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Abstract: The nature of changes involved in crossed-sequence scale and inner-sequence scale is
very challenging in protein biology. This study is a new attempt to assess with a phenomenological
approach the non-stationary and nonlinear fluctuation of changes encountered in protein sequence.
We have computed fluctuations from an encoded amino acid index dataset using cumulative
sum technique and extracted the departure from the linear trend found in each protein sequence.
For inner-sequence analysis, we found that the fluctuations of changes statistically follow a −5/3
Kolmogorov power and behave like an incremental Brownian process. The pattern of the changes in
the inner sequence seems to be monofractal in essence and to be bounded between Hurst exponent
[1/3,1/2] range, which respectively corresponds to the Kolmogorov and Brownian monofractal process.
In addition, the changes in the inner sequence exhibit moderate complexity and chaos, which seems
to be coherent with the monofractal and stochastic process highlighted previously in the study.
The crossed-sequence changes analysis was achieved using an external parameter, which is the
activity available for each protein sequence, and some results obtained for the inner sequence,
specifically the drift and Kolmogorov complexity spectrum. We found a significant linear relationship
between activity changes and drift changes, and also between activity and Kolmogorov complexity.
An analysis of the mean square displacement of trajectories in the bivariate space (drift, activity) and
(Kolmogorov complexity spectrum, activity) seems to present a superdiffusive law with a 1.6 power
law value.

Keywords: power law; Brownian process; Kolmogorov complexity; entropy; chaos; monofractal;
non-linear; cumulative sum; sequence analysis; protein engineering

1. Introduction

From the information viewpoint, a protein sequence can be considered as a distribution of
successive symbols extracted with a rule from a dictionary. Conceptually, it means that the protein
sequence is simply encoded to a set of symbol combinations. Moreover, the number of the symbols
used is usually very small in comparison to the length of the protein sequence. Consequently, there is
a huge variety of combinations of symbols to encode a protein sequence in the real world. It is
well-known that the molecular mechanism (stability, structure function, disorder) is often triggered
by complex interactions [1–3]. Like the emerged part of an iceberg, the intricated symbol set of an
encoded protein sequence can be seen as a footprint of a wide range of covert biochemical interactions
within the protein. Then, there are numerous encoder models that try to reflect the reality accurately
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using a conversion rule related to physicochemical and biochemical properties [4–6]. Beyond the
symbol combination and arrangement of the protein sequence, understanding the nature and the
organization of the symbols is very challenging in protein biology. Therefore, analyzing the encoded
protein sequence by means of nonlinear analysis can provide some insights about the dynamics of
the changes within the dataset. Searching for similarities between encoded protein sequences in a
dataset is one of the important advantages of morphological analysis of protein sequences. There are
many approaches to extract groups, which are conceptually based on a clustering method of global
or local information about the protein sequence [7–13]. The prediction of disorder of the protein
sequence is often related to the ability to track the degree of randomness, the stochasticity, and the
complexity embedded in the whole encoded dataset. There are studies which focus on randomness,
chaos, long-range interaction between sequences for classification, and predictability. For example,
Yu et al. [14] have made a comparative study of structure and intrinsic disorder between 10,000
natural and random protein sequences and found that natural sequences have more long disordered
regions than random sequences. In addition, Gök et al. [5] have used the Lyapunov exponent and
test four classifier algorithms (Bayesian network, Naïve Bayes, k-means, and SVM) to identify the
disordered protein regions. Long short-term memory (LSTM) recurrent neural networks is a deep
learning algorithm that has gained some interest for tracking the long-range interactions between
sequences [1,15]. These studies reveal that there is potential information about degree of randomness,
disorder, and stochasticity in protein sequences and beyond some degree of predictability. It means
that the protein sequence exhibits some order within disorder and changes are not a likelihood for this
set of symbols. To find out what kind of information and properties of disorder or complexity we are
able to extract from protein sequences, we propose to scan the changes inside the protein sequences and
between sequences using a multidisciplinary approach. It means that we intend, at the same time, to use
tools from information theory field (entropy of information, Kolmogorov complexity), physical theory
(chaos, fractional Brownian processes, drift-diffusion processes), and signal processing (multifractality,
Fourier analysis). To our knowledge, the use of multidisciplinary tools to analyze the dynamics of
the changes within a protein sequence and between sequences is new. As mentioned previously,
the encoded protein sequence contains successive numerical values and can also be considered as a
time series. The aim of this paper is to encompass the variability of the inner changes hidden behind
the encoded protein sequence using nonlinear tools, and to assess the predictability of the underlying
non-stationary protein sequence activity.

The study is organized as follows. Section 2 presents the experimental dataset and the encoded
protein sequence. Section 3 describes the algorithm used to analyze the time series (i) entropy and
chaos, (ii) Kolmogorov complexity and Turing machine, (iii) law-scaling and stochastic process, and (iv)
surrogated and shuffled data. Finally, Section 4 includes both presentation of the results obtained and
discussion. The concluding remarks are given in Section 5.

2. Experimental Dataset

To facilitate the understanding of readers outside the realm of life sciences, we will provide a brief
definition of a polypeptide/protein sequence. A protein sequence is a chain made of residues of amino
acids. Twenty amino acids are the basic building blocks for proteins. We will provide an application
example as well.

2.1. Alphabetical Dictionary

Each amino acid is represented by a letter corresponding to the one-letter code for an amino
acid. The global sequence has a biological meaning. A single variation in the sequence could have a
huge impact on the activity of the protein. An example of a protein sequence (Cytochrome P450) is
given below:



Entropy 2019, 21, 852 3 of 20

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDES
RFDKNLSQALKFVRDFAGDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIATQLI
QKWSRLNPNEEIDVADDMTRLTLDTIGLCGFNYRFNSFYRDSQHPFITSMLRALKEAMNQSKRL
LRLWPTAPAFSLYAKEDTVLGGEYPLEKGDELMVLIPQLHRDKTIWGDDVEEFRPERFENPSAIPQ
HAFKPFGNGQRACIGQQFALHEATLVLGMILKYFTLIDHENYELDIKQTLTLKPGDFHISVQSRH
QEAIHADVQAAE

2.2. An Application Example: Cytochrome P450

Cytochrome P450 is a protein, i.e., a polypeptidic sequence of 464 or 466 amino acids. It is used
to generate products of significant medical and industrial importance. Three parental cytochromes
P450, i.e., CYP102A1(P1), CYP102A2(P2), and CYP102A3(P3) were used to generate 242 chimeric
sequences of cytochrome P450 [16]. Further, 242 thermostable protein sequences were created by
recombination of stabilizing fragments. For each variant, the thermostability (defined herewith as:
Activity) was analyzed by the measurement of the T50, T50 being the temperature at which 50% of the
protein was irreversibly denatured after incubation for 10 min. The result is a decrease in activity.
Activity ranges from 39.2 ◦C to 64.48 ◦C. Chimeras are written according to fragment composition:
23121321 represents a protein that inherits the first fragment from parent P2, the second from P3,
the third from P1, and so on.

3. Methodology

In this study, the questions are: “Can statistical, nonlinear, and complexity analysis give us some
information about the pattern in a protein sequence and its changes along the sequence and also the next, or other
sequences? Can we group sequences according to their activity but also their morphological pattern?”. To assess
the ability of the statistical chaos and complexity tools, we have transformed each protein sequence
into numerical or binary time series according to the need of the use of the tool.

First of all, there exist different conversion tables to transform protein residues (letters) to numerical
sequences. We have used the freely available one, namely AA index database [17,18]. This database
contains a huge number of ascribed numerical values for each protein residue. There are 566 numerical
values, which are for each index in the sequence univocally in correspondence with physicochemical
and biochemical properties of the residues. In this case, we have selected the index 532 in the dataset,
which allows us to rank and encode 20 standard amino acids.

3.1. Entropy and Chaos

Entropy is a concept that was first discovered in physics. Nevertheless, this concept is also
encountered in other fields and especially in the theory of information. In 1948, Shannon [19]
formalized the concept of entropy of the information H of a string of length N, which contains Q
repeated symbols S =

{
s1, s2, . . . , sQ

}
. H is shown by the well-known formula:

H = −
∑Q

i=1
p̂ilogp̂i (1)

where p̂i =
Nsi
N .

Nsi is the number of appearances of the symbol si in the string of length N. Thus, pi is the
probability of occurrence within the range value ]0 1]. As we suppose that all Q symbols exist in the
string, the probability 0 is excluded. The minus sign is to ensure a positive value of the entropy H as
the logarithm is always negative. H is a global measure of the total amount of information in an entire
probability distribution contained in a sequence.

Another measure of entropy is the sample entropy [20]. Let us consider a set of N symbols
si,k in a sequence Si chosen among M sequences in the dataset. From the sequence Si we extract
two subsets of m symbols Sm

i,p =
{
si,p, si,p+1, . . . , si,p+m

}
and Sm

iq =
{
si,q, si,q+1, . . . , si,q+m

}
where p , q.

The parameters p and q correspond to the index position of the first symbol of respectively the subset
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Sm
i,p and Sm

i,q within the sequence Si. The sample entropy (SampEn) of the sequence Si is defined as

SampEn(m, r, N)i = −log
(Ai

Bi

)
, where Ai is the number of pair-wise subset symbols

(
sm+1

ip , sm+1
iq

)
of length

m + 1 with a distance d
(
sm+1

ip , sm+1
iq

)
< r while Bi is the number of pair-wise subset symbols

(
sm

ip, sm
iq

)
of

length m with a distance d
(
sm

ip, sm
iq

)
< r. The r is a threshold value of similarity between the pair-wise

subset symbols
(
sm

ip, sm
iq

)
. In our study, the sequence is a set of numbers. Then, the distance d

(
sm

ip, sm
iq

)
is

a Euclidian distance and the tolerance value threshold value r is chosen between 0.1 and 0.2 of the
standard deviation of the sequence Si [20]. Moreover, the embedding dimension m is usually taken to
be 2. Finally, the sample entropy is a positive value, which can be 0 for a regular sequence and roughly
2.2 or 2.3 for a strongly irregular sequence. The sample entropy is a measure of the regularity within
a sequence.

In addition, sometimes an irregularity pattern in a time series could be related to the chaos process
within a sequence. The largest Lyapunov exponent is the most common parameter used to characterize
chaos in a dynamical system. The sign and the value of this parameter give an indication of the
response of a system to amplify, damp, or oscillate a small perturbation. In our case, it means that if the
largest Lyapunov exponent is (i) positive, then the process is chaotic, (ii) close to zero, then the process
is periodic or quasi-periodic, and finally (iii) negative, the process is damping and has an attractor. In
our study, to achieve the search for chaos pattern in a sequence Si, we have used Wolf’s algorithm [21]
to compute the Lyapunov exponent spectrum and the largest Lyapunov exponent (LLE).

3.2. Kolmogorov Complexity and Turing Machine

Let us assume we have a set of M sequences S = {S1, S2, . . . , SM}. Then, we suppose that we
have for each sequence i of string Si, a set of N values defined as Si =

{
pi

1, pi
2, . . . , pi

N
}
. To assess

disorder within a sequence, we use the Kolmogorov complexity method [22]. This method is based
on the concept of Turing machine and the mathematical expression of the algorithmic complexity
can be written KT(s) = min

{∣∣∣p∣∣∣, T(p) = s
}
. This states that the algorithmic complexity of a string s is

the shortest program p computed with a Turing’s machine T to gather output s [23,24]. To compute
the Kolmogorov complexity (KC), there are three processes: (i) Convert the sequence Si to binary
sequence Bi using a threshold method, (ii) compress the sequence Bi with Lempel-Ziv compressor
to a compressed sequence Ci, and (iii) compute and normalize the Kolmogorov complexity number
associated with the original sequence Si.

Binarizing the sequence Si is based on the particular value used as threshold value pi
T to assign

each number pi
k in the sequence Si with the value of 0 if pi

k is less than the threshold value pi
T,

or conversely assigned with the value of 1 if pi
k exceeds the threshold value pi

T. The mathematical
expression of the binary value of the number pi

k in the sequence Si is:

Bk
i

∣∣∣
i = {1, 2, . . . , M}
k = {1, 2, . . . , N}

=


0 i f pi

k < pi
T

or
1 i f pi

k
≥ pi

T
(2)

where pi
T is a threshold value of sequence Si.

Usually, the mean of the set
{
pi

1, pi
2, . . . , pi

N
}

is used as a threshold value of the sequence Si.
Nevertheless, we will take into account the amplitude of the numbers pi

k to compute the optimum
threshold value pi

T
opt associated with the sequence Si. Thus, we introduce the Kolmogorov complexity

spectrum (KCS), which is an iterative procedure to compute the Kolmogorov complexity for various
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threshold values within the range values pi
k of the sequence Si [25]. The encoding number to binary

value is presented as:

Bk
i

∣∣∣
m =


0 i f pi

k < pi
Tm

or
1 i f pi

k
≥ pi

Tm

m = 1, 2, . . . , K (3)

where pi
TL = mink

({
pi

k
})
+ m

{
maxk

({
pi

k
})
−mink

({
pi

k
})

K−1

}
.

Thus, for each sequence Si, the Kolmogorov complexity spectrum is a set of K Kolmogorov
complexity values KCi

K =
{
KCi

1, KCi
2, . . . , KCi

K
}
. The optimum threshold pi

T
opt is chosen among the

set of threshold values
{
pi

T1 , pi
T2 , . . . , pi

TK
}

using the condition pi
T

opt =
{
pi

T j
∣∣∣∣ KCi

j = maxk
(
KCi

k
)}

.
The compression method used in this study is the Lempel-Ziv compressor [26]. This is an iterative

search in the binary series Bi of the overall possible subset sequences, which are different from each
other. The result is a compressed sequence Ci. If |Ci| represents the length of the compressed binary
sequence Ci, then Kolmogorov complexity KCi associated with the sequence Si is:

KCi = |Ci|log2N/N. (4)

The term log2N/N in the expression of KCi insures the normalization of the Kolmogorov
complexity.

3.3. Law-Scaling and Stochastic Process

As previously mentioned, a sequence is defined as a set of alphabetic letters, which could be
converted to other symbols (numerical, binary, etc.). Nevertheless, the changes of symbols along
the chain are usually related to the real world of biochemical activities along the protein sequence.
The question is “Do those changes present a regular or irregular pattern within a sequence which can provide
some information about an underlying dynamic in a sequence?” First, we have to define the changes in
a sequence i of pairwise symbols separated by a distance, namely an increment of position. Let us
assume d is the increment pairwise symbols and the quantity ∆pdi =

∣∣∣pi
j
− pi

k
∣∣∣
d=|k− j| is the magnitude

of changes of the pairwise symbols separated by an increment of d. We define the structure function
Sqi(d) for a sequence i defined by the expression Sqi(d) =

1
Ndi

∑Ndi
m=1

∣∣∣pi
j
− pi

k
∣∣∣q
d=|k− j| where Ndi is the

number of pairwise symbols separated with a distance d. By extension, this function can also be used
to track the existence of scaling law in the data Sqi(d) ∝ dξ(q). ξ(q) is the generalized Hurst exponent,
which is indicative of the nature of pairwise symbol changes and the stochasticity of processes like
long-term memories, Brownian motion, self-similarity pattern [27]. The probability function (PDFs)
of the distribution of the normalized changes of pair-wise symbols ∆pdi/σ

(
∆pdi

)
within a sequence

i can be computed to analyze the normality of the changes in a sequence. Additionally, kurtosis or
flatness is another measure of the normality of the changes of the pairwise symbols. For sequence
i, the kurtosis Fi = S4i(d)/(S2i(d))

2. The terms S4i(d) and S2i(d) are, respectively, the fourth- and
second-order moment of the pairwise distribution.

3.4. Surrogated and Shuffled Data

The methods to surrogate and shuffle the data are very popular tools to assess the existence of
nonlinearities and the scaling properties of a process. Both algorithms are based on the generation of
randomized synthetic data using specific constraint rule to generate the synthetic data. Surrogated
data used in this study are the iterative amplitude-adjusted Fourier transform (IAAFT). This method
preserves the statistical properties of the original data but randomizes the phase spectrum of the
Fourier transform of the original data. The synthetic data generated with this method lead to removing
nonlinearities in the original data. Shuffled data are obtained by a random permutation between
values of the original data. This method is a bootstrapping algorithm without repetition of the indices’
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permutation. Variants of the protein (synthetic sequences) are obtained by variation of any position
in the sequence and not by variation of the fragments constitutive of the protein (described in the
Section 2.2 “An application example: Cytochrome P450”). The data obtained are a set of values that
do not exhibit any linear correlation in the synthetic data and preserve the amplitude distribution.
For more information about these two algorithms, the reader can refer to the review of Schreiber and
Schmitz [28].

4. Normalized Detrended Cumulative Sum (NDCS) Method

Fluctuations or changes along the protein sequence are of interest in this study but we need to
show how we extract this information from the original data. Cumulative sum is a sequential method
that is widely used to detect changes in a time series and to track the self-similarity in a dataset [29].
In this study, we have applied this algorithm for each sequence and generated a new sequence of
fluctuations defined as a departure from the linear trend. Within the 242 protein sequences of a length
of 466 for each one, each index in a sequence is originally labelled with an alphabetical letter. There are
20 letters used (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y) corresponding to the
one-letter code for amino acid. In this study, the D PRIFT index is chosen from the AA index catalog to
convert the alphabetical symbols to numerical values [30]. It allows us to distinguish each of the 20
amino acid residues by a unique value related to its hydrophobicity property. The encoding process,
which converts the original alphabetical letters to numerical values within the [−5.68 6.81] range,
is shown in Table 1.

Table 1. Conversion rule of protein sequence of AA index 532—D PRIFT index [30].

AA Index 532 D PRIFT Index (Cornette et al. 1987)

Letter A C D E F G H I K L M N P Q R S T V W Y

Value Index −5.68 −5.62 −5.30 −4.47 −3.99 −3.86 −1.94 −1.92 −1.28 0.96 0.62 0.21 0.75 3.34 4.54 4.76 5.06 5.39 5.54 6.81

We are aware that this description by their hydrophobicity values is oversimplified and does not
account (i) for many other properties of amino acids that are well known to strongly affect pattern
changes in protein sequences along families, such as volume, aromaticity, and different charge states
for the same amino acid in distinct positions or, (ii) for the fact that the exposure of continuous amino
acids sequences to solvent or their occlusion in protein cores is a fundamental requirement for proteins
to fold in functional arrangements, giving importance to hydrophobic and polar amino acids and their
distribution. However, whatever the choice among all the possible amino acid indexes that are able to
distinguish between the 20 amino acid residues, the index will be insufficient.

As shown in Figure 1a, the distribution values show a non-normal distribution, which is indicative
of the non-gaussian process along the protein sequence. Roughly, the distribution looks like a U-shape
where the highest probability of occurrence is obtained for the extreme values and the lowest for the
mean value of the available D PRIFT index. Then, the pattern of the encoded protein sequence appears
like complex bounced stairs with randomness as a sharp jump (Figure 1b).
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Figure 1. (a) Histogram of the D PRIFT index for 242 protein sequences. Red, blue, green, and yellow 
dots along the x-axis corresponds to the 20 values of the D PRIFT index. (b) Global view of the 
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normalized detrended cumulative sum (NDCS) method. The cumulative sum is a well-known and 
widely used algorithm to detect changes and shifts in time series [31]. In this study, we have extracted 
the linear long-term and normalized the cumulative sum of each sequence to (i) focus on the local 
change and (ii) have the same scale to compare transformed data. Figure 2 presents an example of 
transforming the original data (Sequence 1) into a detrended cumulative sum data. For clarity, we 
only present here the cumulative sum and linear detrending of the data. The normalized process is 
shown in the next figure. The trend of the cumulative sum is considered to be a linear trend for all 
the 242 protein sequences. The negative drift of the cumulative sum is related to the mean of a 
sequence. In our dataset, the average of the D PRIFT index is negative for each sequence and explains 
the downward drift of the cumulative sum. 

 

Figure 1. (a) Histogram of the D PRIFT index for 242 protein sequences. Red, blue, green, and yellow
dots along the x-axis corresponds to the 20 values of the D PRIFT index. (b) Global view of the converted
dataset (i.e., 242 protein sequences) using D PRIFT index rule. Yellow circle is indicative of the position
within each sequence of the aliphatic hydrophobic, aromatic hydrophobic, and polar amino acids.

To target the jump stair pattern analysis within the protein sequence, we have used the normalized
detrended cumulative sum (NDCS) method. The cumulative sum is a well-known and widely used
algorithm to detect changes and shifts in time series [31]. In this study, we have extracted the linear
long-term and normalized the cumulative sum of each sequence to (i) focus on the local change and
(ii) have the same scale to compare transformed data. Figure 2 presents an example of transforming
the original data (Sequence 1) into a detrended cumulative sum data. For clarity, we only present
here the cumulative sum and linear detrending of the data. The normalized process is shown in the
next figure. The trend of the cumulative sum is considered to be a linear trend for all the 242 protein
sequences. The negative drift of the cumulative sum is related to the mean of a sequence. In our
dataset, the average of the D PRIFT index is negative for each sequence and explains the downward
drift of the cumulative sum.
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Figure 2. (a) D PRIFT index of sequence 1, which is parent CYP102A1 (P1); (b) Cumulative index 
(black line) and detrended cumulative sum (red line) of D PRIFT index of sequence 1. The blue line 
corresponds to the linear trend or drift of the cumulative sum of D PRIFT index. 

Figure 3a depicts the NDSC plot in comparison with the original data (Sequence 1). Fluctuations 
reflect the local changes along the sequence and also a significant change pattern around the middle 
of the sequence. The fluctuation pattern relying on the cumulative sum transformation involves 
continuous distribution, conversely to the discrete distribution of the original D PRIFT index (Figure 
3b). 

Figure 4a shows that the fluctuations of the NDCS of the D PRIFT index changes are normally 
distributed, with skewness close to 0 and kurtosis close to 3, which are the expected values for a 
normal distribution. In addition, the QQ-plot displayed in Figure 4b reveals that the observed 
distribution is close to a normal distribution and the two samples’ (dataset values and generated 
normal data values) Kolmogorov–Smirnov test applied to this distribution does not reject the null 
hypothesis at the 5% significance level. 

a) 
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Cumulative sum 
Linear trend or Drift 

Figure 2. (a) D PRIFT index of sequence 1, which is parent CYP102A1 (P1); (b) Cumulative index
(black line) and detrended cumulative sum (red line) of D PRIFT index of sequence 1. The blue line
corresponds to the linear trend or drift of the cumulative sum of D PRIFT index.

Figure 3a depicts the NDSC plot in comparison with the original data (Sequence 1). Fluctuations
reflect the local changes along the sequence and also a significant change pattern around the middle
of the sequence. The fluctuation pattern relying on the cumulative sum transformation involves
continuous distribution, conversely to the discrete distribution of the original D PRIFT index (Figure 3b).
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corresponds to the normalized detrended cumulative sum (NDCS) of D PRIFT index; (b) Original 
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protein sequences. 
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Figure 3. (a) D PRIFT index of sequence 1, which is parent CYP102A1 (P1). A superimposed red line
corresponds to the normalized detrended cumulative sum (NDCS) of D PRIFT index; (b) Original
(black dot) and normalized detrended cumulative sum (small red cross) of D PRIFT index for
242 protein sequences.

Figure 4a shows that the fluctuations of the NDCS of the D PRIFT index changes are normally
distributed, with skewness close to 0 and kurtosis close to 3, which are the expected values for a normal
distribution. In addition, the QQ-plot displayed in Figure 4b reveals that the observed distribution is
close to a normal distribution and the two samples’ (dataset values and generated normal data values)
Kolmogorov–Smirnov test applied to this distribution does not reject the null hypothesis at the 5%
significance level.
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less than 10 pairwise. To summarize, this flat distribution indicates more diversity of changes for the 
large amplitude of pairwise distance within the protein sequence. 
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Figure 4. (a) Distribution of the NDCS of D PRIFT index changes for all sequences (black dots). Red line
corresponds to Gaussian distribution; (b) QQ-plot of the NDCS of D PRIFT index changes quantiles
and Gaussian quantiles. Red dotted line is a linear fitting of observed quantile distribution versus
normal quantile distribution.

5. Results and Discussion

5.1. Normality and Intermittency

The changes along the protein sequence for four different pairwise distances show a platykurtic
nature (Figure 5a). The average distribution exhibits large amplitude for fluctuations greater than
2.5 times the standard deviation of NDCS of D PRIFT index changes. The average is computed using
242 protein sequences. Below this threshold value, the distribution is close to the Gaussian distribution.
This kind of departure from the Gaussian distribution in fluctuations is indicative of intermittency.
Moreover, Figure 5b highlights that the platykurtic nature of the fluctuations covers a wide range of
pairwise distances, but it is more pronounced with the [30–60] pairwise distance and for distances less
than 10 pairwise. To summarize, this flat distribution indicates more diversity of changes for the large
amplitude of pairwise distance within the protein sequence.
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Figure 5. (a) Shape of average and normalized experimental probability functions (PDFs) of the 
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Figure 5. (a) Shape of average and normalized experimental probability functions (PDFs) of the
increment of NDCS of PRIFT index changes at different distances in pairwise sequence d = 5, d = 10,
d = 50, and d = 100 of 242 protein sequences. (b) Deviation of NDCS of PRIFT index changes
distribution with respect to the Gaussian distribution at different pairwise sequence d.

5.2. Kolmogorov’s Law and Brownian Process

We have conducted a Fourier analysis to focus on the fluctuation of the NDCS of D PRIFT index
changes. Surprisingly, scale invariance can be detected in the log-log presentation of the Fourier spectra
(Figure 6a). An average of −1.68 based on power law is obtained, which is very close to the Kolmogorov
power law result of −5/3. This highlights that the fluctuations of the NDCS of D PRIFT index changes
along a sequence are similar to a non-stationary process and obey the famous Kolmogorov’s law of
the energy cascade for turbulence in the inertial scale range [22]. In addition, as shown in Figure 6b,
the range scale value for each sequence is rather close to −5/3, with an observed minimum slope value
of −1.56 and a maximum slope value of −1.84. This means that the changes within the protein sequence
can be formulated according to Fourier transform as E( f ) = f β where β is the slope of the law and is
close to the Kolmogorov spectrum. In addition, we can use criteria to check if the changes of protein
are stationary or not [32]. This is summarized by the following test:

• β < 1, the changes are stationary,
• β > 1, the changes are non-stationary,
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• 1 < β < 3, the changes are non-stationary with stationary increments.

Thus, the changes in the sequence protein follow a non-stationary process. Moreover, the coefficient
of variation of the fluctuations of the NDCS of D PRIFT index changes computed for all 242 sequences
is less than 3%, confirming that this similarity with the Kolmogorov spectrum seems to be reproducible
for each protein sequence as confirmed by the distribution of the spectrum slope obtained randomly
with surrogated and shuffled data.

 
Figure 6. (a) Power spectrum density (PSD) of the NDCS of D PRIFT index changes of all 242 protein
sequences Si (black dots); (b) PDFs of the spectral exponent estimated from Fourier analysis. We have
superimposed the PDFs obtained with surrogated (red spots) and shuffled data (blue squares).

As shown previously in Figure 3b, the fluctuations of the NDCS of D PRIFT index changes appear
to show seemingly organized fluctuations. The question is “Is there some dynamic pattern of these change
fluctuations along a sequence Si and is there some randomness of changes within the protein sequence?”. A first
approach is to analyze the behavior of the fluctuation of the pairwise protein index. Figure 7a shows
that on average, the second-order moment S2i(d) of the pairwise protein sequence index separated by
a distance d is linearly scaled in a sequence between pairwise protein sequence indexes separated by a
distance d roughly below 50. We found a power law of 0.87, which is close to the Brownian power law
process. Then, the behavior of the change fluctuations along each protein sequence Si seems to be close
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to a Brownian process. Furthermore, we found for each protein sequence a power law between a range
of [0.69 0.99] and a coefficient of variation less than 7%, which reveals that the fluctuations of NDCS
of the D PRFIT index changes along a sequence Si statistically have a behavior close to a Brownian
process in regard to the results obtained with the surrogated and shuffled data (Figure 7b).
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Figure 7. (a) Log-log presentation of the second-order moment S2i(d) of the NDCS of D PRIFT index
changes of all 242 protein sequences S2i versus the distance d of the pairwise protein sequence index
(black dots); (b) PDFs of the slope of the scaling law distribution of the second-order moment S2i(d) of
the NDCS of D PRIFT index changes estimated for each protein sequence Si. We have superimposed
the PDFs obtained with surrogated (red spots) and shuffled data (blue squares).

In addition, we have also computed the q-order moment for each protein sequence Si. The result is
shown in Figure 8a. As observed with second-order moment S2i(d) analysis, we again have a scaling
law distribution between pairwise protein sequence index Si below d = 50 for a higher-order moment.
This result reveals the existence of a monofractal feature along the protein sequence Si. Figure 8b
shows that the fluctuations of NDCS of D PRIFT index changes of each protein sequence Si contain a
monofractal feature with ξ(q) = 0.43 q, which is a linear law of q and reveals monofractal behavior.
The slope of the linear law is called the Hurst exponent H. As a reminder, if the value of H = 1

2 ,
it means the changes in a sequence contain no memory as for the Brownian motion. If the changes
of the sequence are anti-persistent

(
0 < H < 1

2

)
, then the main pattern of the changes shows that a

decrease is followed by an increase and vice-versa. Finally, if the Hurst exponent is as 1
2 < H < 1,
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then there is a persistent behavior in the changes and an increase or decrease will be maintained in a
sequence. In our case, the changes are anti-persistent and they are statistically embedded between
Kolmogorov process ξ(q) = q

3 [22] and the Brownian process ξ(q) = q
2 . Thus, there is a potential

stochastic model like the fractional Brownian model to predict the changes along the protein sequence.
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obtained with surrogated and shuffled data.

5.3. Entropy, Chaos, and Complexity

As previously mentioned, a sequence is defined as a set of alphabetic letters, which could be
converted to other symbols (numerical, binary, etc.). Nevertheless, the changes of symbols or numerical
values along the sequence are usually related to the real world of biochemical activities inside the whole
protein sequence. The question is “Do those changes present regular, irregular, chaotic and complex pattern
within a sequence?” Furthermore, nonlinear analysis is one approach to estimate the changes in features
along a sequence. In this study, we have used five algorithms to assess the degree of the randomness
or the disorder and complexity in protein sequences: (i) The Shannon entropy (ShEn); (ii) the sample
entropy (SampEn); (iii) the largest Lyapunov exponent (LLE); (iv) Kolmogorov complexity (KC); and (v)
the Kolmogorov complexity spectrum (KCS) algorithm. Table 2 presents the descriptive statistics of
the NDCS of D PRIFT index changes for 242 protein sequences. On average, there is a significant
amount of information in an entire probability distribution contained in a sequence. We observe that
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SampEn and LLE values are close to one. Moreover, the KC method underestimates the complexity in
comparison to the KCS method, which takes into account the amplitude of the changes. Following the
comparison with the surrogated and shuffled data generated from the original data, we found that the
NDCS of D PRIFT index changes for 242 protein sequences used in this study include stochastic and
moderate chaotic processes and show apparent embedding between the Kolmogorov (H = 1/3) and
Brownian (H = 1/2) monofractal processes.

Table 2. Descriptive statistics of entropy, chaos, and complexity of the NDCS of D PRIFT index changes
for 242 protein sequences.

D PRIFT
Index Entropy Chaos Complexity Fractal

Information Regularity

NDCS
Data

Shannon
Entropy

Sample
Entropy

Largest
Lyapunov
Exponent

Kolmogorov
Complexity

Kolmogorov
Complexity
Spectrum

Hurst
Exponent

Minimum
Original 3.671 1.251 0.930 0.247 1.008 0.347

Surrogate 3.514 1.051 0.730 0.152 1.046 0.332
Shuffled 3.498 0.600 0.332 0.095 1.046 0.273

Mean
Original 3.880 1.433 1.277 0.475 1.071 0.432

Surrogate 3.875 1.289 1.070 0.399 1.105 0.481
Shuffled 3.911 1.147 0.911 0.328 1.103 0.498

Median
Original 3.888 1.436 1.286 0.475 1.065 0.436

Surrogate 3.895 1.296 1.072 0.399 1.103 0.482
Shuffled 3.933 1.154 0.906 0.323 1.103 0.498

Maximum
Original 4.066 1.618 1.601 0.647 1.141 0.481

Surrogate 4.131 1.547 1.501 0.646 1.179 0.615
Shuffled 4.188 1.604 1.469 0.627 1.160 0.690

Standard
deviation

Original 0.084 0.063 0.117 0.084 0.031 0.027
Surrogate 0.117 0.094 0.143 0.081 0.023 0.033
Shuffled 0.130 0.188 0.220 0.109 0.022 0.058

1st quartile
Original 3.833 1.389 1.207 0.418 1.046 0.420

Surrogate 3.805 1.226 0.969 0.342 1.084 0.459
Shuffled 3.842 1.017 0.750 0.228 1.084 0.459

3rd
quartile

Original 3.940 1.470 1.351 0.533 1.103 0.450
Surrogate 3.963 1.355 1.160 0.456 1.122 0.503
Shuffled 4.005 1.297 1.045 0.399 1.122 0.538

5.4. Drift (DRF), Kolmogorov Complexity Spectrum (KCS), and Activity (ACT): Linear Correlation and
Superdiffusive Process between Sequences

The activity as defined in Section 2.2 (Thermostability) is also freely available for each protein
sequence. Figure 9a shows the cumulative sum of activity, entropy, chaos, complexity, fractal, and drift
parameters for 242 protein sequences. In order to track the biochemical activity changes through an
invariant sequence arrangement, we have sorted, in ascending order, each sequence with increasing
activity. Then, we have also sorted the remaining parameters in respect to the increasing activity and
applied the cumulative sum. For clarity, we have presented the 10th of the entropy, chaos, complexity,
fractal, and drift parameters, and the 1000th for activity. Most of the curves show a slightly linear shape,
which is the average mode through increasing sequence activity. Nevertheless, the dynamic of changes
through this increasing activity highlights that NDCS’s activity changes are well correlated with the
NDCS of Kolmogorov complexity spectrum and drift (Figure 9b). There are pronounced parabola with
an open upwards shape for activity (ACT) changes and a conversely open downwards shape for the
Kolmogorov complexity spectrum (KCS) and drift (DRF) changes. The correlation coefficient is very
high between ACT, KCS, and DRF as shown in Figure 9c.
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Figure 9. (a) Cumulative sum of activity, entropy, chaos, complexity, fractal, and drift parameters
for ascending sorted activity; (b) Normalized detrended cumulative sum of activity, entropy, chaos,
complexity, fractal, and drift parameters for ascending sorted activity; (c) NDCS of activity (ACT)
versus NDCS of drift (DRF) and Kolmogorov complexity spectrum (KCS). The square of the correlation
coefficient R2 for both curves is added on the figure. The first and last sequence positions of the 242
ordered sequences are also shown. The green circle and square symbol indicate the position of the
parents CYP102A1 (P1), CYP102A2 (P2), and CYP102A3 (P3) in this diagram.



Entropy 2019, 21, 852 17 of 20

We found a relationship between the inner-sequence changes drift, the complexity, and the activity
throughout crossed 242 rearranged increasing activity protein sequences. As shown in Figure 9c,
the trajectories of the bivariate parameter (drift, activity) or (complexity, activity) exhibits trajectories
with jump between sequences, which leads to the question: “Are these successive jumps related to variable
changes ruled by a power law?”. Then, we have analyzed these trajectories by calculating the mean
square displacement of changes 〈(∆dS)

2
〉 in the bivariate parameter (drift, activity) or (complexity,

activity) space where dS is the distance between two sequences. Moreover, we defined the mean

square displacement as 〈∆(dS)
2
〉 = 1

NdS

∑NdS
m=1

[(
X j
−Xk

)2
+

(
ACT j

−ACTk
)2

]
dS=|k− j|

where NdS is the

number of pairwise sequences separated by a distance dS and X is the drift (DRF) or Kolmogorov
complexity spectrum (KCS). Figure 10 shows 〈∆(dS)

2
〉 ∼ dS

α with α ∼ 1.7 for the drift and α ∼ 1.6
for the complexity. We found that there is a scaling law of the bivariate (DFT, ACT) or (KCS, ACT)
parameter that is similar to a super diffusive process with an exponent coefficient α > 1 [33]. Here,
we have plotted 〈∆(dS)

2
〉/〈∆(dSc)

2
〉 where dSc is the characteristic distance between two sequences

computed with the correlation function 〈δ(dS)〉 =
1

NdS

∑NdS
m=1

[
X jXk + ACT jACTk

]
dS=|k− j|

.
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6. Conclusions

In this work, we analyze the nonlinear behavior of the D-PRIFT index changes around the overall
linear trend scale of the protein sequence. To assess the nonlinear analysis, we have used protein
residue values that are freely available, namely the AA index database. The protein dataset used
contains 242 sequences and each sequence has 466 numerical values, one per amino acid residue.
A protein sequence corresponds to a combination of encoding symbols from a dictionary of 20 standard
amino acids symbols.

We have applied to each sequence a normalized detrended cumulative sum algorithm to extract
the fluctuations of the numerical signal in the protein sequence. We analyzed these fluctuations with
different tools, which are related to (i) entropy (information and regularity); (ii) chaos (largest Lyapunov
exponent); (iii) complexity (Kolmogorov complexity and Kolmogorov complexity spectrum); and (iv)
fractal (Hurst exponent). First, we showed that the change fluctuations of all the studied 242 protein
sequences in the dataset seem to be non-stationary and follow on average a −5/3 Kolmogorov
power-law. This result seems to be statistically significant in regard to a coefficient of variation less than
2% and a test done with randomly generated synthetically obtained data with surrogate and shuffle
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technique. To understand the nature of the inner changes within the protein sequence, we achieved
the analysis of the variance of the changes through the scope of the spatial correlation: Here, the index
position within the protein sequence. We found an invariance of pairwise scale index d, which is
ruled by a S2i(d) ∝ dα with α = 0.87, a coefficient close to one of the well-known stochastic Brownian
processes. The dispersion of the slope obtained for all 242 protein sequences is statistically coherent in
comparison with the results obtained with synthetic data. Following the local analysis of the changes
along the protein sequence, we have performed a systematic q-order moment of the fluctuations in
order to track if there is a self-similar repeating pattern in the inner sequence. We showed that change
fluctuations within the protein sequence have a monofractal behavior, which is an average among the
242 sequences embedded between the Kolmogorov and Brownian monofractal processes with a Hurst
exponent ranging between 1/3 and 1/2. To encompass the local analysis and to have an overview of the
nonlinearity analysis, we have computed statistical parameters related to entropy, chaos, complexity,
and fractality. We demonstrated that the NDCS of D PRIFT index changes for the 242 protein sequences
used in this study exhibit statistically moderate complexity, and low chaotic fluctuations.

Moreover, to integrate these results in the analysis of the protein activity changes for each sequence,
we have conducted a study of the relationship between the linear-trend (drift) computed with the
cumulative sum algorithm, the Kolmogorov complexity spectrum, which is indicative of computational
complexity, and the activity of each protein sequence. As this analysis focused on the dynamics of the
changes, we also applied the normalized detrended cumulative sum for these three parameters as done
for the inner-sequence analysis. The results show a strong linear relationship between the bivariate
(drift, activity) and (complexity, activity) parameters, which provides insight into the potential use
of drift and complexity as a predictor in a linear model. Moreover, the analysis of the trajectories in
the bivariate space highlights superdiffusive behavior of the change fluctuations with a power-law
around −1.6 of the mean square displacement for each chosen bivariate parameter. This study
demonstrates that the changes in the inner sequence and throughout the crossed inter-sequence are
nonstationary, stochastic, irregular, complex, weakly chaotic, and monofractal. To conclude, there is
some predictability of protein sequence changes, which can be modelled using a stochastic model.
Linear law and scale invariance features found in this study should be explored in future work to study
for classification, regression predictive model, and could be useful in the field of protein engineering.
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