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Abstract: Two families of dependence measures between random variables are introduced. They are
based on the Rényi divergence of order α and the relative α-entropy, respectively, and both dependence
measures reduce to Shannon’s mutual information when their order α is one. The first measure shares
many properties with the mutual information, including the data-processing inequality, and can
be related to the optimal error exponents in composite hypothesis testing. The second measure
does not satisfy the data-processing inequality, but appears naturally in the context of distributed
task encoding.
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1. Introduction

The solutions to many information-theoretic problems can be expressed using Shannon’s
information measures such as entropy, relative entropy, and mutual information. Other problems
require Rényi’s information measures, which generalize Shannon’s. In this paper, we analyze two
Rényi measures of dependence, Jα(X; Y) and Kα(X; Y), between random variables X and Y taking
values in the finite sets X and Y , with α ∈ [0, ∞] being a parameter. (Our notation is similar to the one
used for the mutual information: technically, Jα(·) and Kα(·) are functions not of X and Y, but of their
joint probability mass function (PMF) PXY.) For α ∈ [0, ∞], we define Jα(X; Y) and Kα(X; Y) as

Jα(X; Y) , min
(QX , QY)∈P(X )×P(Y)

Dα(PXY‖QXQY), (1)

Kα(X; Y) , min
(QX , QY)∈P(X )×P(Y)

∆α(PXY‖QXQY), (2)

where P(X ) and P(Y) denote the set of all PMFs over X and Y , respectively; Dα(P‖Q) denotes the
Rényi divergence of order α (see (50) ahead); and ∆α(P‖Q) denotes the relative α-entropy (see (55)
ahead). As shown in Proposition 7, Jα(X; Y) and Kα(X; Y) are in fact closely related.

The measures Jα(X; Y) and Kα(X; Y) have the following operational meanings (see Section 3):
Jα(X; Y) is related to the optimal error exponents in testing whether the observed independent and
identically distributed (IID) samples were generated according to the joint PMF PXY or an unknown
product PMF; and Kα(X; Y) appears as a penalty term in the sum-rate constraint of distributed
task encoding.

The measures Jα(X; Y) and Kα(X; Y) share many properties with Shannon’s mutual
information [1], and both are equal to the mutual information when α is one. Except for some special
cases, we have no closed-form expressions for Jα(X; Y) or Kα(X; Y). As illustrated in Figure 1, unless α

is one, the minimum in the definitions of Jα(X; Y) and Kα(X; Y) is typically not achieved by QX = PX
and QY = PY. (When α is one, then the minimum is always achieved by QX = PX and QY = PY; this
follows from Proposition 8 and the fact that D1(PXY‖QXQY) = ∆1(PXY‖QXQY) = D(PXY‖QXQY).)
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Figure 1. (Left) Jα(X; Y) and Dα(PXY‖PX PY) versus α. (Right) Kα(X; Y) and ∆α(PXY‖PX PY) versus α.
In both plots, X is Bernoulli with Pr(X = 1) = 0.2, and Y is equal to X.

The rest of this paper is organized as follows. In Section 2, we review other generalizations of
the mutual information. In Section 3, we discuss the operational meanings of Jα(X; Y) and Kα(X; Y).
In Section 4, we recall the required Rényi information measures and prove some preparatory results.
In Section 5, we state the properties of Jα(X; Y) and Kα(X; Y). In Section 6, we prove these properties.

2. Related Work

The measure Jα(X; Y) was discovered independently from the authors of the present paper by
Tomamichel and Hayashi [2] (Equation (58)), who, for the case when α > 1

2 , derived some of its
properties in [2] (Appendix A-C).

Other Rényi-based measures of dependence appeared in the past. Notable are those by Sibson [3],
Arimoto [4], and Csiszár [5], respectively denoted by Isα(·), Iaα (·), and Icα(·):

Isα(X; Y) ,
α

α− 1
log ∑

y

[
∑
x

P(x)P(y|x)α

] 1
α

(3)

= min
QY

Dα(PXY‖PXQY), (4)

Iaα (X; Y) , Hα(X)− Hα(X|Y) (5)

=
α

α− 1
log ∑

y

[
∑
x

P(x)α

∑x′∈X P(x′)α
P(y|x)α

] 1
α

, (6)

Icα(X; Y) , min
QY

∑
x

P(x)Dα(PY|X=x‖QY), (7)

where, throughout the paper, log(·) denotes the base-2 logarithm; Dα(P‖Q) denotes the Rényi
divergence of order α (see (50) ahead); Hα(X) denotes the Rényi entropy of order α (see (45) ahead);
and Hα(X|Y) denotes the Arimoto–Rényi conditional entropy [4,6,7], which is defined for positive α

other than one as

Hα(X|Y) , α

1− α
log ∑

y

[
∑
x

P(x, y)α

] 1
α

. (8)

(Equation (4) follows from Proposition 9 ahead, and (6) follows from (45) and (8).) An overview of
Isα(·), Iaα (·), and Icα(·) is provided in [8]. Another Rényi-based measure of dependence can be found
in [9] (Equation (19)):

Itα(X; Y) , Dα(PXY‖PXPY). (9)

The relation between Icα(X; Y), Jα(X; Y), and Isα(X; Y) for α > 1 was established recently:
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Proposition 1 ([10] (Theorem IV.1)). For every PMF PXY and every α > 1,

Icα(X; Y) ≤ Jα(X; Y) (10)

≤ Isα(X; Y). (11)

Proof. This is proved in [10] for a measure-theoretic setting. Here, we specialize the proof to finite
alphabets. We first prove (10):

Jα(X; Y) = min
QY

min
QX

Dα(PXY‖QXQY) (12)

= min
QY

α

α− 1
log ∑

x

[
∑
y

P(x, y)α QY(y)1−α

] 1
α

(13)

= min
QY

α

α− 1
log ∑

x
P(x)

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(14)

≥ min
QY

α

α− 1 ∑
x

P(x) log

[
∑
y

P(y|x)α QY(y)1−α

] 1
α

(15)

= min
QY

∑
x

P(x)
1

α− 1
log ∑

y
P(y|x)α QY(y)1−α (16)

= Icα(X; Y), (17)

where (12) follows from the definition of Jα(X; Y) in (1); (13) follows from Proposition 9 ahead with
the roles of QX and QY swapped; (15) follows from Jensen’s inequality because log(·) is concave and
because α

α−1 > 0; and (17) follows from the definition of Icα(X; Y) in (7).
We next prove (11):

Jα(X; Y) = min
QX ,QY

Dα(PXY‖QXQY) (18)

≤ min
QY

Dα(PXY‖PXQY) (19)

= Isα(X; Y), (20)

where (18) follows from the definition of Jα(X; Y) in (1), and (20) follows from (4).

Many of the above Rényi information measures coincide when they are maximized over PX with
PY|X held fixed: for every conditional PMF PY|X and every positive α other than one,

max
PX

Iaα (PXPY|X) = max
PX

Isα(PXPY|X) (21)

= max
PX

Icα(PXPY|X), (22)

where PXPY|X denotes the joint PMF of X and Y; (21) follows from [4] (Lemma 1); and (22) follows
from [5] (Proposition 1). It was recently established that, for α > 1, this is also true for Jα(X; Y):

Proposition 2 ([10] (Theorem V.1)). For every conditional PMF PY|X and every α > 1,

max
PX

Jα(PXPY|X) = max
PX

Isα(PXPY|X). (23)
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Proof. By Proposition 1, we have for all α > 1

max
PX

Icα(PXPY|X) ≤ max
PX

Jα(PXPY|X) (24)

≤ max
PX

Isα(PXPY|X). (25)

By (22), the left-hand side (LHS) of (24) is equal to the right-hand side (RHS) of (25), so (24) and (25) both
hold with equality.

Dependence measures can also be based on the f -divergence D f (P‖Q) [11–13]. Every convex
function f : (0, ∞)→ R satisfying f (1) = 0 induces a dependence measure, namely

I f (X; Y) , D f (PXY‖PXPY) (26)

= ∑
x,y

P(x)P(y) f
(

P(x, y)
P(x)P(y)

)
, (27)

where (27) follows from the definition of the f -divergence. (For f (t) = t log t, I f (X; Y) is the mutual
information.) Such dependence measures are used for example in [14], and a construction equivalent
to (27) is studied in [15].

3. Operational Meanings

In this section, we discuss the operational meaning of Jα(X; Y) in hypothesis testing (Section 3.1)
and of Kα(X; Y) in distributed task encoding (Section 3.2).

3.1. Testing Against Independence and Jα(X; Y)

Consider the hypothesis testing problem of guessing whether an observed sequence of pairs
was drawn IID from some given joint PMF PXY or IID from some unknown product distribution.
Thus, based on a sequence of pairs of random variables {(Xi, Yi)}n

i=1, two hypotheses have to be
distinguished:

0) Under the null hypothesis, (X1, Y1), . . . , (Xn, Yn) are IID according to PXY.
1) Under the alternative hypothesis, (X1, Y1), . . . , (Xn, Yn) are IID according to some unknown PMF

of the form QXY = QXQY, where QX and QY are arbitrary PMFs over X and Y , respectively.

Associated with every deterministic test Tn : X n ×Yn → {0, 1} and pair (QX , QY) are the type-I
error probability P×n

XY [Tn(Xn, Yn) = 1] and the type-II error probability (QXQY)
×n[Tn(Xn, Yn) = 0],

where R×n
XY[A] denotes the probability of an event A when {(Xi, Yi)}n

i=1 are IID according to RXY.
We seek sequences of tests whose worst-case type-II error probability decays exponentially faster
than 2−nEQ . To be more specific, for a fixed EQ ∈ R, denote by T (EQ) the set of all sequences of
deterministic tests {Tn}∞

n=1 for which

lim inf
n→∞

min
QX , QY

− 1
n

log
(
(QXQY)

×n[Tn(Xn, Yn) = 0]
)
> EQ, (28)

where log(·) denotes the base-2 logarithm. Note that (28) implies—but is not equivalent to—that
for n sufficiently large, (QXQY)

×n[Tn(Xn, Yn) = 0] ≤ 2−nEQ for all (QX, QY) ∈ P(X )× P(Y). For
a fixed EQ ∈ R, the optimal type-I error exponent that can be asymptotically achieved under the
constraint (28) is given by

EP(EQ) , sup
{Tn}∞

n=1∈T (EQ)

lim inf
n→∞

− 1
n

log
(

P×n
XY [Tn(Xn, Yn) = 1]

)
. (29)
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The measure Jα(X; Y) appears as follows: In [2] (first part of (57)), it is shown that for EQ
sufficiently close to I(X; Y),

EP(EQ) = sup
α∈( 1

2 ,1]

1− α

α
(Jα(X; Y)− EQ), (30)

and in [16] (Theorem 3), it is shown that for all EQ ∈ R,

E∗∗P (EQ) = sup
α∈(0,1]

1− α

α
(Jα(X; Y)− EQ), (31)

where E∗∗P (·) denotes the Fenchel biconjugate of EP(·). In general, the Fenchel biconjugation cannot be
omitted because sometimes [16] (Equation (11) and Example 14)

EP(EQ) 6= E∗∗P (EQ). (32)

For large values of EQ, the optimal type-I error tends to one as n tends to infinity. In this case, the
type-I strong-converse exponent [17,18], which is defined for a sequence of tests {Tn}∞

n=1 as

SCP , lim sup
n→∞

− 1
n

log
(
1− P×n

XY [Tn(Xn, Yn) = 1]
)
, (33)

measures how fast the type-I error tends to one as n tends to infinity (smaller values correspond to
lower error probabilities). For a fixed EQ ∈ R, the optimal type-I strong-converse exponent that can be
asymptotically achieved under the constraint (28) is given by

SCP(EQ) , inf
{Tn}∞

n=1∈T (EQ)
lim sup

n→∞
− 1

n
log
(
1− P×n

XY [Tn(Xn, Yn) = 1]
)
. (34)

In [2] (second part of (57)), it is shown that for EQ sufficiently close to I(X; Y),

SCP(EQ) = sup
α>1

1− α

α
(Jα(X; Y)− EQ). (35)

Here, the same 1−α
α (Jα(X; Y)− EQ) expression appears as in (30) and (31), but with a different set of

α’s to optimize over.

3.2. Distributed Task Encoding and Kα(X; Y)

The task-encoding problem studied in [19] can be extended to a distributed setting as follows [20]:
A source {(Xi, Yi)}∞

i=1 emits pairs of random variables (Xi, Yi) taking values in a finite alphabet X ×Y .
For a fixed rate pair (RX,RY) ∈ R2

≥0 and a positive integer n, the sequences {Xi}n
i=1 and {Yi}n

i=1
are described separately using b2nRXc and b2nRYc labels, respectively. The decoder produces a list
comprising all the pairs (xn, yn) whose description matches the given labels, and the goal is to minimize
the ρ-th moment of the list size as n tends to infinity (for some ρ > 0).

For a fixed ρ > 0, a rate pair (RX,RY) ∈ R2
≥0 is called achievable if there exists a sequence of

encoders {( fn, gn)}∞
n=1,

fn : X n → {1, . . . , b2nRXc}, (36)

gn : Yn → {1, . . . , b2nRYc}, (37)

such that the ρ-th moment of the list size tends to one as n tends to infinity, i.e.,

lim
n→∞

E
[
|L(Xn, Yn)|ρ

]
= 1, (38)
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where

L(xn, yn) , {(x̃n, ỹn) ∈ X n ×Yn : fn(x̃n) = fn(xn) ∧ gn(ỹn) = gn(yn)}. (39)

For a memoryless source and a fixed ρ > 0, rate pairs in the interior of the regionR(ρ) defined
next are achievable, while those outsideR(ρ) are not achievable [20] (Theorem 1). The regionR(ρ) is
defined as the set of all rate pairs (RX,RY) satisfying the following inequalities simultaneously:

RX ≥ H 1
1+ρ

(X), (40)

RY ≥ H 1
1+ρ

(Y), (41)

RX + RY ≥ H 1
1+ρ

(X, Y) + K 1
1+ρ

(X; Y), (42)

where Hα(X) denotes the Rényi entropy of order α (see (45) ahead).
To better understand the role of Kα(X; Y), suppose that the sequences {Xi}n

i=1 and {Yi}n
i=1 were

allowed to be described jointly using b2nRXc · b2nRYc ≈ 2n(RX+RY) labels. Then, by [19] (Theorem I.2),
all rate pairs (RX,RY) ∈ R2

≥0 satisfying the following inequality with strict inequality would be
achievable, while those not satisfying the inequality would not:

RX + RY ≥ H 1
1+ρ

(X, Y). (43)

Comparing (42) and (43), we see that the measure Kα(X; Y) appears as a penalty term on the sum-rate
constraint incurred by requiring that the sequences be described separately as opposed to jointly.

4. Preliminaries

Throughout the paper, log(·) denotes the base-2 logarithm, X and Y are finite sets, PXY denotes
a joint PMF over X × Y , QX denotes a PMF over X , and QY denotes a PMF over Y . We use P and
Q as generic PMFs over a finite set X . We denote by supp(P) , {x ∈ X : P(x) > 0} the support
of P, and by P(X ) the set of all PMFs over X . When clear from the context, we often omit sets and
subscripts: for example, we write minQX , QY for min(QX , QY)∈P(X )×P(Y), ∑x for ∑x∈X , P(x) for PX(x),
and P(y|x) for PY|X(y|x). Whenever a conditional probability P(y|x) is undefined because P(x) = 0,
we define P(y|x) , 1/|Y|. We denote by 1{condition} the indicator function that is one if the condition
is satisfied and zero otherwise. In the definitions below, we use the following conventions:

0
0
= 0,

p
0
= ∞ ∀ p > 0, 0 log 0 = 0, β log 0 = −∞ ∀β > 0. (44)

The Rényi entropy of order α [21] is defined for positive α other than one as

Hα(X) ,
1

1− α
log ∑

x
P(x)α. (45)

For α being zero, one, or infinity, we define by continuous extension of (45)

H0(X) , log |supp(P)|, (46)

H1(X) , H(X), (47)

H∞(X) , − log max
x

P(x), (48)

where H(X) is the Shannon entropy. With this extension to α ∈ {0, 1, ∞}, the Rényi entropy satisfies
the following basic properties:
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Proposition 3 ([5]). Let P be a PMF. Then,

(i) For all α ∈ [0, ∞], Hα(X) ≤ log |X |. If α ∈ (0, ∞], then Hα(X) = log |X | if and only if X is distributed
uniformly over X .

(ii) The mapping α 7→ Hα(X) is nonincreasing on [0, ∞].
(iii) The mapping α 7→ Hα(X) is continuous on [0, ∞].

The relative entropy (or Kullback–Leibler divergence) is defined as

D(P‖Q) , ∑
x

P(x) log
P(x)
Q(x)

. (49)

The Rényi divergence of order α [21,22] is defined for positive α other than one as

Dα(P‖Q) ,
1

α− 1
log ∑

x
P(x)α Q(x)1−α, (50)

where we read P(x)α Q(x)1−α as P(x)α/Q(x)α−1 if α > 1. For α being zero, one, or infinity, we define
by continuous extension of (50)

D0(P‖Q) , − log ∑
x∈supp(P)

Q(x), (51)

D1(P‖Q) , D(P‖Q), (52)

D∞(P‖Q) , log max
x

P(x)
Q(x)

. (53)

With this extension to α ∈ {0, 1, ∞}, the Rényi divergence satisfies the following basic properties:

Proposition 4. Let P and Q be PMFs. Then,

(i) For all α ∈ [0, 1), Dα(P‖Q) is finite if and only if |supp(P) ∩ supp(Q)| > 0. For all α ∈ [1, ∞],
Dα(P‖Q) is finite if and only if supp(P) ⊆ supp(Q).

(ii) For all α ∈ [0, ∞], Dα(P‖Q) ≥ 0. If α ∈ (0, ∞], then Dα(P‖Q) = 0 if and only if P = Q.
(iii) For every α ∈ [0, ∞], the mapping Q 7→ Dα(P‖Q) is continuous.
(iv) The mapping α 7→ Dα(P‖Q) is nondecreasing on [0, ∞].
(v) The mapping α 7→ Dα(P‖Q) is continuous on [0, ∞].

Proof. Part (i) follows from the definition of Dα(P‖Q) and the conventions (44), and Parts (ii)–(v) are
shown in [22].

The Rényi divergence for negative α is defined as

Dα(P‖Q) ,
1

α− 1
log ∑

x

Q(x)1−α

P(x)−α
. (54)

(We use negative α only in Lemma 19. More about negative orders can be found in [22] (Section V).
For other applications of negative orders, see [23] (Proof of Theorem 1 and Example 1).)

The relative α-entropy [24,25] is defined for positive α other than one as

∆α(P‖Q) ,
α

1− α
log ∑

x
P(x)Q(x)α−1 + log ∑

x
Q(x)α − 1

1− α
log ∑

x
P(x)α, (55)

where we read P(x)Q(x)α−1 as P(x)/Q(x)1−α if α < 1. The relative α-entropy appears in mismatched
guessing [26], mismatched source coding [26] (Theorem 8), and mismatched task encoding [19]
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(Section IV). It also arises in robust parameter estimation and constrained compression settings [25]
(Section II). For α being zero, one, or infinity, we define by continuous extension of (55)

∆0(P‖Q) ,

log |supp(Q)|
|supp(P)| if supp(P) ⊆ supp(Q),

∞ otherwise,
(56)

∆1(P‖Q) , D(P‖Q), (57)

∆∞(P‖Q) , log
maxx P(x)

|argmax(Q)|−1 ∑x∈argmax(Q) P(x)
, (58)

where argmax(Q) , {x ∈ X : Q(x) = maxx′∈X Q(x′)} and |argmax(Q)| is the cardinality of this set.
With this extension to α ∈ {0, 1, ∞}, the relative α-entropy satisfies the following basic properties:

Proposition 5. Let P and Q be PMFs. Then,

(i) For all α ∈ [0, 1], ∆α(P‖Q) is finite if and only if supp(P) ⊆ supp(Q). For all α ∈ (1, ∞), ∆α(P‖Q)

is finite if and only if |supp(P) ∩ supp(Q)| > 0.
(ii) For all α ∈ [0, ∞], ∆α(P‖Q) ≥ 0. If α ∈ (0, ∞), then ∆α(P‖Q) = 0 if and only if P = Q.

(iii) For every α ∈ (0, ∞), the mapping Q 7→ ∆α(P‖Q) is continuous.
(iv) The mapping α 7→ ∆α(P‖Q) is continuous on [0, ∞].

(Part (i) differs from [19] (Proposition IV.1), where the conventions for α > 1 differ from ours. Our
conventions are compatible with [24,25], and, as stated in Part (iii), they result in the continuity of the
mapping Q 7→ ∆α(P‖Q).)

Proof of Proposition 5. Part (i) follows from the definition of ∆α(P‖Q) in (55) and the conventions
(44). For α ∈ (0, 1) ∪ (1, ∞), Part (ii) follows from [19] (Proposition IV.1); for α = 1, Part (ii) holds
because ∆1(P‖Q) = D(P‖Q); and for α ∈ {0, ∞}, Part (ii) follows from the definition of ∆α(P‖Q).
Part (iii) follows from the definition of ∆α(P‖Q), and Part (iv) follows from [19] (Proposition IV.1).

In the rest of this section, we prove some auxiliary results that we need later (Propositions 6–9).
We first establish the relation between Dα(P‖Q) and ∆α(P‖Q).

Proposition 6 ([26] (Section V, Property 4)). Let P and Q be PMFs, and let α > 0. Then,

∆α(P‖Q) = D 1
α
(P̃‖Q̃), (59)

where the PMFs P̃ and Q̃ are given by

P̃(x) ,
P(x)α

∑x′∈X P(x′)α
, (60)

Q̃(x) ,
Q(x)α

∑x′∈X Q(x′)α
. (61)

Proof. If α = 1, then (59) holds because P̃ = P, Q̃ = Q, and ∆1(P‖Q) = D1(P‖Q) = D(P‖Q). Now
let α 6= 1. Because P̃(x) and Q̃(x) are zero if and only if P(x) and Q(x) are zero, respectively, the LHS
of (59) is finite if and only if its RHS is finite. If D1/α(P̃‖Q̃) is finite, then (59) follows from a simple
computation.
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In light of Proposition 6, Jα(X; Y) and Kα(X; Y) are related as follows:

Proposition 7. Let PXY be a joint PMF, and let α > 0. Then,

Kα(X; Y) = J 1
α
(X̃; Ỹ), (62)

where the joint PMF of X̃ and Ỹ is given by

P̃XY(x, y) ,
PXY(x, y)α

∑(x′ ,y′)∈X×Y PXY(x′, y′)α
. (63)

Proof. Let α > 0. For fixed PMFs QX and QY, define the transformed PMFs Q̃XQY, Q̃X , and Q̃Y as

Q̃XQY(x, y) ,
[QX(x)QY(y)]α

∑(x′ ,y′)∈X×Y [QX(x′)QY(y′)]α
, (64)

Q̃X(x) ,
QX(x)α

∑x′∈X QX(x′)α
, (65)

Q̃Y(y) ,
QY(y)α

∑y′∈Y QY(y′)α
. (66)

Then,

Kα(X; Y) = min
QX , QY

∆α(PXY‖QXQY) (67)

= min
QX , QY

D 1
α
(P̃XY‖Q̃XQY) (68)

= min
QX , QY

D 1
α
(P̃XY‖Q̃XQ̃Y) (69)

= min
QX , QY

D 1
α
(P̃XY‖QXQY) (70)

= J 1
α
(X̃; Ỹ), (71)

where (67) holds by the definition of Kα(X; Y); (68) follows from Proposition 6; (69) holds because

Q̃XQY = Q̃XQ̃Y; (70) holds because the transformations (65) and (66) are bijective on the set of PMFs
over X and Y , respectively; and (71) holds by the definition of Jα(X; Y).

The next proposition provides a characterization of the mutual information that parallels the
definitions of Jα(X; Y) and Kα(X; Y). Because D1(P‖Q) = ∆1(P‖Q) = D(P‖Q), this also shows that
Jα(X; Y) and Kα(X; Y) reduce to the mutual information when α is one.

Proposition 8 ([27] (Theorem 3.4)). Let PXY be a joint PMF. Then, for all PMFs QX and QY,

D(PXY‖QXQY) ≥ D(PXY‖PXPY), (72)

with equality if and only if QX = PX and QY = PY. Thus,

I(X; Y) = min
QX , QY

D(PXY‖QXQY). (73)

Proof. A simple computation reveals that

D(PXY‖QXQY) = D(PXY‖PXPY) + D(PX‖QX) + D(PY‖QY), (74)
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which implies (72) because D(P‖Q) ≥ 0 with equality if and only if P = Q. Thus, (73) holds because
I(X; Y) = D(PXY‖PXPY).

The last proposition of this section is about a precursor to Jα(X; Y), namely, the minimization
of Dα(PXY‖QXQY) with respect to QY only, which can be carried out explicitly. (This proposition
extends [5] (Equation (13)) and [2] (Lemma 29).)

Proposition 9. Let PXY be a joint PMF and QX a PMF. Then, for every α ∈ (0, 1) ∪ (1, ∞),

min
QY

Dα(PXY‖QXQY) =
α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

, (75)

with the conventions of (44). If the RHS of (75) is finite, then the minimum is achieved uniquely by

Q∗Y(y) =

[
∑x P(x, y)α QX(x)1−α

] 1
α

∑y′∈Y
[
∑x P(x, y′)α QX(x)1−α

] 1
α

. (76)

For α = ∞,

min
QY

D∞(PXY‖QXQY) = log ∑
y

max
x

P(x, y)
QX(x)

, (77)

with the conventions of (44). If the RHS of (77) is finite, then the minimum is achieved uniquely by

Q∗Y(y) =
maxx[P(x, y)/QX(x)]

∑y′∈Y maxx[P(x, y′)/QX(x)]
. (78)

Proof. We first treat the case α ∈ (0, 1) ∪ (1, ∞). If the RHS of (75) is infinite, then the conventions
imply that Dα(PXY‖QXQY) is infinite for every QY ∈ P(Y), so (75) holds. Otherwise, if the RHS
of (75) is finite, then the PMF Q∗Y given by (76) is well-defined, and a simple computation shows that
for every QY ∈ P(Y),

Dα(PXY‖QXQY) =
α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

+ Dα(Q∗Y‖QY). (79)

The only term on the RHS of (79) that depends on QY is Dα(Q∗Y‖QY). Because Dα(Q∗Y‖QY) ≥ 0 with
equality if and only if QY = Q∗Y (Proposition 4), (79) implies (75) and (76).

The case α = ∞ is analogous: if the RHS of (77) is infinite, then the LHS of (77) is infinite, too; and
if the RHS of (77) is finite, then the PMF Q∗Y given by (78) is well-defined, and a simple computation
shows that for every QY ∈ P(Y),

D∞(PXY‖QXQY) = log ∑
y

max
x

P(x, y)
QX(x)

+ D∞(Q∗Y‖QY). (80)

The only term on the RHS of (80) that depends on QY is D∞(Q∗Y‖QY). Because D∞(Q∗Y‖QY) ≥ 0 with
equality if and only if QY = Q∗Y (Proposition 4), (80) implies (77) and (78).

5. Two Measures of Dependence

We state the properties of Jα(X; Y) in Theorem 1 and those of Kα(X; Y) in Theorem 2.
The enumeration labels in the theorems refer to the lemmas in Section 6 where the properties are
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proved. (The enumeration labels are not consecutive because, in order to avoid forward references in
the proofs, the order of the results in Section 6 is not the same as here.)

Theorem 1. Let X, X1, X2, Y, Y1, Y2, and Z be random variables taking values in finite sets. Then:

(Lemma 1) For every α ∈ [0, ∞], the minimum in the definition of Jα(X; Y) exists and is finite.

The following properties of the mutual information I(X; Y) [28] (Chapter 2) are also satisfied by Jα(X; Y):

(Lemma 2) For all α ∈ [0, ∞], Jα(X; Y) ≥ 0. If α ∈ (0, ∞], then Jα(X; Y) = 0 if and only if X and Y are
independent (nonnegativity).

(Lemma 3) For all α ∈ [0, ∞], Jα(X; Y) = Jα(Y; X) (symmetry).
(Lemma 4) If X (−− Y (−− Z form a Markov chain, then Jα(X; Z) ≤ Jα(X; Y) for all α ∈ [0, ∞]

(data-processing inequality).
(Lemma 12) If the pairs (X1, Y1) and (X2, Y2) are independent, then Jα(X1, X2; Y1, Y2) = Jα(X1; Y1) +

Jα(X2; Y2) for all α ∈ [0, ∞] (additivity).
(Lemma 13) For all α ∈ [0, ∞], Jα(X; Y) ≤ log |X | with equality if and only if

(
α ∈ [ 1

2 , ∞], X is distributed
uniformly over X , and H(X|Y) = 0

)
.

(Lemma 14) For every α ∈ [1, ∞], Jα(X; Y) is concave in PX for fixed PY|X .

Moreover:

(Lemma 5) J0(X; Y) = 0.
(Lemma 6) Let f : {1, . . . , |X |} → X and g : {1, . . . , |Y|} → Y be bijective functions, and let A be the

|X | × |Y| matrix whose Row-i Column-j entry Ai,j equals
√

PXY( f (i), g(j)). Then,

J 1
2
(X; Y) = −2 log σ1(A), (81)

where σ1(A) denotes the largest singular value of A. (Because the singular values of a matrix are
invariant under row and column permutations, the result does not depend on f or g.)

(Lemma 7) J1(X; Y) = I(X; Y).
(Lemma 8) For all α > 0,

(1− α) Jα(X; Y) = min
RXY∈P(X×Y)

[
(1− α)D(RXY‖RXRY) + α D(RXY‖PXY)

]
. (82)

Thus, being the minimum of concave functions in α, the mapping α 7→ (1− α) Jα(X; Y) is concave
on (0, ∞).

(Lemma 9) The mapping α 7→ Jα(X; Y) is nondecreasing on [0, ∞].
(Lemma 10) The mapping α 7→ Jα(X; Y) is continuous on [0, ∞].
(Lemma 11) If X = Y with probability one, then

Jα(X; Y) =


α

1−α H∞(X) if α ∈ [0, 1
2 ],

H α
2α−1

(X) if α > 1
2 ,

H 1
2
(X) if α = ∞.

(83)

The minimization problem in the definition of Jα(X; Y) has the following characteristics:

(Lemma 15) For every α ∈ [ 1
2 , ∞], the mapping (QX , QY) 7→ Dα(PXY‖QXQY) is convex, i.e., for all λ, λ′ ∈

[0, 1] with λ + λ′ = 1, all QX , Q′X ∈ P(X ), and all QY, Q′Y ∈ P(Y),

Dα

(
PXY‖(λQX + λ′Q′X)(λQY + λ′Q′Y)

)
≤ λ Dα(PXY‖QXQY) + λ′Dα(PXY‖Q′XQ′Y).

(84)

For α ∈ [0, 1
2 ), the mapping need not be convex.
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(Lemma 16) Let α ∈ (0, 1) ∪ (1, ∞). If (Q∗X, Q∗Y) achieves the minimum in the definition of Jα(X; Y), then
there exist positive normalization constants c and d such that

Q∗X(x) = c

[
∑
y

P(x, y)α Q∗Y(y)
1−α

] 1
α

∀x ∈ X , (85)

Q∗Y(y) = d

[
∑
x

P(x, y)α Q∗X(x)1−α

] 1
α

∀y ∈ Y , (86)

with the conventions of (44). The case α = ∞ is similar: if (Q∗X, Q∗Y) achieves the minimum in
the definition of J∞(X; Y), then there exist positive normalization constants c and d such that

Q∗X(x) = c max
y

P(x, y)
Q∗Y(y)

∀x ∈ X , (87)

Q∗Y(y) = d max
x

P(x, y)
Q∗X(x)

∀y ∈ Y , (88)

with the conventions of (44). (If α = 1, then Q∗X = PX and Q∗Y = PY by Proposition 8.) Thus, for
all α ∈ (0, ∞], both inclusions supp(Q∗X) ⊆ supp(PX) and supp(Q∗Y) ⊆ supp(PY) hold.

(Lemma 20) For every α ∈ ( 1
2 , ∞], the mapping (QX , QY) 7→ Dα(PXY‖QXQY) has a unique minimizer. This

need not be the case when α ∈ [0, 1
2 ].

The measure Jα(X; Y) can also be expressed as follows:

(Lemma 17) For all α ∈ (0, ∞],

Jα(X; Y) = min
QX

φα(QX), (89)

where φα(QX) is defined as

φα(QX) , min
QY

Dα(PXY‖QXQY) (90)

and is given explicitly as follows: for α ∈ (0, 1) ∪ (1, ∞),

φα(QX) =
α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

, (91)

with the conventions of (44); and for α ∈ {1, ∞},

φ1(QX) = D(PXY‖QXPY), (92)

φ∞(QX) = log ∑
y

max
x

P(x, y)
QX(x)

, (93)

with the conventions of (44). For every α ∈ [ 1
2 , ∞], the mapping QX 7→ φα(QX) is convex. For

α ∈ (0, 1
2 ), the mapping need not be convex.

(Lemma 18) For all α ∈ (0, 1) ∪ (1, ∞],

Jα(X; Y) =


min

RXY∈P(X×Y)
ψα(RXY) if α ∈ (0, 1),

max
RXY∈P(X×Y)

ψα(RXY) if α ∈ (1, ∞],
(94)
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where

ψα(RXY) ,

D(RXY‖RXRY) +
α

1− α
D(RXY‖PXY) if α ∈ (0, 1) ∪ (1, ∞),

D(RXY‖RXRY)− D(RXY‖PXY) if α = ∞.
(95)

For every α ∈ (1, ∞], the mapping RXY 7→ ψα(RXY) is concave. For all α ∈ (1, ∞] and all RXY ∈
P(X ×Y), the statement Jα(X; Y) = ψα(RXY) is equivalent to ψα(RXY) = Dα(PXY‖RXRY).

(Lemma 19) For all α ∈ (0, 1) ∪ (1, ∞),

Jα(X; Y) = min
RX�PX

1
α− 1

[
D α

α−1
(PX‖RX)− αE0

( 1−α
α , RX

)]
, (96)

where the minimization is over all PMFs RX satisfying RX � PX
(
i.e., supp(RX) ⊆ supp(PX)

)
;

Dα(P‖Q) for negative α is given by (54); and Gallager’s E0 function [29] is defined as

E0(ρ, RX) , − log ∑
y

[
∑
x

RX(x)P(y|x)
1

1+ρ

]1+ρ

. (97)

We now move on to the properties of Kα(X; Y). Some of these properties are derived from their
counterparts of Jα(X; Y) using the relation Kα(X; Y) = J1/α(X̃; Ỹ) described in Proposition 7.

Theorem 2. Let X, X1, X2, Y, Y1, Y2, and Z be random variables taking values in finite sets. Then:

(Lemma 21) For every α ∈ [0, ∞], the minimum in the definition of Kα(X; Y) in (2) exists and is finite.

The following properties of the mutual information I(X; Y) are also satisfied by Kα(X; Y):

(Lemma 22) For all α ∈ [0, ∞], Kα(X; Y) ≥ 0. If α ∈ (0, ∞), then Kα(X; Y) = 0 if and only if X and Y are
independent (nonnegativity).

(Lemma 23) For all α ∈ [0, ∞], Kα(X; Y) = Kα(Y; X) (symmetry).
(Lemma 34) If the pairs (X1, Y1) and (X2, Y2) are independent, then Kα(X1, X2; Y1, Y2) = Kα(X1; Y1) +

Kα(X2; Y2) for all α ∈ [0, ∞] (additivity).
(Lemma 35) For all α ∈ [0, ∞], Kα(X; Y) ≤ log |X |.

Unlike the mutual information, Kα(X; Y) does not satisfy the data-processing inequality:

(Lemma 36) There exists a Markov chain X (−− Y (−− Z for which K2(X; Z) > K2(X; Y).

Moreover:

(Lemma 24) For all α ∈ (0, ∞),

Kα(X; Y) + Hα(X, Y) = min
QX , QY

− log M α−1
α
(QX , QY), (98)

where Mβ(QX , QY) is the following weighted power mean [30] (Chapter III): For β ∈ R \ {0},

Mβ(QX , QY) ,

[
∑
x,y

P(x, y)[QX(x)QY(y)]β
] 1

β

, (99)

where for β < 0, we read P(x, y)[QX(x)QY(y)]β as P(x, y)/[QX(x)QY(y)]−β and use the
conventions (44); and for β = 0, using the convention 00 = 1,

M0(QX , QY) , ∏
x,y

[QX(x)QY(y)]P(x,y). (100)
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(Lemma 25) For α = 0,

K0(X; Y) = log
|supp(PXPY)|
|supp(PXY)|

(101)

≥ min
QX , QY

log max
(x,y)∈supp(PXY)

1
QX(x)QY(y)

− log |supp(PXY)| (102)

= lim
α↓0

Kα(X; Y), (103)

where in the RHS of (102), we use the conventions (44). The inequality can be strict, so α 7→
Kα(X; Y) need not be continuous at α = 0.

(Lemma 26) K1(X; Y) = I(X; Y).
(Lemma 27) Let f : {1, . . . , |X |} → X and g : {1, . . . , |Y|} → Y be bijective functions, and let B be the

|X | × |Y| matrix whose Row-i Column-j entry Bi,j equals PXY( f (i), g(j)). Then,

K2(X; Y) = −2 log σ1(B)− H2(X, Y), (104)

where σ1(B) denotes the largest singular value of B. (Because the singular values of a matrix are
invariant under row and column permutations, the result does not depend on f or g.)

(Lemma 28) K∞(X; Y) = 0.
(Lemma 29) The mapping α 7→ Kα(X; Y) need not be monotonic on [0, ∞].
(Lemma 30) The mapping α 7→ Kα(X; Y) + Hα(X, Y) is nonincreasing on [0, ∞].
(Lemma 31) The mapping α 7→ Kα(X; Y) is continuous on (0, ∞]. (See Lemma 25 for the behavior at α = 0.)
(Lemma 32) If X = Y with probability one, then

Kα(X; Y) =


2H α

2−α
(X)− Hα(X) if α ∈ [0, 2),

α
α−1 H∞(X)− Hα(X) if α ≥ 2,

0 if α = ∞.

(105)

(Lemma 33) For every α ∈ (0, 2), the mapping (QX, QY) 7→ ∆α(PXY‖QXQY) in the definition of Kα(X; Y)
in (2) has a unique minimizer. This need not be the case when α ∈ {0} ∪ [2, ∞].

6. Proofs

In this section, we prove the properties of Jα(X; Y) and Kα(X; Y) stated in Section 5.

Lemma 1. For every α ∈ [0, ∞], the minimum in the definition of Jα(X; Y) exists and is finite.

Proof. Let α ∈ [0, ∞]. Then infQX , QY Dα(PXY‖QXQY) is finite because Dα(PXY‖PXPY) is finite and
because the Rényi divergence is nonnegative. The minimum exists because the set P(X )×P(Y) is
compact and the mapping (QX , QY) 7→ Dα(PXY‖QXQY) is continuous.

Lemma 2. For all α ∈ [0, ∞], Jα(X; Y) ≥ 0. If α ∈ (0, ∞], then Jα(X; Y) = 0 if and only if X and Y are
independent (nonnegativity).

Proof. The nonnegativity follows from the definition of Jα(X; Y) because the Rényi divergence is
nonnegative for α ∈ [0, ∞]. If X and Y are independent, then PXY = PXPY, and the choice QX = PX
and QY = PY in the definition of Jα(X; Y) achieves Jα(X; Y) = 0. Conversely, if Jα(X; Y) = 0, then there
exist PMFs Q∗X and Q∗Y satisfying Dα(PXY‖Q∗XQ∗Y) = 0. If, in addition, α ∈ (0, ∞], then PXY = Q∗XQ∗Y
by Proposition 4, and hence X and Y are independent.

Lemma 3. For all α ∈ [0, ∞], Jα(X; Y) = Jα(Y; X) (symmetry).

Proof. The definition of Jα(X; Y) is symmetric in X and Y.
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Lemma 4. If X (−− Y (−− Z form a Markov chain, then Jα(X; Z) ≤ Jα(X; Y) for all α ∈ [0, ∞]

(data-processing inequality).

Proof. Let X (−− Y (−− Z form a Markov chain, and let α ∈ [0, ∞]. Let Q̂X and Q̂Y be PMFs that
achieve the minimum in the definition of Jα(X; Y), so

Jα(X; Y) = Dα(PXY‖Q̂XQ̂Y). (106)

Define the PMF Q̂Z as

Q̂Z(z) , ∑
y

Q̂Y(y)PZ|Y(z|y). (107)

(As noted in the preliminaries, we define PZ|Y(z|y) , 1/|Z| when PY(y) = 0.) We show below that

Dα(PXZ‖Q̂XQ̂Z) ≤ Dα(PXY‖Q̂XQ̂Y), (108)

which implies the data-processing inequality because

Jα(X; Z) ≤ Dα(PXZ‖Q̂XQ̂Z) (109)

≤ Dα(PXY‖Q̂XQ̂Y) (110)

= Jα(X; Y), (111)

where (109) holds by the definition of Jα(X; Z); (110) follows from (108); and (111) follows from (106).
The proof of (108) is based on the data-processing inequality for the Rényi divergence. Define the

conditional PMF AX′Z′ |XY as

AX′Z′ |XY(x′, z′|x, y) , 1{x′ = x}PZ|Y(z
′|y). (112)

If (X, Y) ∼ PXY, then the marginal distribution of X′ and Z′ is

(PXY AX′Z′ |XY)(x′, z′) = ∑
x,y

PXY(x, y)AX′Z′ |XY(x′, z′|x, y) (113)

= ∑
y

PXY(x′, y)PZ|Y(z
′|y) (114)

= ∑
y

PXY(x′, y)PZ|XY(z
′|x′, y) (115)

= PXZ(x′, z′), (116)

where (114) follows from (112); and (115) holds because X, Y, and Z form a Markov chain. If (X, Y) ∼
Q̂XQ̂Y, then the marginal distribution of X′ and Z′ is

(Q̂XQ̂Y AX′Z′ |XY)(x′, z′) = ∑
x,y

Q̂X(x) Q̂Y(y)AX′Z′ |XY(x′, z′|x, y) (117)

= ∑
y

Q̂X(x′) Q̂Y(y)PZ|Y(z
′|y) (118)

= Q̂X(x′) Q̂Z(z′), (119)

where (118) follows from (112), and (119) follows from (107). Finally, we are ready to prove (108):

Dα(PXZ‖Q̂XQ̂Z) = Dα

(
(PXY AX′Z′ |XY)‖(Q̂XQ̂Y AX′Z′ |XY)

)
(120)

≤ Dα(PXY‖Q̂XQ̂Y), (121)
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where (120) follows from (116) and (119), and where (121) follows from the data-processing inequality
for the Rényi divergence [22] (Theorem 9).

Lemma 5. J0(X; Y) = 0.

Proof. By Lemma 2, J0(X; Y) ≥ 0, so it suffices to show that J0(X; Y) ≤ 0. Let (x̂, ŷ) ∈ X × Y satisfy
PXY(x̂, ŷ) > 0. Define the PMF Q̂X as Q̂X(x) , 1{x = x̂} and the PMF Q̂Y as Q̂Y(y) , 1{y = ŷ}.
Then, D0(PXY‖Q̂XQ̂Y) = 0, so J0(X; Y) ≤ 0 by the definition of J0(X; Y).

Lemma 6. Let f : {1, . . . , |X |} → X and g : {1, . . . , |Y|} → Y be bijective functions, and let A be the
|X | × |Y| matrix whose Row-i Column-j entry Ai,j equals

√
PXY( f (i), g(j)). Then,

J 1
2
(X; Y) = −2 log σ1(A), (122)

where σ1(A) denotes the largest singular value of A. (Because the singular values of a matrix are invariant under
row and column permutations, the result does not depend on f or g.)

Proof. By the definitions of Jα(X; Y) and the Rényi divergence,

J 1
2
(X; Y) = −2 log max

QX , QY
∑
x,y

√
QX(x)

√
P(x, y)

√
QY(y). (123)

The claim follows from (123) because

max
QX , QY

∑
x,y

√
QX(x)

√
P(x, y)

√
QY(y) = max

‖u‖2=‖v‖2=1
uTAv (124)

= max
‖v‖2=1

‖Av‖2 (125)

= σ1(A), (126)

where u and v are column vectors with |X | and |Y| elements, respectively; (124) is shown below;
(125) follows from the Cauchy–Schwarz inequality |uTAv| ≤ ‖u‖2‖Av‖2, which holds with equality if
u and Av are linearly dependent; and (126) holds because the spectral norm of a matrix is equal to its
largest singular value [31] (Example 5.6.6).

We now prove (124). Let u and v be vectors that satisfy ‖u‖2 = ‖v‖2 = 1, and define the PMFs
Q̂X and Q̂Y as Q̂X(x) , u2

f−1(x) and Q̂Y(y) , v2
g−1(y), where f−1 and g−1 denote the inverse functions

of f and g, respectively. Then,

uTAv = ∑
i,j

uiAi,j vj (127)

≤∑
i,j
|ui|Ai,j |vj| (128)

= ∑
x,y

√
Q̂X(x)

√
P(x, y)

√
Q̂Y(y) (129)

≤ max
QX , QY

∑
x,y

√
QX(x)

√
P(x, y)

√
QY(y), (130)

where (128) holds because all the entries of A are nonnegative, and in (129), we changed the summation
variables to x , f (i) and y , g(j). It remains to show that equality can be achieved in (128) and (130).
To that end, let Q∗X and Q∗Y be PMFs that achieve the maximum on the RHS of (130), and define the
vectors u and v as ui , Q∗X( f (i))1/2 and vj , Q∗Y(g(j))1/2. Then, ‖u‖2 = ‖v‖2 = 1, and (128) and (130)
hold with equality, which proves (124).
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Lemma 7. J1(X; Y) = I(X; Y).

Proof. This follows from Proposition 8 because D1(PXY‖QXQY) in the definition of J1(X; Y) is equal
to D(PXY‖QXQY).

Lemma 8. For all α > 0,

(1− α) Jα(X; Y) = min
RXY∈P(X×Y)

[
(1− α)D(RXY‖RXRY) + α D(RXY‖PXY)

]
. (131)

Thus, being the minimum of concave functions in α, the mapping α 7→ (1− α) Jα(X; Y) is concave on (0, ∞).

Proof. For α = 1, (131) holds because D(RXY‖PXY) ≥ 0 with equality if RXY = PXY. For α ∈ (0, 1),

(1− α) Jα(X; Y) = min
QX , QY

(1− α)Dα(PXY‖QXQY) (132)

= min
QX , QY

min
RXY

[
(1− α)D(RXY‖QXQY) + α D(RXY‖PXY)

]
(133)

= min
RXY

[
(1− α)D(RXY‖RXRY) + α D(RXY‖PXY)

]
, (134)

where (132) holds by the definition of Jα(X; Y); (133) follows from [22] (Theorem 30); and (134) follows
from Proposition 8 after swapping the minima.

For α > 1, define the sets

Q , {(QX , QY) ∈ P(X )×P(Y) : supp(QXQY) = X ×Y}, (135)

R , {RXY ∈ P(X ×Y) : supp(RXY) ⊆ supp(PXY)}. (136)

Then,

(1− α) Jα(X; Y) = sup
(QX , QY)∈Q

(1− α)Dα(PXY‖QXQY) (137)

= sup
(QX , QY)∈Q

min
RXY∈R

[
(1− α)D(RXY‖QXQY) + α D(RXY‖PXY)

]
(138)

= min
RXY∈R

sup
(QX , QY)∈Q

[
(1− α)D(RXY‖QXQY) + α D(RXY‖PXY)

]
(139)

= min
RXY∈P(X×Y)

[
(1− α)D(RXY‖RXRY) + α D(RXY‖PXY)

]
, (140)

where (137) follows from the definition of Jα(X; Y) because 1 − α < 0 and because the mapping
(QX , QY) 7→ Dα(PXY‖QXQY) is continuous; (138) follows from [22] (Theorem 30); (139) follows from
a minimax theorem and is justified below; and (140) follows from Proposition 8, a continuity argument,
and the observation that D(RXY‖PXY) is infinite if RXY /∈ R.

We now verify the conditions of Ky Fan’s minimax theorem [32] (Theorem 2), which will
establish (139). (We use Ky Fan’s minimax theorem because it does not require that the set Q be
compact, and having a noncompact set Q helps to guarantee that the function f defined next takes
on finite values only. A brief proof of Ky Fan’s minimax theorem appears in [33].) Let the function
f : R×Q → R be defined by the expression in square brackets in (139), i.e.,

f (RXY, QX , QY) , (1− α)D(RXY‖QXQY) + α D(RXY‖PXY). (141)
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We check that

(i) the sets Q andR are convex;
(ii) the setR is compact;

(iii) the function f is real-valued;
(iv) for every (QX , QY) ∈ Q, the function f is continuous in RXY;
(v) for every (QX , QY) ∈ Q, the function f is convex in RXY; and

(vi) for every RXY ∈ R, the function f is concave in the pair (QX , QY).

Indeed, Parts (i) and (ii) are easy to see; Part (iii) holds because both relative entropies on the RHS
of (141) are finite by our definitions of Q andR; and to show Parts (iv)–(vi), we rewrite f as:

f (RXY, QX , QY) = −H(RXY)− α ∑
x,y

RXY(x, y) log P(x, y)

+ (α− 1)∑
x

RX(x) log QX(x) + (α− 1)∑
y

RY(y) log QY(y). (142)

From (142), we see that Part (iv) holds by our definitions of Q and R; Part (v) holds because the
entropy is a concave function (so −H(RXY) is convex), because linear functionals of RXY are convex,
and because the sum of convex functions is convex; and Part (vi) holds because the logarithm is a
concave function and because a nonnegative weighted sum of concave functions is concave. (In Ky
Fan’s theorem, weaker conditions than Parts (i)–(vi) are required, but it is not difficult to see that
Parts (i)–(vi) are sufficient.)

The last claim, namely, that the mapping α 7→ (1− α) Jα(X; Y) is concave on (0, ∞), is true because
the expression in square brackets on the RHS of (131) is concave in α for every RXY and because the
pointwise minimum preserves the concavity.

Lemma 9. The mapping α 7→ Jα(X; Y) is nondecreasing on [0, ∞].

Proof. This is true because for every α, α′ ∈ [0, ∞] with α ≤ α′,

min
QX , QY

Dα(PXY‖QXQY) ≤ min
QX , QY

Dα′(PXY‖QXQY), (143)

which holds because the Rényi divergence is nondecreasing in α (Proposition 4).

Lemma 10. The mapping α 7→ Jα(X; Y) is continuous on [0, ∞].

Proof. By Lemma 8, the mapping α 7→ (1− α) Jα(X; Y) is concave on (0, ∞), thus it is continuous on
(0, ∞), which implies that α 7→ Jα(X; Y) is continuous on (0, 1) ∪ (1, ∞).

We next prove the continuity at α = 0. Let Q∗X and Q∗Y be PMFs that achieve the minimum in the
definition of J0(X; Y). Then, for all α ≥ 0,

D0(PXY‖Q∗XQ∗Y) = J0(X; Y) (144)

≤ Jα(X; Y) (145)

≤ Dα(PXY‖Q∗XQ∗Y), (146)

where (145) holds because α 7→ Jα(X; Y) is nondecreasing (Lemma 9), and (146) holds by the definition
of Jα(X; Y). The Rényi divergence is continuous in α (Proposition 4), so (144)–(146) and the sandwich
theorem imply that Jα(X; Y) is continuous at α = 0.

We continue with the continuity at α = ∞. Define

τ , min
(x,y)∈supp(PXY)

P(x, y). (147)
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Then, for all α > 1,

J∞(X; Y) ≥ Jα(X; Y) (148)

= min
QX , QY

1
α− 1

log ∑
x,y

P(x, y)
P(x, y)α−1

[QX(x)QY(y)]α−1 (149)

≥ min
QX , QY

1
α− 1

log max
x,y

τ P(x, y)α−1

[QX(x)QY(y)]α−1 (150)

=
1

α− 1
log τ + min

QX , QY
log max

x,y

P(x, y)
QX(x)QY(y)

(151)

=
1

α− 1
log τ + J∞(X; Y), (152)

where (148) holds because α 7→ Jα(X; Y) is nondecreasing (Lemma 9), and (149) and (152) hold by the
definitions of Jα(X; Y) and the Rényi divergence. The RHS of (152) tends to J∞(X; Y) as α tends to
infinity, so Jα(X; Y) is continuous at α = ∞ by the sandwich theorem.

It remains to show the continuity at α = 1. Let α ∈ ( 3
4 , 1) ∪ (1, 5

4 ), and let δ , |1− α| ∈ (0, 1
4 ).

Then, for all PMFs QX and QY,

2−δDα(PXY‖QX QY) ≤ 2−δD1−δ(PXY‖QX QY) (153)

= ∑
x,y

P(x, y)
[

QX(x)QY(y)
P(x, y)

]δ

(154)

= ∑
x,y

P(x, y)
[

PX(x)PY(y)
P(x, y)

]δ[QX(x)QY(y)
PX(x)PY(y)

]δ

(155)

≤
{

∑
x,y

P(x, y)
[

PX(x)PY(y)
P(x, y)

]2δ
} 1

2

·
{

∑
x,y

P(x, y)
[

QX(x)QY(y)
PX(x)PY(y)

]2δ
} 1

2

(156)

≤
{

∑
x,y

P(x, y)
[

PX(x)PY(y)
P(x, y)

]2δ
} 1

2

(157)

= 2−δD1−2δ(PXY‖PX PY), (158)

where (153) holds because 1 − δ ≤ α and because the Rényi divergence is nondecreasing in α

(Proposition 4); (156) follows from the Cauchy–Schwarz inequality; and (157) holds because

{
∑
x,y

P(x, y)
[

QX(x)QY(y)
PX(x)PY(y)

]2δ
} 1

2

≤
{

∑
x

PX(x)
[

QX(x)
PX(x)

]4δ
} 1

4

·
{

∑
y

PY(y)
[

QY(y)
PY(y)

]4δ
} 1

4

(159)

= 2−δD1−4δ(PX‖QX) · 2−δD1−4δ(PY‖QY) (160)

≤ 1, (161)

where (159) follows from the Cauchy–Schwarz inequality, and (161) holds because 1− 4δ > 0 and
because the Rényi divergence is nonnegative for positive orders (Proposition 4). Thus, for all α ∈ ( 3

4 , 5
4 ),

D1−2|1−α|(PXY‖PXPY) ≤ min
QX , QY

Dα(PXY‖QXQY) (162)

= Jα(X; Y) (163)

≤ Dα(PXY‖PXPY), (164)
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where (162) follows from (158) if α 6= 1 and from Proposition 8 if α = 1; and (164) holds by the
definition of Jα(X; Y). The Rényi divergence is continuous in α (Proposition 4), thus (162)–(164) and
the sandwich theorem imply that Jα(X; Y) is continuous at α = 1.

Lemma 11. If X = Y with probability one, then

Jα(X; Y) =


α

1−α H∞(X) if α ∈ [0, 1
2 ],

H α
2α−1

(X) if α > 1
2 ,

H 1
2
(X) if α = ∞.

(165)

Proof. We show below that (165) holds for α ∈ (0, 1) ∪ (1, ∞). Thus, (165) holds also for α ∈ {0, 1, ∞}
because both its sides are continuous in α: its LHS by Lemma 10, and its RHS by the continuity of the
Rényi entropy (Proposition 3).

Fix α ∈ (0, 1) ∪ (1, ∞). Then,

Jα(X; Y) = min
QX

min
QY

Dα(PXY‖QXQY) (166)

= min
QX

α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

(167)

= min
QX

α

α− 1
log ∑

x
PX(x)QX(x)

1−α
α , (168)

where (167) follows from Proposition 9, and (168) holds because

PXY(x, y) =

{
PX(x) if x = y,

0 otherwise.
(169)

First consider the case α > 1
2 . Define γ , ∑x PX(x)

α
2α−1 . Then, for all QX ∈ P(X ),

α

α− 1
log ∑

x
PX(x)QX(x)

1−α
α =

α

α− 1
log ∑

x

[
γγ−1 PX(x)

α
2α−1

] 2α−1
α QX(x)

1−α
α (170)

=
2α− 1
α− 1

log γ + D 2α−1
α

(γ−1 PX
α

2α−1 ‖QX) (171)

= H α
2α−1

(X) + D 2α−1
α

(γ−1 PX
α

2α−1 ‖QX), (172)

where (171) holds because x 7→ γ−1 PX(x)
α

2α−1 is a PMF. Because 2α−1
α > 0, Proposition 4 implies that

D(2α−1)/α(P‖Q) ≥ 0 with equality if Q = P. This together with (168) and (172) establishes (165).
Now consider the case α ∈ (0, 1

2 ]. For all QX ∈ P(X ),

∑
x

PX(x)QX(x)
1−α

α ≤∑
x

PX(x)QX(x) (173)

≤∑
x

[
max

x′
PX(x′)

]
QX(x) (174)

= max
x

PX(x), (175)
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where (173) holds because QX(x) ∈ [0, 1] for all x ∈ X and because 1−α
α ≥ 1. The inequalities (173)

and (174) both hold with equality when QX(x) = 1{x = x∗}, where x∗ ∈ X is such that PX(x∗) =
maxx PX(x). Thus,

max
QX

∑
x

PX(x)QX(x)
1−α

α = max
x

PX(x). (176)

Now (165) follows:

Jα(X; Y) = min
QX

α

α− 1
log ∑

x
PX(x)QX(x)

1−α
α (177)

=
α

α− 1
log max

QX
∑
x

PX(x)QX(x)
1−α

α (178)

=
α

α− 1
log max

x
PX(x) (179)

=
α

1− α
H∞(X), (180)

where (177) follows from (168); (178) holds because α
α−1 < 0; (179) follows from (176); and (180) follows

from the definition of H∞(X).

Lemma 12. If the pairs (X1, Y1) and (X2, Y2) are independent, then Jα(X1, X2; Y1, Y2) = Jα(X1; Y1) +

Jα(X2; Y2) for all α ∈ [0, ∞] (additivity).

Proof. Let the pairs (X1, Y1) and (X2, Y2) be independent. For α ∈ (0, 1) ∪ (1, ∞), we establish the
lemma by showing the following two inequalities:

Jα(X1, X2; Y1, Y2) ≤ Jα(X1; Y1) + Jα(X2; Y2), (181)

Jα(X1, X2; Y1, Y2) ≥ Jα(X1; Y1) + Jα(X2; Y2). (182)

Because Jα(X; Y) is continuous in α (Lemma 10), this will also establish the lemma for α ∈ {0, 1, ∞}.
To show (181), let Q∗X1

and Q∗Y1
be PMFs that achieve the minimum in the definition of Jα(X1; Y1),

and let Q∗X2
and Q∗Y2

be PMFs that achieve the minimum in the definition of Jα(X2; Y2), so

Jα(X1; Y1) = Dα(PX1Y1‖Q
∗
X1

Q∗Y1
), (183)

Jα(X2; Y2) = Dα(PX2Y2‖Q
∗
X2

Q∗Y2
). (184)

Then, (181) holds because

Jα(X1, X2; Y1, Y2) ≤ Dα(PX1X2Y1Y2‖Q
∗
X1

Q∗X2
Q∗Y1

Q∗Y2
) (185)

= Dα(PX1Y1‖Q
∗
X1

Q∗Y1
) + Dα(PX2Y2‖Q

∗
X2

Q∗Y2
) (186)

= Jα(X1; Y1) + Jα(X2; Y2), (187)

where (185) holds by the definition of Jα(X1, X2; Y1, Y2) as a minimum; (186) follows from a simple
computation using the independence hypothesis PX1X2Y1Y2 = PX1Y1 PX2Y2 ; and (187) follows from (183)
and (184).

To establish (182), we consider the cases α > 1 and α < 1 separately, starting with α > 1. Let
Q̂X1X2 and Q̂Y1Y2 be PMFs that achieve the minimum in the definition of Jα(X1, X2; Y1, Y2), so

Jα(X1, X2; Y1, Y2) = Dα(PX1X2Y1Y2‖Q̂X1X2 Q̂Y1Y2). (188)



Entropy 2019, 21, 778 22 of 40

Define the function f : X1 ×Y1 → R∪ {∞} as

f (x1, y1) , ∑
x2,y2

PX2Y2(x2, y2)
α
[
Q̂X2|X1

(x2|x1) Q̂Y2|Y1
(y2|y1)

]1−α, (189)

and let (x′1, y′1) ∈ X1 ×Y1 be such that

f (x′1, y′1) = min
x1,y1

f (x1, y1). (190)

Define the PMFs Q′X2
and Q′Y2

as

Q′X2
(x2) , Q̂X2|X1

(x2|x′1), (191)

Q′Y2
(y2) , Q̂Y2|Y1

(y2|y′1). (192)

Then,

2(α−1)Jα(X1,X2;Y1,Y2) = 2(α−1)Dα(PX1X2Y1Y2‖Q̂X1X2 Q̂Y1Y2 ) (193)

= ∑
x1,x2,y1,y2

[
PX1Y1(x1, y1)PX2Y2(x2, y2)

]α[Q̂X1X2(x1, x2) Q̂Y1Y2(y1, y2)
]1−α (194)

= ∑
x1,y1

PX1Y1(x1, y1)
α
[
Q̂X1(x1) Q̂Y1(y1)

]1−α f (x1, y1) (195)

≥ ∑
x1,y1

PX1Y1(x1, y1)
α
[
Q̂X1(x1) Q̂Y1(y1)

]1−α f (x′1, y′1) (196)

= 2(α−1)Dα(PX1Y1
‖Q̂X1 Q̂Y1

)+(α−1)Dα(PX2Y2‖Q
′
X2

Q′Y2
), (197)

where (193) follows from (188); (194) holds by the independence hypothesis PX1X2Y1Y2 = PX1Y1 PX2Y2 ;
(195) follows from (189); (196) follows from (190); and (197) follows from (191) and (192). Taking the
logarithm and multiplying by 1

α−1 > 0 establishes (182):

Jα(X1, X2; Y1, Y2) ≥ Dα(PX1Y1‖Q̂X1 Q̂Y1) + Dα(PX2Y2‖Q
′
X2

Q′Y2
) (198)

≥ Jα(X1; Y1) + Jα(X2; Y2), (199)

where (199) holds by the definition of Jα(X1; Y1) and Jα(X2; Y2).
The proof of (182) for α ∈ (0, 1) is essentially the same as for α > 1: Replace the minimum in

(190) by a maximum. Inequality (196) is then reversed, but (198) continues to hold because 1
α−1 < 0.

Inequality (199) also continues to hold, and (198) and (199) together imply (182).

Lemma 13. For all α ∈ [0, ∞], Jα(X; Y) ≤ log |X | with equality if and only if
(
α ∈ [ 1

2 , ∞], X is distributed
uniformly over X , and H(X|Y) = 0

)
.

Proof. Throughout the proof, define X′ , X. We first show that Jα(X; Y) ≤ log |X | for all α ∈ [0, ∞]:

Jα(X; Y) ≤ Jα(X; X′) (200)

≤ J∞(X; X′) (201)

= H 1
2
(X) (202)

≤ log |X |, (203)

where (200) follows from the data-processing inequality (Lemma 4) because X (−− X′ (−− Y form
a Markov chain; (201) holds because Jα(X; X′) is nondecreasing in α (Lemma 9); (202) follows from
Lemma 11; and (203) follows from Proposition 3.
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We now show that (200)–(203) can hold with equality only if the following conditions all hold:

(i) α ∈ [ 1
2 , ∞];

(ii) X is distributed uniformly over X ; and
(iii) H(X|Y) = 0, i.e., for every y ∈ supp(PY), there exists an x ∈ X for which P(x|y) = 1.

Indeed, if α < 1
2 , then Lemma 11 implies that

Jα(X; X′) =
α

1− α
H∞(X). (204)

Because α
1−α < 1 for such α’s and because H∞(X) ≤ log |X | (Proposition 3), the RHS of (204) is

strictly smaller than log |X |. This, together with (200), shows that Part (i) is a necessary condition.
The necessity of Part (ii) follows from (203): if X is not distributed uniformly over X , then (203) holds
with strict inequality (Proposition 3). As to the necessity of Part (iii),

Jα(X; Y) ≤ J∞(X; Y) (205)

= min
QX

min
QY

D∞(PXY‖QXQY) (206)

= min
QX

log ∑
y

max
x

P(x, y)
QX(x)

(207)

≤ log ∑
y

max
x

P(y)P(x|y)
1/|X | (208)

= log |X |+ log ∑
y

P(y)max
x

P(x|y) (209)

≤ log |X |, (210)

where (205) holds because Jα(X; Y) is nondecreasing in α (Lemma 9); (207) follows from Proposition 9;
and (208) follows from choosing QX to be the uniform distribution. The inequality (210) is strict when
Part (iii) does not hold, so Part (iii) is a necessary condition.

It remains to show that when Parts (i)–(iii) all hold, Jα(X; Y) = log |X |. By (203), Jα(X; Y) ≤
log |X | always holds, so it suffices to show that Parts (i)–(iii) together imply Jα(X; Y) ≥ log |X |.
Indeed,

Jα(X; Y) ≥ J 1
2
(X; Y) (211)

≥ J 1
2
(X; X′) (212)

= H∞(X) (213)

= log |X |, (214)

where (211) holds because Part (i) implies that α ≥ 1
2 and because Jα(X; Y) is nondecreasing in α

(Lemma 9); (212) follows from the data-processing inequality (Lemma 4) because Part (iii) implies
that X (−− Y (−− X′ form a Markov chain; (213) follows from Lemma 11; and (214) follows from
Part (ii).

Lemma 14. For every α ∈ [1, ∞], Jα(X; Y) is concave in PX for fixed PY|X .

Proof. We prove the claim for α ∈ (1, ∞); for α ∈ {1, ∞} the claim will then hold because Jα(X; Y) is
continuous in α (Lemma 10).
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Fix α ∈ (1, ∞). Let λ, λ′ ∈ [0, 1] with λ + λ′ = 1, let PX and P′X be PMFs, let PY|X be a conditional
PMF, and define f : X ×P(Y)→ R∪ {∞} as

f (x, QY) ,

[
∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

. (215)

Denoting Jα(X; Y) by Jα(PXPY|X),

Jα

(
(λ PX + λ′P′X)PY|X

)
= min

QY
min
QX

Dα

(
(λ PX + λ′P′X)PY|X‖QXQY

)
(216)

= min
QY

α

α− 1
log ∑

x

[
∑
y

[
λ PX(x) + λ′P′X(x)

]α PY|X(y|x)α QY(y)1−α

] 1
α

(217)

= min
QY

α

α− 1
log ∑

x

[
λ PX(x) + λ′P′X(x)

][
∑
y

PY|X(y|x)α QY(y)1−α

] 1
α

(218)

= min
QY

α

α− 1
log

[
λ ∑

x
PX(x) f (x, QY) + λ′∑

x
P′X(x) f (x, QY)

]
(219)

≥ min
QY

α

α− 1

[
λ log ∑

x
PX(x) f (x, QY) + λ′ log ∑

x
P′X(x) f (x, QY)

]
(220)

≥ λ min
QY

α

α− 1
log ∑

x
PX(x) f (x, QY) + λ′min

QY

α

α− 1
log ∑

x
P′X(x) f (x, QY) (221)

= λ Jα(PXPY|X) + λ′ Jα(P′XPY|X), (222)

where (217) follows from Proposition 9 with the roles of QX and QY swapped; (220) holds because
log(·) is concave; (221) holds because optimizing QY separately cannot be worse than optimizing a
common QY; and (222) can be established using steps similar to (216)–(218).

Lemma 15. For every α ∈ [ 1
2 , ∞], the mapping (QX , QY) 7→ Dα(PXY‖QXQY) is convex, i.e., for all λ, λ′ ∈

[0, 1] with λ + λ′ = 1, all QX , Q′X ∈ P(X ), and all QY, Q′Y ∈ P(Y),

Dα

(
PXY‖(λQX + λ′Q′X)(λQY + λ′Q′Y)

)
≤ λ Dα(PXY‖QXQY) + λ′Dα(PXY‖Q′XQ′Y). (223)

For α ∈ [0, 1
2 ), the mapping need not be convex.

Proof. We establish (223) for α ∈ [ 1
2 , 1) and for α ∈ (1, ∞), which also establishes (223) for α ∈ {1, ∞}

because the Rényi divergence is continuous in α (Proposition 4). Afterwards, we provide an example
where (223) is violated for all α ∈ [0, 1

2 ).
We begin with the case where α ∈ [ 1

2 , 1):

2(α−1)λDα(PXY‖QX QY)+(α−1)λ′Dα(PXY‖Q′X Q′Y)

=

[
∑
x,y

P(x, y)α [QX(x)QY(y)]1−α

]λ

·
[
∑
x,y

P(x, y)α
[
Q′X(x)Q′Y(y)

]1−α

]λ′

(224)

≤ λ ∑
x,y

P(x, y)α [QX(x)QY(y)]1−α + λ′∑
x,y

P(x, y)α
[
Q′X(x)Q′Y(y)

]1−α (225)

= ∑
x,y

P(x, y)α
[√

λQX(x)1−α
√

λQY(y)1−α +
√

λ′Q′X(x)1−α
√

λ′Q′Y(y)
1−α
]

(226)

≤∑
x,y

P(x, y)α
√

λQX(x)2(1−α) + λ′Q′X(x)2(1−α)
√

λQY(y)2(1−α) + λ′Q′Y(y)
2(1−α) (227)
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≤∑
x,y

P(x, y)α
[
λQX(x) + λ′Q′X(x)

]1−α
√

λQY(y)2(1−α) + λ′Q′Y(y)
2(1−α) (228)

≤∑
x,y

P(x, y)α
[
λQX(x) + λ′Q′X(x)

]1−α [
λQY(y) + λ′Q′Y(y)

]1−α (229)

= 2(α−1)Dα(PXY‖(λQX+λ′Q′X)(λQY+λ′Q′Y)), (230)

where (225) follows from the arithmetic mean-geometric mean inequality; (227) follows from the
Cauchy–Schwarz inequality; and (228) and (229) hold because the mapping z 7→ z2(1−α) is concave on
R≥0 for α ∈ [ 1

2 , 1). Taking the logarithm and multiplying by 1
α−1 < 0 establishes (223).

Now, consider α ∈ (1, ∞). Then,

2(α−1)Dα(PXY‖(λQX+λ′Q′X)(λQY+λ′Q′Y))

= ∑
x,y

P(x, y)α
[
λQX(x) + λ′Q′X(x)

]1−α[
λQY(y) + λ′Q′Y(y)

]1−α (231)

≤∑
x,y

P(x, y)α
[

QX(x)λ Q′X(x)λ′
]1−α[

QY(y)λ Q′Y(y)
λ′
]1−α

(232)

= ∑
x,y

P(x, y)α
[
QX(x)QY(y)

](1−α)λ[Q′X(x)Q′Y(y)
](1−α)λ′ (233)

≤
[
∑
x,y

P(x, y)α
[
QX(x)QY(y)

]1−α

]λ

·
[
∑
x,y

P(x, y)α
[
Q′X(x)Q′Y(y)

]1−α

]λ′

(234)

= 2(α−1)λDα(PXY‖QX QY)+(α−1)λ′Dα(PXY‖Q′X Q′Y), (235)

where (232) follows from the arithmetic mean-geometric mean inequality and the fact that the mapping
z 7→ z1−α is decreasing on R>0 for α > 1, and (234) follows from Hölder’s inequality. Taking the
logarithm and multiplying by 1

α−1 > 0 establishes (223).
Finally, we show that the mapping (QX , QY) 7→ Dα(PXY‖QXQY) does not need to be convex for

α ∈ [0, 1
2 ). Let X be uniformly distributed over {0, 1}, and let Y = X. Then, for all α ∈ [0, 1

2 ),

Dα

(
PXY‖(0.5, 0.5)(0.5, 0.5)

)
> 0.5Dα

(
PXY‖(1, 0)(1, 0)

)
+ 0.5Dα

(
PXY‖(0, 1)(0, 1)

)
, (236)

because the LHS of (236) is equal to log 2, and the RHS of (236) is equal to α
1−α log 2.

Lemma 16. Let α ∈ (0, 1)∪ (1, ∞). If (Q∗X , Q∗Y) achieves the minimum in the definition of Jα(X; Y), then there
exist positive normalization constants c and d such that

Q∗X(x) = c

[
∑
y

P(x, y)α Q∗Y(y)
1−α

] 1
α

∀x ∈ X , (237)

Q∗Y(y) = d

[
∑
x

P(x, y)α Q∗X(x)1−α

] 1
α

∀y ∈ Y , (238)

with the conventions of (44). The case α = ∞ is similar: if (Q∗X , Q∗Y) achieves the minimum in the definition of
J∞(X; Y), then there exist positive normalization constants c and d such that

Q∗X(x) = c max
y

P(x, y)
Q∗Y(y)

∀x ∈ X , (239)

Q∗Y(y) = d max
x

P(x, y)
Q∗X(x)

∀y ∈ Y , (240)
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with the conventions of (44). (If α = 1, then Q∗X = PX and Q∗Y = PY by Proposition 8.) Thus, for all
α ∈ (0, ∞], both inclusions supp(Q∗X) ⊆ supp(PX) and supp(Q∗Y) ⊆ supp(PY) hold.

Proof. If (Q∗X , Q∗Y) achieves the minimum in the definition of Jα(X; Y), then

min
QY

Dα(PXY‖Q∗XQY) = Dα(PXY‖Q∗XQ∗Y). (241)

Hence, (238) and (240) follow from (76) and (78) of Proposition 9 because Dα(PXY‖Q∗XQ∗Y) = Jα(X; Y)
is finite. Swapping the roles of QX and QY establishes (237) and (239). For α ∈ (0, 1) ∪ (1, ∞) the
claimed inclusions follow from (237) and (238); for α = ∞ from (239) and (240); and for α = 1 from
Proposition 8.

Lemma 17. For all α ∈ (0, ∞],

Jα(X; Y) = min
QX

φα(QX), (242)

where φα(QX) is defined as

φα(QX) , min
QY

Dα(PXY‖QXQY) (243)

and is given explicitly as follows: for α ∈ (0, 1) ∪ (1, ∞),

φα(QX) =
α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

, (244)

with the conventions of (44); and for α ∈ {1, ∞},

φ1(QX) = D(PXY‖QXPY), (245)

φ∞(QX) = log ∑
y

max
x

P(x, y)
QX(x)

, (246)

with the conventions of (44). For every α ∈ [ 1
2 , ∞], the mapping QX 7→ φα(QX) is convex. For α ∈ (0, 1

2 ),
the mapping need not be convex.

Proof. We first establish (242) and (244)–(246): (242) follows from the definition of Jα(X; Y); (244)
and (246) follow from Proposition 9; and (245) holds because

min
QY

D(PXY‖QXQY) = min
QY

[D(PXY‖QXPY) + D(PY‖QY)] (247)

= D(PXY‖QXPY), (248)

where (247) follows from a simple computation, and (248) holds because D(PY‖QY) ≥ 0 with equality
if QY = PY.

We now show that the mapping QX 7→ φα(QX) is convex for every α ∈ [ 1
2 , ∞]. To that end,

let α ∈ [ 1
2 , ∞], let λ, λ′ ∈ [0, 1] with λ + λ′ = 1, and let QX , Q′X ∈ P(X ). Let Q̂Y and Q̂′Y be PMFs that

achieve the minimum in the definitions of φα(QX) and φα(Q′X), respectively. Then,

φα(λQX + λ′Q′X) ≤ Dα

(
PXY‖(λQX + λ′Q′X)(λQ̂Y + λ′Q̂′Y)

)
(249)

≤ λ Dα(PXY‖QXQ̂Y) + λ′Dα(PXY‖Q′XQ̂′Y) (250)

= λφα(QX) + λ′φα(Q′X), (251)
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where (249) holds by the definition of φα(·); (250) holds because Dα(PXY‖QXQY) is convex in the pair
(QX , QY) for α ∈ [ 1

2 , ∞] (Lemma 15); and (251) follows from our choice of Q̂Y and Q̂′Y.
Finally, we show that the mapping QX 7→ φα(QX) need not be convex for α ∈ (0, 1

2 ). Let X be
uniformly distributed over {0, 1}, and let Y = X. Then, for all α ∈ (0, 1

2 ),

φα

(
(0.5, 0.5)

)
> 0.5φα

(
(1, 0)

)
+ 0.5φα

(
(0, 1)

)
, (252)

because the LHS of (252) is equal to log 2, and the RHS of (252) is equal to α
1−α log 2.

Lemma 18. For all α ∈ (0, 1) ∪ (1, ∞],

Jα(X; Y) =


min

RXY∈P(X×Y)
ψα(RXY) if α ∈ (0, 1),

max
RXY∈P(X×Y)

ψα(RXY) if α ∈ (1, ∞],
(253)

where

ψα(RXY) ,

D(RXY‖RXRY) +
α

1− α
D(RXY‖PXY) if α ∈ (0, 1) ∪ (1, ∞),

D(RXY‖RXRY)− D(RXY‖PXY) if α = ∞.
(254)

For every α ∈ (1, ∞], the mapping RXY 7→ ψα(RXY) is concave. For all α ∈ (1, ∞] and all RXY ∈ P(X ×Y),
the statement Jα(X; Y) = ψα(RXY) is equivalent to ψα(RXY) = Dα(PXY‖RXRY).

Proof. For α ∈ (0, 1) ∪ (1, ∞), (253) follows from Lemma 8 by dividing by 1− α, which is positive or
negative depending on whether α is smaller than or greater than one. For α = ∞, we establish (253) as
follows: By Lemma 10, its LHS is continuous at α = ∞. We argue below that its RHS is continuous at
α = ∞, i.e., that

lim
α→∞

max
RXY

ψα(RXY) = max
RXY

ψ∞(RXY). (255)

Because (253) holds for α ∈ (1, ∞) and because both its sides are continuous at α = ∞, it must also
hold for α = ∞.

We now establish (255). Let R∗XY be a PMF that achieves the maximum on the RHS of (255). Then,
for all α > 1,

ψ∞(R∗XY) = max
RXY

ψ∞(RXY) (256)

≥ max
RXY

ψα(RXY) (257)

≥ ψα(R∗XY), (258)

where (257) holds because, by (254), ψ∞(RXY) = ψα(RXY) +
1

α−1 D(RXY‖PXY) ≥ ψα(RXY) for all
RXY ∈ P(X × Y). By (254), α 7→ ψα(R∗XY) is continuous at α = ∞, so the RHS of (258) approaches
ψ∞(R∗XY) as α tends to infinity, and (255) follows from the sandwich theorem.

We now show that RXY 7→ ψα(RXY) is concave for α ∈ (1, ∞]. A simple computation reveals that
for all α ∈ (1, ∞),

ψα(RXY) = H(RX) + H(RY) +
1

α− 1
H(RXY) +

α

α− 1 ∑
x,y

RXY(x, y) log P(x, y). (259)
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Because the entropy is a concave function and because a nonnegative weighted sum of concave
functions is concave, this implies that ψα(RXY) is concave in RXY for α ∈ (1, ∞). By (254), α 7→ ψα(RXY)

is continuous at α = ∞, so ψα(RXY) is concave in RXY also for α = ∞.
We next show that if α ∈ (1, ∞] and ψα(RXY) = Dα(PXY‖RXRY), then Jα(X; Y) = ψα(RXY). Let

α ∈ (1, ∞], and let RXY be a PMF that satisfies ψα(RXY) = Dα(PXY‖RXRY). Then,

ψα(RXY) ≤ Jα(X; Y) (260)

≤ Dα(PXY‖RXRY), (261)

where (260) follows from (253), and (261) holds by the definition of Jα(X; Y). Because ψα(RXY) is equal
to Dα(PXY‖RXRY), both inequalities hold with equality, which implies the claim.

Finally, we show that if α ∈ (1, ∞] and Jα(X; Y) = ψα(RXY), then ψα(RXY) = Dα(PXY‖RXRY).
We first consider α ∈ (1, ∞). Let RXY be a PMF that satisfies Jα(X; Y) = ψα(RXY), and let Q∗X and Q∗Y
be PMFs that achieve the minimum in the definition of Jα(X; Y). Then,

Jα(X; Y) = ψα(RXY) (262)

= D(RXY‖RXRY) +
α

1− α
D(RXY‖PXY) (263)

≤ D(RXY‖Q∗XQ∗Y) +
α

1− α
D(RXY‖PXY) (264)

≤ Dα(PXY‖Q∗XQ∗Y) (265)

= Jα(X; Y), (266)

where (264) follows from Proposition 8, and (265) follows from [22] (Theorem 30). Thus, all inequalities
hold with equality. Because (264) holds with equality, Q∗X = RX and Q∗Y = RY by Proposition 8. Hence,
ψα(RXY) = Dα(PXY‖Q∗XQ∗Y) = Dα(PXY‖RXRY) as desired. We now consider α = ∞. Here, (262)–(266)
remain valid after replacing α

1−α by −1. (Now, (265) follows from a short computation.) Consequently,
ψα(RXY) = Dα(PXY‖RXRY) holds also for α = ∞.

Lemma 19. For all α ∈ (0, 1) ∪ (1, ∞),

Jα(X; Y) = min
RX�PX

1
α− 1

[
D α

α−1
(PX‖RX)− αE0

( 1−α
α , RX

)]
, (267)

where the minimization is over all PMFs RX satisfying RX � PX
(
i.e., supp(RX) ⊆ supp(PX)

)
; Dα(P‖Q)

for negative α is given by (54); and Gallager’s E0 function [29] is defined as

E0(ρ, RX) , − log ∑
y

[
∑
x

RX(x)P(y|x)
1

1+ρ

]1+ρ

. (268)

Proof. Let α ∈ (0, 1) ∪ (1, ∞), and define the set R , {RX ∈ P(X ) : supp(RX) ⊆ supp(PX)}. We
establish (267) by showing that for all RX ∈ R,

1
α− 1

[
D α

α−1
(PX‖RX)− αE0

( 1−α
α , RX

)]
≥ Jα(X; Y), (269)

with equality for some RX ∈ R.
Fix RX ∈ R. If the LHS of (269) is infinite, then (269) holds trivially. Otherwise, define the PMF

Q̂X as

Q̂X(x) ,
PX(x)

α
α−1 RX(x)

1
1−α

∑x′∈X PX(x′)
α

α−1 RX(x′)
1

1−α

, (270)
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where we use the convention that 0
α

α−1 · 0
1

1−α = 0. (The RHS of (270) is finite whenever the LHS of (269)
is finite.) Then, (269) holds because

Jα(X; Y) = min
QX

α

α− 1
log ∑

y

[
∑
x

P(x, y)α QX(x)1−α

] 1
α

(271)

≤ α

α− 1
log ∑

y

[
∑
x

P(x, y)α Q̂X(x)1−α

] 1
α

(272)

= log ∑
x

PX(x)
α

α−1 RX(x)
1

1−α +
α

α− 1
log ∑

y

[
∑
x

RX(x)P(y|x)α

] 1
α

(273)

=
1

α− 1

[
D α

α−1
(PX‖RX)− αE0

( 1−α
α , RX

)]
, (274)

where (271) follows from Lemma 17, and (273) follows from (270) using some algebra. It remains to
show that there exists an RX ∈ R for which (272) holds with equality. To that end, let Q∗X be a PMF
that achieves the minimum on the RHS of (271), and define the PMF RX as

RX(x) ,
PX(x)α Q∗X(x)1−α

∑x′∈X PX(x′)α Q∗X(x′)1−α
, (275)

where we use the convention that 0α · 01−α = 0. Because supp(Q∗X) ⊆ supp(PX) (Lemma 16), the
definitions (275) and (270) imply that Q̂X = Q∗X . Hence, (272) holds with equality for this RX ∈ R.

Lemma 20. For every α ∈ ( 1
2 , ∞], the mapping (QX , QY) 7→ Dα(PXY‖QXQY) has a unique minimizer. This

need not be the case when α ∈ [0, 1
2 ].

Proof. First consider α ∈ ( 1
2 , 1). Let (Q∗X, Q∗Y) and (Q̂X, Q̂Y) be pairs of PMFs that both minimize

(QX , QY) 7→ Dα(PXY‖QXQY). We establish uniqueness by arguing that (Q∗X , Q∗Y) and (Q̂X , Q̂Y) must
be identical. Observe that

Jα(X; Y) ≤ Dα

(
PXY‖(0.5Q∗X + 0.5Q̂X)(0.5Q∗Y + 0.5Q̂Y)

)
(276)

≤ 0.5Dα(PXY‖Q∗XQ∗Y) + 0.5Dα(PXY‖Q̂XQ̂Y) (277)

= Jα(X; Y), (278)

where (276) holds by the definition of Jα(X; Y), and (277) follows from Lemma 15. Hence, (277) holds
with equality, which implies that (228) in the proof of Lemma 15 holds with equality, i.e.,

∑
x,y

P(x, y)α
√

0.5Q∗X(x)2(1−α) + 0.5Q̂X(x)2(1−α)
√

0.5Q∗Y(y)
2(1−α) + 0.5Q̂Y(y)2(1−α)

= ∑
x,y

P(x, y)α
[
0.5Q∗X(x) + 0.5Q̂X(x)

]1−α
√

0.5Q∗Y(y)
2(1−α) + 0.5Q̂Y(y)2(1−α). (279)

We first argue that Q∗X = Q̂X . Since Q∗X and Q̂X are PMFs, it suffices to show that Q∗X(x) = Q̂X(x) for
every x ∈ supp(Q̂X). Let x̂ ∈ supp(Q̂X). Because supp(Q̂X) ⊆ supp(PX) (Lemma 16), there exists a
ŷ ∈ Y such that P(x̂, ŷ) > 0. Again by Lemma 16, this implies that Q̂Y(ŷ) > 0. Because the mapping
z 7→ z2(1−α) is strictly concave on R≥0 for α ∈ ( 1

2 , 1), it follows from (279) that Q∗X(x̂) = Q̂X(x̂).
Swapping the roles of QX and QY, we obtain that Q∗Y = Q̂Y.

For α = 1, the minimizer is unique by Proposition 8 because D1(PXY‖QXQY) = D(PXY‖QXQY).
Now consider α ∈ (1, ∞]. Here, we establish uniqueness via the characterization of Jα(X; Y)

provided by Lemma 18. Let ψα(RXY) be defined as in Lemma 18. Let RXY be a PMF that satisfies
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Jα(X; Y) = ψα(RXY), and let (Q∗X , Q∗Y) be a pair of PMFs that minimizes (QX , QY) 7→ Dα(PXY‖QXQY).
If α ∈ (1, ∞), then (264) in the proof of Lemma 18 holds with equality, i.e.,

D(RXY‖RXRY) +
α

1− α
D(RXY‖PXY) = D(RXY‖Q∗XQ∗Y) +

α

1− α
D(RXY‖PXY). (280)

Because the LHS of (280) is finite, Proposition 8 implies that Q∗X = RX and Q∗Y = RY, thus the
minimizer is unique. As shown in the proof of Lemma 18, (280) remains valid for α = ∞ after replacing

α
1−α by −1, thus the same argument establishes the uniqueness for α = ∞.

Finally, we show that, for α ∈ [0, 1
2 ], the mapping (QX, QY) 7→ Dα(PXY‖QXQY) can have more

than one minimizer. Let X be uniformly distributed over {0, 1}, and let Y = X. Then, for all α ∈ [0, 1
2 ],

Jα(X; Y) =
α

1− α
log 2 (281)

= Dα

(
PXY‖(1, 0)(1, 0)

)
(282)

= Dα

(
PXY‖(0, 1)(0, 1)

)
, (283)

where (281) follows from Lemma 11.

Lemma 21. For every α ∈ [0, ∞], the minimum in the definition of Kα(X; Y) in (2) exists and is finite.

Proof. Let α ∈ [0, ∞], and denote by UX and UY the uniform distribution over X and Y , respectively.
Then infQX , QY ∆α(PXY‖QXQY) is finite because ∆α(PXY‖UXUY) is finite and because the relative
α-entropy is nonnegative (Proposition 5). For α ∈ (0, ∞), the minimum exists because the set P(X )×
P(Y) is compact and the mapping (QX, QY) 7→ ∆α(PXY‖QXQY) is continuous. For α ∈ {0, ∞},
the minimum exists because (QX, QY) 7→ ∆α(PXY‖QXQY) takes on only a finite number of values:
if α = 0, then ∆α(PXY‖QXQY) depends on QXQY only via supp(QXQY) ⊆ X × Y ; and if α = ∞,
then ∆α(PXY‖QXQY) depends on QXQY only via argmax(QXQY) ⊆ X ×Y .

Lemma 22. For all α ∈ [0, ∞], Kα(X; Y) ≥ 0. If α ∈ (0, ∞), then Kα(X; Y) = 0 if and only if X and Y are
independent (nonnegativity).

Proof. The nonnegativity follows from the definition of Kα(X; Y) because the relative α-entropy is
nonnegative for α ∈ [0, ∞] (Proposition 5). If X and Y are independent, then PXY = PXPY, and the
choice QX = PX and QY = PY in the definition of Kα(X; Y) achieves Kα(X; Y) = 0. Conversely,
if Kα(X; Y) = 0, then there exist PMFs Q∗X and Q∗Y satisfying ∆α(PXY‖Q∗XQ∗Y) = 0. If, in addition,
α ∈ (0, ∞), then PXY = Q∗XQ∗Y by Proposition 5, and hence X and Y are independent.

Lemma 23. For all α ∈ [0, ∞], Kα(X; Y) = Kα(Y; X) (symmetry).

Proof. The definition of Kα(X; Y) is symmetric in X and Y.

Lemma 24. For all α ∈ (0, ∞),

Kα(X; Y) + Hα(X, Y) = min
QX , QY

− log M α−1
α
(QX , QY), (284)

where Mβ(QX , QY) is the following weighted power mean [30] (Chapter III): For β ∈ R \ {0},

Mβ(QX , QY) ,

[
∑
x,y

P(x, y)[QX(x)QY(y)]β
] 1

β

, (285)



Entropy 2019, 21, 778 31 of 40

where for β < 0, we read P(x, y)[QX(x)QY(y)]β as P(x, y)/[QX(x)QY(y)]−β and use the conventions (44);
and for β = 0, using the convention 00 = 1,

M0(QX , QY) , ∏
x,y

[QX(x)QY(y)]P(x,y). (286)

Proof. Let α ∈ (0, ∞), and define the PMF P̃XY as

P̃XY(x, y) ,
PXY(x, y)α

∑(x′ ,y′)∈X×Y PXY(x′, y′)α
. (287)

Then,

Kα(X; Y) = J 1
α
(X̃; Ỹ) (288)

= min
QX , QY

D 1
α
(P̃XY‖QXQY), (289)

where (288) follows from Proposition 7, and (289) follows from the definition of J1/α(X̃; Ỹ). A simple
computation reveals that for all PMFs QX and QY,

D 1
α
(P̃XY‖QXQY) = − log M α−1

α
(QX , QY)− Hα(X, Y). (290)

Hence, (284) follows from (289) and (290).

Lemma 25. For α = 0,

K0(X; Y) = log
|supp(PXPY)|
|supp(PXY)|

(291)

≥ min
QX , QY

log max
(x,y)∈supp(PXY)

1
QX(x)QY(y)

− log |supp(PXY)| (292)

= lim
α↓0

Kα(X; Y), (293)

where in the RHS of (292), we use the conventions (44). The inequality can be strict, so α 7→ Kα(X; Y) need
not be continuous at α = 0.

Proof. We first prove (291). Recall that

∆0(PXY‖QXQY) =

log |supp(QX QY)|
|supp(PXY)|

if supp(PXY) ⊆ supp(QXQY),

∞ otherwise.
(294)

Observe that ∆0(PXY‖QXQY) is finite only if supp(PX) ⊆ supp(QX) and supp(PY) ⊆ supp(QY). For
such PMFs QX and QY, we have |supp(QXQY)| ≥ |supp(PXPY)|. Thus, for all PMFs QX and QY,

∆0(PXY‖QXQY) ≥ log
|supp(PXPY)|
|supp(PXY)|

. (295)

Choosing QX = PX and QY = PY achieves equality in (295), which establishes (291).
We now show (292). Let QX and QY be the uniform distributions over supp(PX) and supp(PY),

respectively. Then,

log max
(x,y)∈supp(PXY)

1
QX(x)QY(y)

− log |supp(PXY)| = log
|supp(PXPY)|
|supp(PXY)|

, (296)
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and hence (292) holds.
We next establish (293). To that end, define

τ , min
(x,y)∈supp(PXY)

P(x, y). (297)

We bound Kα(X; Y) + Hα(X, Y) as follows: For all α ∈ (0, 1),

Kα(X; Y) + Hα(X, Y) = min
QX , QY

α

1− α
log ∑

x,y
P(x, y)[QX(x)QY(y)]

α−1
α (298)

≥ min
QX , QY

α

1− α
log ∑

(x,y)∈supp(PXY)

τ [QX(x)QY(y)]
α−1

α (299)

≥ min
QX , QY

α

1− α
log max

(x,y)∈supp(PXY)
τ [QX(x)QY(y)]

α−1
α (300)

= min
QX , QY

log max
(x,y)∈supp(PXY)

1
QX(x)QY(y)

− α

1− α
log

1
τ

, (301)

where (298) follows from Lemma 24. Similarly, for all α ∈ (0, 1),

Kα(X; Y) + Hα(X, Y) = min
QX , QY

α

1− α
log ∑

x,y
P(x, y)[QX(x)QY(y)]

α−1
α (302)

≤ min
QX , QY

α

1− α
log max

(x,y)∈supp(PXY)
[QX(x)QY(y)]

α−1
α (303)

= min
QX , QY

log max
(x,y)∈supp(PXY)

1
QX(x)QY(y)

, (304)

where (302) is the same as (298). Now (293) follows from (301), (304), and the sandwich theorem
because limα↓0

α
1−α log 1

τ = 0 and because limα↓0 Hα(X, Y) = log |supp(PXY)| (Proposition 3).
Finally, we provide an example for which (292) holds with strict inequality. Let X = {1, 2, 3}, let

Y = {1, 2}, and let (X, Y) be uniformly distributed over {(1, 1), (2, 2), (3, 1)}. The LHS of (292) then
equals log 2. Using

QX(x) ,

{
0.28 if x ∈ {1, 3},
0.44 if x = 2,

(305)

QY(y) ,

{
0.60 if y = 1,

0.40 if y = 2,
(306)

we see that the RHS of (292) is upper bounded by log 5.952...
3 , which is smaller than log 2.

Lemma 26. K1(X; Y) = I(X; Y).

Proof. The claim follows from Proposition 8 because ∆1(PXY‖QXQY) in the definition of K1(X; Y) is
equal to D(PXY‖QXQY).

Lemma 27. Let f : {1, . . . , |X |} → X and g : {1, . . . , |Y|} → Y be bijective functions, and let B be the
|X | × |Y| matrix whose Row-i Column-j entry Bi,j equals PXY( f (i), g(j)). Then,

K2(X; Y) = −2 log σ1(B)− H2(X, Y), (307)

where σ1(B) denotes the largest singular value of B. (Because the singular values of a matrix are invariant under
row and column permutations, the result does not depend on f or g.)
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Proof. Let (X̃, Ỹ) be distributed according to the joint PMF

P̃XY(x, y) ,
[
β PXY(x, y)

]2, (308)

where

β ,

[
∑
x,y

PXY(x, y)2

]− 1
2

. (309)

Then,

K2(X; Y) = J 1
2
(X̃; Ỹ) (310)

= −2 log σ1(βB) (311)

= −2 log
[
βσ1(B)

]
(312)

= −2 log σ1(B)− H2(X, Y), (313)

where (310) follows from Proposition 7; (311) follows from Lemma 6 and (308); (312) holds because
β > 0; and (313) follows from the definition of H2(X, Y).

Lemma 28. K∞(X; Y) = 0.

Proof. Let the pair (x̂, ŷ) be such that P(x̂, ŷ) = maxx,y P(x, y), and define the PMFs Q̂X and Q̂Y as
Q̂X(x) = 1{x = x̂} and Q̂Y(y) = 1{y = ŷ}. Then, ∆∞(PXY‖Q̂XQ̂Y) = 0, so K∞(X; Y) ≤ 0. Because
K∞(X; Y) ≥ 0 (Lemma 22), this implies K∞(X; Y) = 0.

Lemma 29. The mapping α 7→ Kα(X; Y) need not be monotonic on [0, ∞].

Proof. Let PXY be such that supp(PXY) = X ×Y and I(X; Y) > 0. Then,

K0(X; Y) = 0, (314)

K1(X; Y) > 0, (315)

K∞(X; Y) = 0, (316)

which follow from Lemmas 25, 26, and 28, respectively. Thus, α 7→ Kα(X; Y) is not monotonic on
[0, ∞].

Lemma 30. The mapping α 7→ Kα(X; Y) + Hα(X, Y) is nonincreasing on [0, ∞].

Proof. We first show the monotonicity for α ∈ (0, ∞). To that end, let α, α′ ∈ (0, ∞) with α ≤ α′, and
let Mβ(QX , QY) be defined as in (285) and (286). Then, for all PMFs QX and QY,

M α−1
α
(QX , QY) ≤ M α′−1

α′
(QX , QY), (317)

which follows from the power mean inequality [30] (III 3.1.1 Theorem 1) because α−1
α ≤

α′−1
α′ . Hence,

Kα(X; Y) + Hα(X, Y) = min
QX , QY

− log M α−1
α
(QX , QY) (318)

≥ min
QX , QY

− log M α′−1
α′

(QX , QY) (319)

= Kα′(X; Y) + Hα′(X, Y), (320)
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where (318) and (320) follow from Lemma 24, and (319) follows from (317).
The monotonicity extends to α = 0 because

K0(X; Y) + H0(X, Y) ≥ lim
α↓0

Kα(X; Y) + H0(X, Y) (321)

= lim
α↓0

[Kα(X; Y) + Hα(X, Y)], (322)

where (321) follows from Lemma 25, and (322) holds because α 7→ Hα(X, Y) is continuous at α = 0
(Proposition 3).

The monotonicity extends to α = ∞ because for all α ∈ (0, ∞),

Kα(X; Y) + Hα(X, Y) ≥ Hα(X, Y) (323)

≥ H∞(X, Y) (324)

= K∞(X; Y) + H∞(X, Y), (325)

where (323) holds because Kα(X; Y) ≥ 0 (Lemma 22); (324) holds because Hα(X, Y) is nonincreasing in
α (Proposition 3); and (325) holds because K∞(X; Y) = 0 (Lemma 28).

Lemma 31. The mapping α 7→ Kα(X; Y) is continuous on (0, ∞]. (See Lemma 25 for the behavior at α = 0.)

Proof. Because α 7→ Hα(X, Y) is continuous on [0, ∞] (Proposition 3), it suffices to show that the
mapping α 7→ Kα(X; Y) + Hα(X, Y) is continuous on (0, ∞]. We first show that it is continuous on
(0, 1) ∪ (1, ∞) by showing that α 7→

(
1− 1

α

)[
Kα(X; Y) + Hα(X, Y)

]
is concave and hence continuous

on (0, ∞). For a fixed α ∈ (0, ∞), let (X̃, Ỹ) be distributed according to the joint PMF

P̃XY(x, y) ,
PXY(x, y)α

∑(x′ ,y′)∈X×Y PXY(x′, y′)α
. (326)

Then, for all α ∈ (0, ∞),(
1− 1

α

)[
Kα(X; Y) + Hα(X, Y)

]
=
(
1− 1

α

)
J 1

α
(X̃; Ỹ) +

(
1− 1

α

)
Hα(X, Y) (327)

= min
RXY

[(
1− 1

α

)
D(RXY‖RXRY) +

1
α D(RXY‖P̃XY) +

(
1− 1

α

)
Hα(X, Y)

]
(328)

= min
RXY

[(
1− 1

α

)
D(RXY‖RXRY) +

(
1− 1

α

)
H(RXY) + D(RXY‖PXY)

]
, (329)

where (327) follows from Proposition 7; (328) follows from Lemma 8; and (329) follows from a short
computation. For every RXY ∈ P(X × Y), the expression in square brackets on the RHS of (329) is
concave in α because the mapping α 7→ 1− 1

α is concave on (0, ∞) and because D(RXY‖RXRY) and
H(RXY) are nonnegative. The pointwise minimum preserves the concavity, thus the LHS of (327) is
concave in α and hence continuous in α ∈ (0, ∞). This implies that α 7→ Kα(X; Y) + Hα(X, Y) and
hence α 7→ Kα(X; Y) is continuous on (0, 1) ∪ (1, ∞).

We now establish continuity at α = ∞. Let (x̂, ŷ) be such that P(x̂, ŷ) = maxx,y P(x, y); define the
PMFs Q̂X and Q̂Y as Q̂X(x) , 1{x = x̂} and Q̂Y(y) , 1{y = ŷ}; and let Mβ(QX, QY) be defined as
in (285). Then, for all α ∈ (1, ∞),

K∞(X; Y) + H∞(X, Y) ≤ Kα(X; Y) + Hα(X, Y) (330)

≤ − log M α−1
α
(Q̂X , Q̂Y) (331)

=
α

α− 1
H∞(X, Y) (332)
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= K∞(X; Y) +
α

α− 1
H∞(X, Y), (333)

where (330) holds because Kα(X; Y) + Hα(X, Y) is nonincreasing in α (Lemma 30); (331) follows
from Lemma 24; (332) follows from the definitions of Mβ(QX, QY) in (285) and H∞(X, Y) in (48);
and (333) holds because K∞(X; Y) = 0 (Lemma 28). Because limα→∞

α
α−1 = 1, (330)–(333) and the

sandwich theorem imply that α 7→ Kα(X; Y) + Hα(X, Y) is continuous at α = ∞. This and the
continuity of α 7→ Hα(X, Y) at α = ∞ (Proposition 3) establish the continuity of α 7→ Kα(X; Y) at
α = ∞.

It remains to show the continuity at α = 1. Let α ∈ ( 4
5 , 1) ∪ (1, 4

3 ), and define δ , |α−1|
α ∈ (0, 1

4 ).
(These definitions ensure that on the RHS of (340) ahead, 1− 4δ will be positive.) Let Mβ(QX , QY) be
defined as in (285) and (286). Then, for all PMFs QX and QY,

M α−1
α
(QX , QY) ≤ Mδ(QX , QY) (334)

=

[
∑
x,y

P(x, y) [PX(x)PY(y)]δ
[

QX(x)QY(y)
PX(x)PY(y)

]δ
] 1

δ

(335)

≤
[
∑
x,y

P(x, y) [PX(x)PY(y)]2δ

] 1
2δ

·
[
∑
x,y

P(x, y)
[

QX(x)QY(y)
PX(x)PY(y)

]2δ
] 1

2δ

(336)

≤
[
∑
x,y

P(x, y) [PX(x)PY(y)]2δ

] 1
2δ

(337)

= M2δ(PX , PY), (338)

where (334) follows from the power mean inequality [30] (III 3.1.1 Theorem 1) because α−1
α ≤ δ;

(336) follows from the Cauchy–Schwarz inequality; and (337) holds because

[
∑
x,y

P(x, y)
[

QX(x)
PX(x)

]2δ[QY(y)
PY(y)

]2δ
] 1

2δ

≤
[
∑
x

PX(x)
[

QX(x)
PX(x)

]4δ
] 1

4δ

·
[
∑
y

PY(y)
[

QY(y)
PY(y)

]4δ
] 1

4δ

(339)

= 2−D1−4δ(PX‖QX) · 2−D1−4δ(PY‖QY) (340)

≤ 1, (341)

where (339) follows from the Cauchy–Schwarz inequality, and (341) holds because 1− 4δ > 0 and
because the Rényi divergence is nonnegative for positive orders (Proposition 4). Thus, for all α ∈ ( 4

5 , 4
3 ),

− log M 2|α−1|
α

(PX , PY) ≤ min
QX , QY

− log M α−1
α
(QX , QY) (342)

≤ − log M α−1
α
(PX , PY), (343)

where (342) follows from (338) if α 6= 1 and from Proposition 8 and a simple computation if α = 1. By
Lemma 24, this implies that for all α ∈ ( 4

5 , 4
3 ),

− log M 2|α−1|
α

(PX , PY) ≤ Kα(X; Y) + Hα(X, Y) (344)

≤ − log M α−1
α
(PX , PY). (345)
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Because β 7→ Mβ(PX , PY) is continuous at β = 0 [30] (III 1 Theorem 2(b)), (344)–(345) and the sandwich
theorem imply that α 7→ Kα(X; Y) + Hα(X, Y) is continuous at α = 1. This and the continuity of
α 7→ Hα(X, Y) at α = 1 (Proposition 3) establish the continuity of α 7→ Kα(X; Y) at α = 1.

Lemma 32. If X = Y with probability one, then

Kα(X; Y) =


2H α

2−α
(X)− Hα(X) if α ∈ [0, 2),

α
α−1 H∞(X)− Hα(X) if α ≥ 2,

0 if α = ∞.

(346)

Proof. We first treat the cases α = 0, α = 1, and α = ∞. For α = 0, (346) holds because

K0(X; Y) = log
|supp(PXPY)|
|supp(PXY)|

(347)

= log |supp(PX)| (348)

= H0(X), (349)

where (347) follows from Lemma 25, and (348) holds because the hypothesis Pr[X = Y] = 1 implies
that |supp(PXPY)| = |supp(PX)|2 and |supp(PXY)| = |supp(PX)|. For α = 1, (346) holds because
K1(X; Y) = I(X; Y) (Lemma 26) and because Pr[X = Y] = 1 implies that I(X; Y) = H(X) = H1(X).
For α = ∞, (346) holds because K∞(X; Y) = 0 (Lemma 28).

Now let α ∈ (0, 1) ∪ (1, ∞), and let (X̃, Ỹ) be distributed according to the joint PMF

P̃XY(x, y) ,
PXY(x, y)α

∑(x′ ,y′)∈X×Y PXY(x′, y′)α
(350)

=
PX(x)α

∑x′∈X PX(x′)α
1{x = y}, (351)

where (351) holds because PXY(x, y) = PX(x)1{x = y} for all x ∈ X and all y ∈ Y . If α < 2,
then (346) holds because

Kα(X; Y) = J 1
α
(X̃; Ỹ) (352)

= H 1
2−α

(X̃) (353)

=
2− α

1− α
log ∑

x

[
PX(x)α

∑x′∈X PX(x′)α

] 1
2−α

(354)

= 2H α
2−α

(X)− Hα(X), (355)

where (352) follows from Proposition 7; (353) follows from Lemma 11 because Pr[X̃ = Ỹ] = 1 and
because 1

α > 1
2 ; and (355) follows from a simple computation. If α ≥ 2, then (346) holds because

Kα(X; Y) = J 1
α
(X̃; Ỹ) (356)

=
1

α− 1
H∞(X̃) (357)

=
−1

α− 1
log max

x

PX(x)α

∑x′∈X PX(x′)α
(358)

=
α

α− 1
H∞(X)− Hα(X), (359)

where (356) follows from Proposition 7; (357) follows from Lemma 11 because Pr[X̃ = Ỹ] = 1 and
because 1

α ≤
1
2 ; and (359) follows from a simple computation.
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Lemma 33. For every α ∈ (0, 2), the mapping (QX, QY) 7→ ∆α(PXY‖QXQY) in the definition of Kα(X; Y)
in (2) has a unique minimizer. This need not be the case when α ∈ {0} ∪ [2, ∞].

Proof. Let α ∈ (0, 2). By Proposition 7, Kα(X; Y) = J1/α(X̃; Ỹ), where the pair (X̃, Ỹ) is distributed
according to the joint PMF P̃XY defined in Proposition 7. The mapping (QX , QY) 7→ D1/α(P̃XY‖QXQY)

in the definition of J1/α(X̃; Ỹ) has a unique minimizer by Lemma 20 because 1
α > 1

2 . By Proposition 6,
there is a bijection between the minimizers of D1/α(P̃XY‖QXQY) and ∆α(PXY‖QXQY), so the mapping
(QX , QY) 7→ ∆α(PXY‖QXQY) also has a unique minimizer.

We next show that for α ∈ {0} ∪ [2, ∞], the mapping (QX , QY) 7→ ∆α(PXY‖QXQY) can have more
than one minimizer. Let X be uniformly distributed over {0, 1}, and let Y = X. Then, by Lemma 32,

Kα(X; Y) =


log 2 if α = 0,

1
α−1 log 2 if α ≥ 2,

0 if α = ∞.

(360)

If α = 0, then it follows from the definition of ∆0(P‖Q) in (56) that ∆0(PXY‖QXQY) = log 2 whenever
supp(QX) = supp(QY) = {0, 1}, so the minimizer is not unique. Otherwise, if α ∈ [2, ∞], it can be
verified that

∆α

(
PXY‖(1, 0)(1, 0)

)
= ∆α

(
PXY‖(0, 1)(0, 1)

)
(361)

=

{
1

α−1 log 2 if α ≥ 2,

0 if α = ∞,
(362)

so the minimizer is not unique in this case either.

Lemma 34. If the pairs (X1, Y1) and (X2, Y2) are independent, then Kα(X1, X2; Y1, Y2) = Kα(X1; Y1) +

Kα(X2; Y2) for all α ∈ [0, ∞] (additivity).

Proof. We first treat the cases α = 0 and α = ∞. For α = 0, the claim is true because

K0(X1, X2; Y1, Y2) = log
|supp(PX1X2 PY1Y2)|
|supp(PX1X2Y1Y2)|

(363)

= log
|supp(PX1 PY1)| · |supp(PX2 PY2)|
|supp(PX1Y1)| · |supp(PX2Y2)|

(364)

= K0(X1; Y1) + K0(X2; Y2), (365)

where (363) and (365) follow from Lemma 25, and (364) follows from the independence hypothesis
PX1X2Y1Y2 = PX1Y1 PX2Y2 . For α = ∞, the claim is true because K∞(X; Y) = 0 (Lemma 28).

Now let α ∈ (0, ∞), and let (X̃1, X̃2, Ỹ1, Ỹ2) be distributed according to the joint PMF

P̃X1X2Y1Y2(x1, x2, y1, y2) ,
PX1X2Y1Y2(x1, x2, y1, y2)

α

∑x′1,x′2,y′1,y′2
PX1X2Y1Y2(x′1, x′2, y′1, y′2)

α
(366)

=
PX1Y1(x1, y1)

α

∑x′1,y′1
PX1Y1(x′1, y′1)

α
·

PX2Y2(x2, y2)
α

∑x′2,y′2
PX2Y2(x′2, y′2)

α
, (367)

where (367) follows from the independence hypothesis PX1X2Y1Y2 = PX1Y1 PX2Y2 . Then,

Kα(X1, X2; Y1, Y2) = J 1
α
(X̃1, X̃2; Ỹ1, Ỹ2) (368)

= J 1
α
(X̃1; Ỹ1) + J 1

α
(X̃2; Ỹ2) (369)
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= Kα(X1; Y1) + Kα(X2; Y2), (370)

where (368) and (370) follow from Proposition 7, and (369) follows from Lemma 12 because the pairs
(X̃1, Ỹ1) and (X̃2, Ỹ2) are independent by (367).

Lemma 35. For all α ∈ [0, ∞], Kα(X; Y) ≤ log |X |.

Proof. For α = 0, this is true because

K0(X; Y) = log
|supp(PXPY)|
|supp(PXY)|

(371)

≤ log
|X | · |supp(PY)|
|supp(PXY)|

(372)

≤ log |X |, (373)

where (371) follows from Lemma 25. For α ∈ (0, ∞), the claim is true because

Kα(X; Y) = J 1
α
(X̃; Ỹ) (374)

≤ log |X |, (375)

where (374) follows from Proposition 7, and (375) follows from Lemma 13. For α = ∞, the claim is true
because K∞(X; Y) = 0 (Lemma 28).

Lemma 36. There exists a Markov chain X (−− Y (−− Z for which K2(X; Z) > K2(X; Y).

Proof. Let the Markov chain X (−− Y (−− Z be given by

PXY(x, y) y = 0 y = 1
x = 0 0.6 0
x = 1 0 0.4

PZ|Y(z|y) z = 0 z = 1
y = 0 0.9 0.1
y = 1 0 1

Using Lemma 27, we see that K2(X; Z) ≈ 0.605 bits, which is larger than K2(X; Y) ≈ 0.531 bits.
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