A14)

Expanding both sides of the expression gives,

x4 + 5x5 + 6x6 + 5x7 + x8 =
2
3

x3 + 2x4 + 4x5 +
14
3

x6 + 4x7 + 2x8 +
2
3

x9. (A15)
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Collecting like terms, we have:

2
3

x3 + x4 − x5 − 4
3

x6 − x7 + x8 +
2
3

x9 = 0. (A16)

Assuming that x = 0 is not a solution that we want (recall the discussion earlier regarding this
possible solution) we can divide by x3 from both sides to yield,

2
3
+ x− x2 − 4

3
x3 − x4 + x5 +

2
3

x6 = 0. (A17)

We used Wolfram Alpha online (https://www.wolframalpha.com/) to perform the factoring,
and find that the above expression can be expressed as,

1
3
(x− 1)2(x + 2)(2x + 1)(x2 + x + 1) = 0 (A18)

These terms produce the five following solutions of x = −2, x = −1/2, x = 1, and
x = −1/2± i

√
3/2. As discussed before, the solutions for negative values of x are invalid.

The solutions x = −1/2± i
√

3/2 will result in probabilities with non-real (imaginary) terms, so those
will also be disregarded. This leaves us with x = 1, which generates the same uniform distribution of
p(n) = 1/3 as we found in the earlier case for constraining only the mean.

Appendix A.3. The Gaussian/Normal Distribution, or Using n and n2 as “Constraint Functions”

Here we will show that when the “constraint functions” are fk(n) = n and fk(n) = n2, then
the resulting probability distribution is Gaussian, or normal. What it means in an ecological context
when we specify these constraint functions may not immediately be clear, but there may be some
interesting applications of this derivation, as in reconstructing data when publications specify the
variance of a measured distribution, but the underlying data have been lost. With or without a useful
applied example, following through with the mathematical derivation lends some insight into the
behavior of the equations, so it is useful to proceed for that reason. Without specifying an actual
problem, we can not solve explicitly for the Lagrange multipliers. Instead, we will investigate what
happens to the mathematical form of the probability distribution in Equation (3) when substituting
our constraint information.

As we now have two constraints, K = 2, and we will actually be summing over k from k = 1
to k = 2. Additionally, our fk(n) now have two forms, one being f1(n) = n and the other being
f2(n) = n2. Thus, we could write down the set of constraint equations as,

n=N

∑
n=1

np(n) = 〈n〉 (A19)

n=N

∑
n=1

n2 p(n2) = 〈n2〉. (A20)

However, for this specific example, we don’t actually know the values of 〈n〉 or 〈n2〉, so we will
go straight to the probability distribution from here. Substituting our constraint functions into the
general definition for the probability distribution in Equation (3), we have,

p(n) =
1
Z

e−(λ1n+λ2n2). (A21)

https://www.wolframalpha.com/
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We can extract more insight from this by re-writing the expression by completing the square.
We begin by adding and subtracting by λ2

1/4λ2
2, in the argument of the exponential,

p(n) =
1
Z

e
−
(

λ1n+λ2n2+
λ2

1
4λ2

2
− λ2

1
4λ2

2

)
. (A22)

We can now factor the first three terms in the exponential to arrive at,

p(n) =
1
Z

e
−
[(

λ1
2λ2

+λ2n
)2
−
(

λ1
2λ2

)2
]

. (A23)

This is beginning to look more like the general form of a Gaussian distribution in n, aside from
the pesky constant term in the argument of the exponential (λ1/2λ2)

2. Fortunately, we can use the
rules of exponents to rearrange terms and remove the second squared term from the argument in the
exponential. We then get,

p(n) =
e
(

λ1
2λ2

)2

Z
e−
(

λ1
2λ2

+λ2n
)2

. (A24)

Factoring the λ2 term in front of n gives,

p(n) =
e
(

λ1
2λ2

)2

Z
e
−

(
n+

λ1
2λ2

2

)2

1/λ2
2 . (A25)

Now we have arrived at an expression that is more easily recognizable as the general form for a
Gaussian distribution in n. Comparing this expression to a general Gaussian distribution,

f (x|µ, σ2) =
1√

2σ2π
e−

(x−µ)2

2σ2 . (A26)

We can begin to infer what role the Lagrange multipliers have in this scenario. Noting that the
term λ1/2λ2

2 sits in the place of the distribution mean µ, we can conclude that the distribution mean is
actually given by the specific combination of the Lagrange multipliers of λ1/2λ2

2. Similarly, noting
that the term 1/λ2

2 sits in the place of 2σ2, we can conclude specifically that the standard deviation of
the distribution is given by σ = 1/

√
2λ2. Matching the overall prefactors tells us that the combination

of the partition function and our left over constant from completing the square combine to normalize
the distribution.

Appendix A.4. The Log-Normal Distribution, Constraining log(n) and log2(n)

Everything, or more immediately the results, from the above section can be copied and pasted
here but replacing every instance of n with log n and n2 with log2 n to give us a log-normal distribution.

Appendix B. Approximations in the Original Version of METE

Two common approximations can be made in METE to simplify the above formulas and provide
for limited analytic solutions. In the original presentation of the theory, a number of important
assumptions are used. We derive them here because they appear in the Harte (2011) [10], as well as
various earlier publications exploring the predictions of METE. The steps and assumptions that are
used to derive the original approximations may still be worth testing and exploring, as they are likely
sources of measurable error. More recently, a software package in the statistical coding language R [48]
called “meteR” [47] has implemented a number of predictions of METE and allows easy comparison
of predictions to empirical data. With meteR, it is no longer necessary to make approximations to
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simplify the core equations of METE. We therefore suggest this as an option for those looking to model
empirical data.

Appendix B.1. Approximation 1: ∑ e−nβ ≈ 1/β

The first approximation used throughout Harte (2011) is presented on pages (149–150) simplifies
the relationships between the Lagrange multipliers. We define the relationship β = λ1 + λ2.
We consider the first approximation:

∑ e−nβ ≈ 1/β. (A27)

The series ∑ e−nβ is geometric in the variable e−β. So, as long as e−β 6= 0, then the series can be
expressed exactly as,

N

∑
n=1

e−nβ =
e−β − e−β(N+1)

1− e−β
. (A28)

Assuming that βN >> 1, then the second term in the numerator e−β(N+1) ≈ 0, giving,

N

∑
n=1

e−nβ ≈ e−β

1− e−β
. (A29)

Furthermore, assuming that β << 1, then e−β ≈ 1− β, and we have,

N

∑
n=1

e−nβ ≈ 1− β

β
≈ 1/β. (A30)

In deriving the above expression, we made the simultaneous assumptions that β << 1 and
Nβ >> 1. This can be expressed in the single expression as 1/N << β << 1. There are two steps
at which these assumptions are employed, thus we could include higher order terms left over from
their approximations to get a sense of the resultant order of error associated with their use. It should
be clear that this approximation breaks down for small N. “Small N” will be defined in relation to
β; for example, if N = 10, then β must take on values greater (or much greater) than 0.1. Because β is
defined to be λ1 + λ2, we can reference Figure 2 to see how likely a possibility this is for all combinations
of λ1 and λ2. For single data points, this assumption will always break down, but for large data sets
1/N << β may indeed be a valid assumption. However, it should also be clear that β << 1 will not
hold over most of the parameter space that is possible for ecosystems (see Figure 2). That said, for all
of the empirical data sets that have examined λ1 tends to be small (between 0.001 and 0.1), and β < 1,
which may be sufficient for these approximations to hold, as advertised, approximately.

The size of β will predominately be influenced by λ1 in all cases, and it may be the case that the
parameter space is more densely populated in the region where λ1 is small (as we begin to see in
Figure 2).

Appendix B.2. Approximation 2: ∑ e−nβ/n ≈ log(1/β)

The series ∑N
n=1 e−nβ/n is a truncated series expansion for log(1− x). Specifically, for |x| < 1,

log(1− x) = −
∞

∑
n=1

xn

n
(A31)

Replacing x with e−β and breaking the series expansion into two summations, we have,

log(1− e−β) = −
N

∑
n=1

e−nβ

n
−

∞

∑
n=N+1

e−nβ

n
(A32)
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Note that this expansion requires |e−β| < 1, which is potentially in conflict with the assumption
that β << 1 (an assumption used later in this approximation). This conflict is due to the case that the
smaller the value β has, the closer that eβ is to one. Solving the above expression for the partial series
expansion, we have

N

∑
n=1

e−nβ

n
= − log(1− e−β) +O

(
e−β(N+1)

N + 1

)
. (A33)

Here, the “O” represents “order of magnitude of error”, which allows us to quantify the error in
the truncation of the series expansion. From our previous Approximation 1, we are simultaneously
assuming that Nβ >> 1, thus we will drop the O(e−β(N+1)/(N + 1)) term to arrive at,

N

∑
n=1

e−nβ

n
≈ − log(1− e−β). (A34)

Now, expressing e−β as a series we have,

N

∑
n=1

e−nβ

n
≈ − log

(
1−

∞

∑
m=1

(−β)m

m!

)
. (A35)

Recalling again the assumption that β << 1, we can truncate the series expansion of e−β to
e−β ≈ 1 + β, where we have dropped all terms involving higher powers of β. Doing so, we have

N

∑
n=1

e−nβ

n
≈ − log(β) (A36)

But, − log(β) = 0− log(β) = log(1)− log(β) = log(1/β), thus,

N

∑
n=1

e−nβ

n
≈ log(1/β). (A37)

Because we have used the assumption that β << 1 to derive this result, and this assumption may
not hold in many cases (see Appendix B.1), both approximations may introduce substantial sources of
error in METE’s predictions in some cases, but may otherwise be useful in cases where the user wants to
estimate the relative sizes of λ1 and λ2. We therefore suggest that calculations involving the Lagrange
multipliers be done numerically, without the use of simplifying approximations, with meteR [47] or a
similar software.
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