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Abstract: In this paper, the security analysis of an image chaotic encryption algorithm based on
Latin cubes and bit cubes is given. The proposed algorithm adopts a first-scrambling-diffusion-
second-scrambling three-stage encryption scheme. First, a finite field is constructed using chaotic
sequences. Then, the Latin cubes are generated from finite field operation and used for image
chaotic encryption. In addition, according to the statistical characteristics of the diffusion image
in the diffusion stage, the algorithm also uses different Latin cube combinations to scramble the
diffusion image for the second time. However, the generation of Latin cubes in this algorithm is
independent of plain image, while, in the diffusion stage, when any one bit in the plain image changes,
the corresponding number of bits in the cipher image follows the change with obvious regularity.
Thus, the equivalent secret keys can be obtained by chosen plaintext attack. Theoretical analysis and
experimental results indicate that only a maximum of 2.5× 3

√
w× h + 6 plain images are needed to

crack the cipher image with w× h resolution. The size of equivalent keys deciphered by the method
proposed in this paper are much smaller than other general methods of cryptanalysis for similar
encryption schemes.

Keywords: image chaotic encryption; cryptography; Latin cube; bit cube; chosen plaintext attack

1. Introduction

Image chaotic encryption algorithms have attracted some special attention in the field of
information security [1–7]. In recent years, many image chaotic encryption schemes combined
chaos theories with other technologies, such as one-time keys [8], bit-level permutation [9],
DNA operations [10–13], parallel computing system [14], matrix semi-tensor product theory [15],
cellular automata [16,17], neural network [18,19], Latin square or Latin cube [20–22], and so on, have
been proposed. However, the security issues of image chaotic encryption algorithms have also attracted
much attention. As a basic requirement of security, the ciphertext image of the image chaotic encryption
algorithm must have good uniformity. In addition, the algorithm must have a large enough key space
to resist brute force attacks. For instance, in order to show the security of the image chaotic encryption
algorithm in the statistical sense, the key space analysis, statistical analysis, and differential analysis
of the chaos encryption algorithm proposed in [23] and its corresponding extended algorithm are
given in Sections 4 and 5 of [23], respectively. However, the high uniformity of ciphertext does not
mean that the encryption algorithm has high security performance. For example, in [24], the security
analysis of an image chaotic encryption algorithm proposed in [16] is given, and it is found that the
generation of key stream is related to the sum of pixel values of plain images. Under the premise of
satisfying the sum of pixel values of a plain image unchanged, only two pixel values of cipher image
are changed corresponding to the variation of two pixel values of a plain image, which is vulnerable
to differential attack. Therefore, the equivalent secret keys can be obtained by selecting 512 plain
images. In [25], the cryptanalysis of a DNA encoding-based image scrambling and diffusion encryption
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algorithm proposed in [10] is reported to find that the scrambling algorithm is also independent of plain
image, so that it can be deciphered by chosen plaintext attack. In addition, by choosing some specific
plain images, the original image chaotic encryption algorithm can be simplified into scrambling-only
encryption algorithm, which has been proven to be insecure [26,27]. In [28], the security analysis of
an image encryption algorithm based on a compound chaotic system proposed in [29] is given, and it
is pointed out that there are a large number of equivalent secret keys in the image chaotic encryption
algorithm. In [30], an 8D self-synchronous and feedback-based chaotic stream cipher using the lower
8 bits of one state variable for encryption is proposed. However, in [31], most of the secret keys are
successfully acquired by means of a divide and conquer attack, known plaintext attack, and a chosen
ciphertext attack, respectively. In [32], the security analysis of a Latin square based image chaotic
encryption algorithm proposed in [22] is given to find the security vulnerabilities both in the diffusion
stage and in the scrambling stage through chosen text attack. In [33], the chosen plaintext attack is
adopted for the safety performance assessment of a 1D combinatorial chaotic encryption algorithm
proposed in [34]. In addition, in [35], the chosen plaintext attack is also utilized for analyzing the
security of a bit cube-based image chaotic encryption algorithm proposed in [36]. In addition, some
chaotic cipher designers have also discovered the importance of cryptanalysis. For example, in Section
3 of [37], the resistance to the four classic attack methods is analyzed in detail. The analysis shows that
the proposed encryption algorithm has resistance to the chosen plaintext attack because it is sensitive to
the initial parameters.

In 2019, an image chaotic encryption algorithm based on orthogonal Latin cubes and bit cubes is
given in [20]. First, a chaotic sequence is generated by logistic mapping, and it is further arranged in
ascending order to obtain its corresponding chaotic index sequence. Next, a finite field is constructed by
the chaotic index sequence, and three orthogonal Latin cubes are also generated. Then, the generated
three orthogonal Latin cubes are used for the first-scrambling-diffusion- second-scrambling three-stage
encryption. Although the designer claims that the algorithm has passed various statistical tests,
the analysis results in this paper demonstrate that the algorithm has at least two security vulnerabilities
as follows:

(1) The generation of Latin cubes in this algorithm is independent of plain image.
(2) When any one bit in the plain image changes, the corresponding number of bits in the cipher

image follows the change with obvious regularity.

Based on the above-mentioned security vulnerabilities, this paper adopts both chosen plaintext attack
and differential attack for analyzing the safety performance for the image chaotic encryption algorithm
proposed in [20]. First, a full zero plain image and multiple non-full zero plain images are selected,
and the differential operation is performed between the cipher image corresponding to this full zero
plain image and the cipher image corresponding to those non-full zero plain images. On the premise that
the sum of bit 1 in each differential operation is even, the chaotic index sequence lx can be deciphered.
Next, based on the obtained lx, and on the condition that there exists an intersection in the solutions of
unary quadratic equation on finite field GF(q), the secret keys α, β, γ can be further deciphered.

The rest of the paper is organized as follows: Section 2 briefly introduces the image chaotic
encryption algorithm. Section 3 presents the security analysis. Section 4 gives the steps for deciphering
image chaotic encryption algorithm. Section 5 demonstrates the numerical simulation experiments.
Section 6 gives some improvement suggestions for the image chaotic encryption algorithm. Finally,
Section 7 concludes the paper.

2. Description of an Image Chaotic Encryption Algorithm

2.1. A Brief View of an Image Chaotic Encryption Algorithm

In [20], the image chaotic encryption algorithm consists of secret keys selection, Latin cube
generation, scrambling encryption, and diffusion encryption, as shown in Figure 1, where key0, µ0,
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α, β, γ are the secret keys, xn (n = 0, 1, 2, · · · ) is a chaotic sequence generated by Logistic mapping,
lx is a chaotic index sequence, L1, L2, L3 are three Latin cubes, P is a 2D plain gray image, M is a
bit cube representation of P, S1 is a first-scrambling image of M, D is a diffusion image of S1, S2

is a second-scrambling image of D, E is a 2D cipher gray image of S2, and B is generated by L1.
When the size of the image is w× h, the length of xn and lx is q = 3

√
8× w× h, the side length of Latin

cubes and bit cubes is q = 3
√

8× w× h, and the secret keys α, β, γ ∈ {0, 1, 2, · · · , q− 1}. Note that an
appropriate image size w× h should be selected to ensure that q = 3

√
8× w× h = 2× 3

√
w× h is an

even number. In Figure 1, L1, L2, L3 ∈ {0, 1, 2, · · · , q− 1} are Latin cubes, M, S1, D, S2, B ∈ {0, 1} are
bit cubes, P is a 2D plain gray image, E is a 2D cipher gray image, pk, pt, s1, b, d, ek ∈ {0, 1} are 1D bit
sequences corresponding to P, S1, B, D, E, and t = T(k) is a position scrambling rule corresponding to
the first-scrambling stage.
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Figure 1. Block diagram of an image chaotic encryption algorithm.

2.2. Logistic Map

According to Figure 1, the chaotic sequence is generated through logistic mapping, given by

xn+1 = µxn(1− xn), (1)

where n = 0, 1, 2, · · · , xn ∈ (0, 1), 0 ≤ µ ≤ 4. When µ > 3.573815, Equation (1) is chaotic.

2.3. Generation of Latin Cubes

Let the side length of L1, L2, L3 be q = 3
√

8× w× h, where q is an even number. For a given
(l1, l2, l3), one gets L1(l1, l2, l3) = ψ1, L2(l1, l2, l3) = ψ2, L3(l1, l2, l3) = ψ3, 0 ≤ ψ1, ψ2, ψ3 ≤ q − 1.
If (l1, l2, l3) 6= (l′1, l′2, l′3), (ψ1, ψ2, ψ3) 6= (ψ′1, ψ′2, ψ′3), then L1, L2, L3 are orthogonal to each other [38].
When q = 3, one gets three orthogonal Latin cubes, as shown in Figure 2a, and the corresponding
triple tuple is shown in Figure 2b, respectively.
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Figure 2. Three orthogonal Latin cubes and the corresponding triple tuple when q = 3. (a) three
orthogonal Latin cubes; (b) the corresponding triple tuple.

The algorithm for generating Latin cubes proposed in [20] is implemented by replacing the
ordered set {0, 1, 2, ..., q} in the generation method proposed in [38] with the chaotic index sequence
lx. The detailed steps for generating three orthogonal Latin cubes by means of a finite field are in
Algorithm 1.

Algorithm 1 Steps for Generation of Latin Cubes.

Input: Secret keys key0, µ0, α, β, γ; Side length q = 3
√

8× w× h;
Output: Three orthogonal Latin cubes L1, L2 and L3;

1: Generate the chaotic sequence x = {x0, x1, . . . , xq−1} by using Logistic mapping.
2: Obtain the corresponding chaotic index sequence lx = {c0, c1, · · · , ci, · · · , cq−1} by arranging x =

{x0, x1, . . . , xq−1} in ascending order, where 0 ≤ ci, i ≤ q− 1, satisfying lx[i] = ci. Note that the chaotic index

sequence lx can only be determined after the sequence value ci and the sequence number i are simultaneously

obtained. When the sequence value ci is obtained, but the sequence number i is uncertain, the general form of

the chaotic index sequence lx is in the form of

lx = {ci0 , ci1 , · · · , cik
, · · · , ciq−1}, (2)

where 0 ≤ cik
ik ≤ q− 1, i0 6= i1 6= · · · 6= ik 6= · · · 6= iq−1, lx[ik] = cik

. In the following, ξ or ξ ′ denotes the

sequence value and iξ or i′ξ ′ denotes the sequence number in Equation (2), respectively.
3: Construct a finite field by using chaotic index sequence lx, and then one gets the orthogonal Latin cubes on

the finite field, given by 
L1 (l1, l2, l3) = α2 × cl1 + α× cl2 + cl3 ,

L2 (l1, l2, l3) = β2 × cl1 + β× cl2 + cl3 ,

L3 (l1, l2, l3) = γ2 × cl1 + γ× cl2 + cl3 ,

(3)

where “+” denotes addition operation on the finite field, “×” denotes multiplication operation on the finite

field, α, β, γ ∈ lx, cl1 , cl2 , cl3 are sequence values of lx.
4: return L1, L2, L3.
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2.4. Steps for Image Chaotic Encryption

According to Figure 1, and taking a plain gray image with 512× 512 resolution as an example,
one has q = 3

√
512× 512× 8 = 128. The steps for image chaotic encryption are in Algorithm 2.

Algorithm 2 Steps for Image Chaotic Encryption.

Input: Secret keys key0, µ0, α, β, γ; Plaintext image P;
Output: Ciphertxet image E;

1: Convert the 2D plain gray image P into the bit cube M;
2: Obtain three orthogonal Latin cubes L1, L2, L3 by Algorithm 1;
3: Scramble bit cube M by using three orthogonal Latin cubes L1, L2, L3, and get the corresponding

first-scrambling image S1 in the form of bit cube, such that

S1 (l1, l2, l3) = M (L1 (l1, l2, l3) , L2 (l1, l2, l3) , L3 (l1, l2, l3)) . (4)

4: Obtain the diffusion bit cube B (l1, l2, l3) by using Latin cube L1, given by

B (l1, l2, l3) =

{
0, if L1 (l1, l2, l3) ≥ 64,

1, if L1 (l1, l2, l3) < 64.
(5)

Then, get the diffusion 1D bit sequence b[t] corresponding to diffusion bit cube B(l1, l2, l3) as

b[t] = B
(⌊

t/1282
⌋

, bt/128c%128, t%128
)

, (6)

where t ∈ {0, 1, 2, · · · , q3 − 1}, b·c is a round down operation, and “%” is a modulo operation.
5: Convert S1(l1, l2, l3) into the 1D bit sequence s1[t] as

s1[t] = S1

(⌊
t/1282

⌋
, bt/128c%128, t%128

)
. (7)

Then, get the 1D bit sequence d[t] by using s1[t] and b[t] as

d[t] = s1[t]⊕ d[t− 1]⊕ b[t], (8)

where 0 ≤ t ≤ 1283 − 1, d[−1] = 0, “⊕” denotes bitwise exclusive or operation.
6: Calculate G(d) =

(
∑

q3−1
i=0 d[i]

)
, and convert the 1D bit sequence d[t] into the bit cube D(l1, l2, l3).

Then, get the bit cube S2 (l1, l2, l3) by utilizing D(l1, l2, l3), such that

S2 (l1, l2, l3) =

D (L2 (l1, l2, l3) , L3 (l1, l2, l3) , L1 (l1, l2, l3)) , (G(d)%2 = 0),

D (L3 (l1, l2, l3) , L1 (l1, l2, l3) , L2 (l1, l2, l3)) , (G(d)%2 = 1),
(9)

where G(d)%2 ∈ {0, 1} denotes the modular 2 operation on G(d).
7: Convert the bit cube S2(l1, l2, l3) into the 2D cipher gray image E with 512× 512 resolution.
8: return E.

An example of encrypting a gray image with 2 × 4 resolution using the original encryption
algorithm is shown in Figure 3. Figure 3a shows the three Latin cubes and the corresponding bit
cubes L used for encryption. Figure 3b shows the encryption process. The numbers in the cells of P
and E represent pixel values, and the bit values are represented in the cells of S1, B, and S2. The red
cells in M indicate that they are bit representations of the red cell corresponding to P, i.e., the binary
representation of 166 is (10100110)2.
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Figure 3. An example of encrypting a gray image with 2× 4 resolution. (a) three orthogonal Latin
cubes and the corresponding bit cubes L used for encryption; (b) the encryption process.
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3. Security Analysis

According to Figure 1, it is found that the generation of three orthogonal Latin cubes L1, L2, L3

is not related to the plain image. When the secret keys are given, the three orthogonal Latin cubes
L1, L2, L3 remain unchanged for different input plain images, which are provided a prerequisite for
chosen plaintext attack. Therefore, one can decipher the equivalent secret keys lx, α, β, γ corresponding
to the original secret keys key0, µ0, α, β, γ.

3.1. Analysis of Chaotic Index Sequence lx

3.1.1. Relation between the First-Scrambling Image S1 and the Plain Image M

Proposition 1. Suppose that M is the bit cube representation of P; S1 is the first-scrambling image of M.
The relationship between M and S1 satisfies S1(i0, i0, iξ) = M(ξ, ξ, ξ), where lx[i0] = 0, lx[iξ ] = ξ, i0, ξ ∈
{0, 1, 2, · · · , q− 1}, i0 denotes the sequence number corresponding to the sequence value 0, and iξ denotes the
sequence number corresponding to the sequence value ξ.

Proof. Let l1 = l2 = i0, l3 = iξ , and substitute them into Equation (4), then, one gets

S1(i0, i0, iξ) = M(L1(i0, i0, iξ), L2(i0, i0, iξ), L3(i0, i0, iξ)). (10)

In addition, let l1 = l2 = i0, l3 = iξ , and substitute them into Equation (3), then, one gets
L1(i0, i0, iξ) = α2 × ci0 + α× ci0 + ciξ ,

L2(i0, i0, iξ) = β2 × ci0 + β× ci0 + ciξ ,

L3(i0, i0, iξ) = γ2 × ci0 + γ× ci0 + ciξ .

(11)

Since lx[i0] = 0, lx[iξ ] = ξ, one has lx[i0] = ci0 = 0, lx[iξ ] = ciξ = ξ. In addition, substituting
ci0 = 0 and ciξ = ξ into Equation (11), one gets

L1(i0, i0, iξ) = L2(i0, i0, iξ) = L3(i0, i0, iξ) = ξ. (12)

In addition, substituting Equation (12) into Equation (10), it follows that S1(i0, i0, iξ) = M(ξ, ξ, ξ)

holds. The proof is finished.

3.1.2. The First Case for Analysis of Chaotic Index Sequence lx

Suppose that the 1D bit sequence corresponding to plain image P0 is {p0[i]}
q3−1
i=0 = {0}q3−1

i=0 ,
the cipher image corresponding to plain image P0 is E0, the 1D bit sequence corresponding to cipher

image E0 is {e0[i]}
q3−1
i=0 , and the 1D bit sequence corresponding to plain image Pk is {pk[i]}

q3−1
i=0 , where

pk[i] is given by

pk[i] =

{
1, if i = k,

0, if i 6= k.
(13)

In addition, suppose that the cipher image corresponding to plain image Pk is Ek, the 1D bit

sequence corresponding to cipher image Ek is {ek[i]}
q3−1
i=0 , the 1D bit sequence corresponding to plain

image Pk1k2 = Pk1 ⊕ Pk2 is
{

pk1k2 [i]
}q3−1

i=0 =
{

pk1 [i]⊕ pk2 [i]
}q3−1

i=0 , the cipher image corresponding to

plain image Pk1k2 is Ek1k2 , the 1D bit sequence corresponding to cipher image Ek1k2 is {ek1k2 [i]}
q3−1
i=0 ,

the 1D bit sequence corresponding to plain image Pk1k2k3 = Pk1 ⊕ Pk2 ⊕ Pk3 is
{

pk1k2k3 [i]
}q3−1

i=0 ={
pk1 [i]⊕ pk2 [i]⊕ pk3 [i]

}q3−1
i=0 , the cipher image corresponding to Pk1k2k3 is Ek1k2k3 , and the 1D bit

sequence corresponding to Ek1k2k3 is {ek1k2k3 [i]}
q3−1
i=0 .
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Proposition 2. Suppose that the cipher image corresponding to plain image Pk is Ek, the 1D bit sequence

corresponding to cipher image Ek is {ek[i]}
q3−1
i=0 , the cipher image corresponding to plain image P0 is E0, and the

1D bit sequence corresponding to cipher image E0 is {e0[i]}
q3−1
i=0 . A differential operation is performed in the form

of ∑
q3−1
i=0 (e0[i]⊕ ek[i]) = q3 −mk,0, in which ek[il ] = e0[il ] (l = 1, 2, · · · , mk,0; il ∈ {0, 1, 2, · · · , q3 − 1}),

q3is an even number. If (q3 −mk,0)%2 = q3%2−mk,0%2 = mk,0%2 = 0, then T(k) = mk,0 holds, where
T(k) denotes the position scrambling rule in the first-scrambling stage, k denotes the position of the k-th bit
before the first-scrambling of plain image, and T(k) denotes the position of k-th bit after the first-scrambling of
plain image.

Proof. According to Equation (6), the relationship between the coordinates (l1, l2, l3) of bit cube
B(l1, l2, l3) and the position t of 1D bit sequence b[t] corresponding to B(l1, l2, l3) is given by

l1 =
⌊
t/q2⌋ = ⌊t/1282

⌋
,

l2 = bt/qc%q= bt/128c%128,

l3 = t%q = t%128.

(14)

On the other hand, the relationship between the coordinates (ξ, ξ, ξ) of bit cube M(ξ, ξ, ξ) and the
position k of 1D bit sequence pk[i] in Equation (13) is given by

k = ξ(q2 + q + 1). (15)

Thus, the relationship between the position of t-th bit after the first-scrambling of plain image
and the position of k-th bit before the first-scrambling of plain image is given by

t = T(k) = T(ξ(q2 + q + 1)). (16)

(1) Consider the first-scrambling stage. In the first-scrambling stage, only change the bit position,
but the bit value should remain unchanged. Suppose that the input 1D bit sequence corresponding
to plain image Pk is pk, after the first-scrambling of plain image, the corresponding output 1D bit
sequence is pt. According to Equation (16), the relationship between position t and k satisfies t = T(k).

In particular, if the input 1D bit sequence corresponding to plain image P0 is p0 = {p0[i]}
q3−1
i=0 =

{0}q3−1
i=0 , after the first-scrambling of plain image, the corresponding output 1D bit sequence is pt =

{pt[i]}q3−1
i=0 , then one has pt = p0 = {0}q3−1

i=0 . (2) Consider the diffusion stage. Take the output 1D

bit encryption sequence {po[i]}q3−1
i=0 in the first-scrambling stage as the input 1D bit sequence in the

diffusion stage. According to Equation (8), diffuse {po[i]}q3−1
i=0 by using the diffusion 1D bit sequence

{b[i]}q3−1
i=0 , obtain the corresponding output {do[i]}1283−1

i=0 in the diffusion stage. By substituting s1[i] =
po[i] = 0 into Equation (8), one has

do[0] = po[0]⊕ do[−1]⊕ b[0] = 0⊕ 0⊕ b[0] = b[0],

do[1] = po[1]⊕ do[0]⊕ b[1] = 0⊕ do[0]⊕ b[1] = b[0]⊕ b[1],

do[2] = po[2]⊕ do[1]⊕ b[2] = 0⊕ do[1]⊕ b[2] = b[0]⊕ b[1]⊕ b[2],

· · ·
do[i] = b[0]⊕ b[1]⊕ b[2] · · · ⊕ b [i] ,

(17)

where i = 0, 1, 2, · · · , q3 − 1, d0[−1] = 0. Similarly, take the output 1D bit encryption sequence

{pt[i]}q3−1
i=0 in the first-scrambling stage as the input 1D bit sequence in the diffusion stage. According

to Equation (8), diffuse {pt[i]}q3−1
i=0 by using the diffusion 1D bit sequence {b[i]}q3−1

i=0 and obtain the



Entropy 2019, 21, 888 9 of 18

corresponding output {dt[i]}1283−1
i=0 in the diffusion stage. By substituting s1[i] = pt[i] into Equation (8),

and also by utilizing Equation (17), one has



dt[0] = pt[0]⊕ dt[−1]⊕ b[0] = 0⊕ 0⊕ b[0] = do[0],

dt[1] = pt[1]⊕ dt[0]⊕ b[1] = 0⊕ do[0]⊕ b[1] = 0⊕ b[0]⊕ b[1] = do[1],

· · ·

dt[t] = pt[t]⊕ dt[t− 1]⊕ b[t] = 1⊕ do[t− 1]⊕ b[t] = 1⊕ do[t] = do[t],

dt[t + 1] = pt[t + 1]⊕ dt[t]⊕ b[t + 1] = 0⊕ dt[t]⊕ b[t + 1] = do[t]⊕ b[t + 1] = do[t + 1],

· · ·

dt[i] = pt[i]⊕ dt[i− 1]⊕ b[i] = 1⊕ do[i− 1]⊕ b[i] = do[i],

(18)

where dt[−1] = 0. According to Equation (18), one has{
dt[i] = do[i] (0 ≤ i < t),

dt[i] = do[i] (t ≤ i ≤ (q3 − 1)),
(19)

where do[i] denotes the bitwise NOT of do[i]. (3) Consider the second-scrambling stage. Take the

output 1D bit encryption sequences {do[i]}q3−1
i=0 and {dt[i]}q3−1

i=0 in the diffusion stage as the input 1D

bit sequences in the second-scrambling stage, calculate G(d0) =
(

∑
q3−1
i=0 d0[i]

)
, G(dt) =

(
∑

q3−1
i=0 dt[i]

)
,

respectively. If t%2 = 0 in Equation (19) holds, then it follows that

G(dt)%2 = G(d0)%2. (20)

According to Equation (9) with Equation (20), it is noted that the same scrambling rule for

{do[i]}q3−1
i=0 and {dt[i]}q3−1

i=0 is used in the second-scrambling stage. By comparing the first equation
dt[i] = do[i] (0 ≤ i < t) of Equation (19) with ek[il ] = e0[il ] (l = 1, 2, · · · , mk,0; il ∈ {0, 1, 2, · · · , q3− 1}),
it follows that t = mk,0. Then, according to Equation (16), T(k) = mk,0 holds. The proof is finished.

Based on Proposition 1, one has S1(i0, i0, iξ) = M(ξ, ξ, ξ), where ξ ∈ {0, 1, 2, · · · , q− 1} is the
sequence value of chaotic index sequence lx, iξ is the sequence number of lx. However, even though ξ

is given, since S1(i0, i0, iξ) is the first-scrambling result of bit cube M(ξ, ξ, ξ), but the scrambling
rule T(·) is unknown beforehand, the sequence numbers i0 and iξ cannot be directly available.
Thus, Proposition 2 is needed to obtain the specific numbers i0 and iξ .

Based on Proposition 2, suppose that the input plain image M(l1, l2, l3) is given by

M(l1, l2, l3) =

{
1, if l1 = l2 = l3 = ξ,

0, otherwise,
(21)

where ξ ∈ {0, 1, · · · , q− 1}. Based on Equation (15) with Equation (21), one has k = ξ · (q2 + q + 1).
Next, one obtains mk,0 by a chosen plaintext attack. If mk,0%2 = 0 holds, then the same scrambling rule
is used for d0 and dt in the second-scrambling stage, such that T(k) = mk,0 = t. Finally, according to
Equation (14), it follows that{

i0 =
⌊
t/q2⌋ = ⌊T(ξ · (q2 + q + 1))/q2⌋ = ⌊T(k)/q2⌋ = ⌊mk,0/q2⌋ ,

iξ = t%q = T(ξ · (q2 + q + 1))%q = T(k)%q = mk,0%q.
(22)

An example of Proposition 2 is as in Figure 4. Figure 4a shows the ciphertext corresponding to
the grayscale image lena. Figure 4b shows the corresponding ciphertext image after changing the bit at
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the bit-cube coordinates (6, 6, 6) of lena. Figure 4c is a bitwise exclusive or result between Figure 4a,b.
Figure 4d is a bit statistical histogram of Figure 4c.

(a)

(c)

(b)

(d)

Figure 4. An example of Proposition 2. (a) the ciphertext corresponding to the grayscale image lena;
(b) the corresponding ciphertext image after changing the bit at the bit-cube coordinates (6, 6, 6) of lena;
(c) the bitwise exclusive or result between Figure 4a,b; (d) the bit statistical histogram of Figure 4c.

The difference between the two plaintexts is only 1 bit. It can be found from Figure 4d that the
number of identical bits between their corresponding ciphertexts is 1,733,762, which is an even number.
Substituting mk,0 = 1, 733, 762, ξ = 6, and q = 128 into Equation (22) yields i0 = 105 and i6 = 2.

3.1.3. The Second Case for Analysis of Chaotic Index Sequence lx

If mk,0%2 6= 0, the above-mentioned method is no longer available, which needs to be
further consideration.

Corollary 1. Supposing that the cipher image corresponding to plain image Pk1k2 = Pk1 ⊕ Pk2 (k1 6= k2) is

Ek1k2 , the 1D bit sequence corresponding to Ek1k2 is {ek1k2 [i]}
q3−1
i=0 , the cipher image corresponding to plain image

P0 is E0, the 1D bit sequence corresponding to E0 is{e0[i]}
q3−1
i=0 . A differential operation is performed in the form
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of ∑
q3−1
i=0

(
e0[i]⊕ ek1k2 [i]

)
= mk1k2,0, in which ek[il ] 6= e0[il ] (l = 1, 2, · · · , mk1k2,0; il ∈ {0, 1, 2, · · · , q3 −

1}). If mk1k2,0%2 = 0, then |T(k1)− T(k2)| = mk1k2,0 holds. In addition, if |T(k1)− T(k2)|%2 = 0,
then mk1k2,0 = |T(k1)− T(k2)| also holds.

Corollary 2. Suppose that the cipher image corresponding to plain image Pk1k2k3 = Pk1 ⊕ Pk2 ⊕ Pk3 (k1 6=
k2 6= k3) is Ek1k2k3 , the 1D bit sequence corresponding to Ek1k2k3 is {ek1k2k3 [i]}

q3−1
i=0 , the cipher image

corresponding to plain image P0 is E0, the 1D bit sequence corresponding to E0 is {e0[i]}
q3−1
i=0 . A differential

operation is performed in the form of ∑
q3−1
i=0

(
e0[i]⊕ ek1k2k3 [i]

)
= q3 − mk1k2k3,0, in which ek1k2k3 [il ] =

e0[il ] (l = 1, 2, · · · , mk1k2k3,0; il ∈ {0, 1, 2, · · · , q3 − 1}), q3 is an even number. If (q3 − mk1k2k3,0)%2 =

q3%2 − mk1k2k3,0%2 = mk1k2k3,0%2 = 0, then T(k1) + T(k2) − T(k3) = mk1k2k3,0 holds, where
T(k1) < T(k3) < T(k2) or T(k1) > T(k3) > T(k2). In addition, if [T(k1) + T(k2)− T(k3)]%2 = 0,
then mk1k2k3,0 = T(k1) + T(k2)− T(k3) also holds.

Suppose that the set of all sequence values corresponding to the chaotic index sequence lx is
Ω = {ξi1 , ξi2 , · · · , ξiq/2

, ξ ′i′1
, ξ ′i′2

, · · · , ξ ′i′q/2
}. Let Ψ = {ξi1 , ξi2 , · · · , ξiq/2

} be the set of sequence value ξ

corresponding to sequence number iξ , where iξ is obtained by using Equation (22). The relationship
among ξ, k, t is k = ξ(q2 + q + 1) and t = T(k) = T(ξ · (q2 + q + 1)). For ∀ξ ∈ Ψ, mk,0%2 = 0 and
t = mk,0 hold. Similarly, let Ψ′ = {ξ ′i′1 , ξ ′i′2

, · · · , ξ ′i′q/2
} be the set of sequence value ξ ′ corresponding

to sequence number i′ξ . The relationship among ξ ′, k′, t′ is k′ = ξ ′ · (q2 + q + 1) and t′ = T(k′) =

T(ξ ′ · (q2 + q + 1)). For ∀ξ ′ ∈ Ψ′, mk′ ,0%2 = 0 and t′ = mk′ ,0 do not hold.
When ξ ∈ Ψ, one has k = ξ(q2 + q + 1) and mk,0%2 = 0, based on the Proposition 2, t = mk,0

holds. According to Equation (22), the sequence number iξ corresponding to sequence value ξ is given
by iξ = t%q. However, when ξ ′ ∈ Ψ′, one has k′ = ξ ′(q2 + q + 1) and mk′ ,0%2 6= 0, the Proposition 2 is
not available, t′ = mk′ ,0 does not hold. Therefore, the sequence number i′ξ ′ corresponding to sequence
value ξ ′ ∈ Ψ′ cannot be determined by using Equation (22).

To further solve the above-mentioned problem, by selecting k′1, k′2 (k′1 6= k′2), one can obtain mk′1,0
corresponding to k′1, and mk′2,0 corresponding to k′2 by using chosen plaintext attack, which satisfies
mk′1,0%2 = 1 and mk′2,0%2 = 1. Under this circumstance, although T(k′1) and T(k′2) are unknown, but
according to the Proposition 2, ∀k corresponding to T(k)%2 = 0 can be found, so that the remained
∀k′ satisfies T(k′1)%2 = 1 and T(k′2)%2 = 1, |T(k′1)− T(k′2)|%2 = 0. According to the Corollary 1,
it follows that

mk′1k′2,0 = |T(k′1)− T(k′2)| = |t′1 − t′2|. (23)

According to the chosen plaintext attack, mk′1k′2,0 in Equation (23) can be obtained from the given
ξ ′1, ξ ′2 ∈ Ψ′, where ξ ′1 corresponding to t′1 satisfies t′1 = T(ξ ′1(q

2 + q + 1)), and ξ ′2 corresponding to t′2
satisfies t′2 = T(ξ ′2(q

2 + q + 1)), respectively.
For the same k′1, k′2, by selecting a suitable k such that k = ξ(q2 + q + 1), mk,0%2 = 0, one gets[

T(k′1) + T(k′2)− T(k)
]

%2 = 0. Then, according to the Corollary 2, it follows that

mk′1k′2k,0 = T(k′1) + T(k′2)− T(k) = t′1 + t′2 − t, (24)

where T(k′1) < T(k) < T(k′2) or T(k′1) > T(k) > T(k′2), t′1 < t < t′2 or t′1 > t > t′2.
According to the chosen plaintext attack, mk′1k′2k,0 in Equation (24) can be obtained from the given

ξ ′1, ξ ′2 ∈ Ψ′ and ξ ∈ Ψ, where ξ ′1 corresponding to t′1 satisfies t′1 = T(ξ ′1(q
2 + q + 1)), ξ ′2 corresponding

to t′2 satisfies t′2 = T(ξ ′2(q
2 + q + 1)), ξ corresponding to t satisfies t = T(ξ(q2 + q + 1)) = mk,0,

in which mk,0 is known by a chosen plaintext attack as well.
Note that one can also select t′i, t′i+1, t (i = 2, 3, · · · , (q/2− 1)) in the same way, which is omitted

here due to the limited length of the article.
According to Equations (23) and (24), four cases are given as follows:
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(1) If t′1 < t < t′2, then one has t′2 = (mk′1k′2,0 + mk′1k′2k,0 + t)/2 = A1,

t′1 = (−mk′1k′2,0 + mk′1k′2k,0 + t)/2 = B1.
(25)

(2) If t′1 > t > t′2, then one has t′1 = (mk′1k′2,0 + mk′1k′2k,0 + t)/2 = A1,

t′2 = (−mk′1k′2,0 + mk′1k′2k,0 + t)/2 = B1.
(26)

(3) If t′2 < t < t′3, then one has t′3 = (mk′2k′3,0 + mk′2k′3k,0 + t)/2 = A2,

t′2 = (−mk′2k′3,0 + mk′2k′3k,0 + t)/2 = B2.
(27)

(4) If t′2 > t > t′3, then one has t′2 = (mk′2k′3,0 + mk′2k′3k,0 + t)/2 = A2,

t′3 = (−mk′2k′3,0 + mk′2k′3k,0 + t)/2 = B2.
(28)

Based on Equations (25)–(28), it follows that{
{t′1, t′2} = {A1, B1},
{t′2, t′3} = {A2, B2}.

(29)

Then, according to Equation (29), it follows that
t′2 = {A1, B1}

⋂
{A2, B2},

t′1 = {A1, B1} − {t′2},
t′3 = {A2, B2} − {t′2}.

(30)

Similarly, for t′i−1, t′i, t and t′i, t′i+1, t, one has
t′i = {Ai−1, Bi−1}

⋂
{Ai, Bi},

t′i−1 = {Ai−1, Bi−1} − {t′i},
t′i+1 = {Ai, Bi} − {t′i},

(31)

where i = 2, 3, · · · , (q/2− 1).
For any given ξ ′l ∈ Ψ′ and ξ ∈ Ψ, according to Equation (31), first, one can get the corresponding

t′l . Then, the sequence number i′
ξ ′l

corresponding to the sequence value ξ ′l can be further obtained by

using t′l , such that i′ξ ′l
= t′l%q,

lx[i′ξ ′l
] = ξ ′l ,

(32)

where l ∈ {1, 2, · · · , q/2}.
Finally, according to the Equations (22) and (32), one can determine all the sequence values ξ ∈ Ψ,

ξ ′l ∈ Ψ′ and all the corresponding sequence numbers iξ , i′ξ ′ in Equation (2), so that the chaotic index
sequence lx can be completely deciphered.
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3.2. Analysis of Secret Keys α, β, γ

Proposition 3. Under the condition that the chaotic index sequence lx is obtained, for any (l1, l2, l3) 6=
(l′1, l′2, l′3), where li, l′i ∈ {0, 1, 2, · · · , q − 1} (i = 1, 2, 3), if L1(l1, l2, l3) = L2(l1, l2, l3) 6= 0 and
L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) 6= 0, then the secret keys α, β, γ can be uniquely determined.

Proof. According to Equation (3), if L1(l1, l2, l3) = L2(l1, l2, l3) 6= 0 and L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) 6= 0
for any (l1, l2, l3) 6= (l′1, l′2, l′3), then it follows that{

L1(l1, l2, l3) = L2(l1, l2, l3) = cl1 × χ1
2 + cl2 × χ1 + cl3 6= 0,

L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) = cl′1
× χ2

2 + cl′2
× χ2 + cl′3

6= 0,
(33)

where cl1 , cl2 , cl3 are sequence values of chaotic index sequence lx, χ1 ∈ {α, β}, χ2 ∈ {β, γ}.
According to the first equation of Equation (33), one gets two solutions χ

(1)
1 , χ

(2)
1 for χ1.

Similarly, according to the second equation of Equation (33), one gets two solutions χ
(1)
2 , χ

(2)
2 for

χ2. Thus, there exists an intersection for the first equation and the second equation of Equation (33),
given by β = {χ(1)

1 , χ
(2)
1 }

⋂{χ(1)
2 , χ

(2)
2 }. Based on the deciphered secret key β, the remaining two secret

keys α = {χ(1)
1 , χ

(2)
1 } − {β} and γ = {χ(1)

2 , χ
(2)
2 } − {β} can further be deciphered as well.

If L1(l1, l2, l3) = L2(l1, l2, l3) = 0 and L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) = 0, then, an intersection for the
first equation and the second equation of Equation (33) does not exist, so the secret keys α, β, γ cannot
be obtained [39]. The proof is finished.

3.3. Flowchart of Security Analysis

The flowchart of security analysis is shown in Figure 5.

0 0choose  and  based on chosen-plaintext attackP E

0 ,0use  &  to get  based on differential analysisk kE E m

,0 %2 0?km  Yes

No

start

21 2 1
choose k kk kP P P  

1 2 1 2 ,0 and theg n obtai n et k k kkE m  

1 2 1 2
choose k k kk k kP PP P   

1 2 1 2 ,0 and theg n obtai  et nk kk k k kE m  

 according to 31 , give i  

get  corresponding to i it   

1 21 2give ,  and then get ,k kP P     

give  and then get kP 

give sequence value  and get corresponding kP 

decipher , ,  according to  and proposition 3lx  

 according to 32 , get %
i ii t q  

corresponding to i 

decipher chaotic index sequence lx

end

corresponding to 0

2 2
0 ,0g /et / kq m qi t       

,0satisfy kt m

calculate sequence values and

corresponding to  
,0get % %km qi t q 

choose  and  based on chosen-plaintext attackk kP E

serial numbers according to (22)

Figure 5. Flowchart of security analysis.
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4. Steps for Deciphering the Image Chaotic Encryption Algorithm

The steps for deciphering image chaotic encryption algorithm are as Algorithm 3.

Algorithm 3 Steps for Deciphering Image Chaotic Encryption Algorithm.

Output: The equivalent secret keys lx, α, β, γ;
1: According to the chosen plaintext attack, choose the plain image as P0, the corresponding cipher

image is E0, the 1D bit sequence corresponding to E0 is {e0[i]}
q3−1
i=0 .

2: According to the chosen plaintext attack, choose the plain image as Pk, the corresponding cipher

image is Ek, the 1D bit sequence corresponding to Ek is {ek[i]}
q3−1
i=0 . where k = ξ · (q2 + q + 1),

ξ ∈ Ψ.
3: According to the differential attack, calculate mk,0 by using {e0[i]}

q3−1
i=0 and {ek[i]}

q3−1
i=0 obtained in

step 1 and step 2.
4: If mk,0%2 = 0, then t = mk,0 holds. According to Equation (22), the sequence number corresponding

to sequence value 0 is i0 =
⌊
t/q2⌋ = ⌊mk,0/q2⌋, the sequence number corresponding to sequence

value ξ ∈ Ψ is iξ = t%q = mk,0%q.
5: If mk%2 = 1, then t 6= mk,0 holds, Equation (22) is not available. According to the chosen

plaintext attack, choose the plain image as Pk′1k′2
= Pk′1

⊕ Pk′2
, the corresponding cipher image is

Ek′1k′2
, the 1D bit sequence corresponding to Ek′1k′2

is {ek′1k′2
[i]}q3−1

i=0 . In addition, choose the plain

image asPk′1k′2k = Pk′1
⊕ Pk′2

⊕ Pk, the corresponding cipher image is Ek′1k′2k, the 1D bit sequence

corresponding to Ek′1k′2k is {ek′1k′2k[i]}
q3−1
i=0 .

6: According to the differential attack, first calculate mk′1k′2,0 by using {e0[i]}
q3−1
i=0 and {ek′1k′2

[i]}q3−1
i=0

obtained in step 1 and step 5. Then, calculate mk′1k′2k,0 by using {e0[i]}
q3−1
i=0 and {ek′1k′2k[i]}

q3−1
i=0

obtained in step 1 and step 5.
7: According to Equation (32), calculate the sequence number i′

ξ ′i
= t′i%q corresponding to sequence

value ξ ′i ∈ Ψ′.
8: Decipher the chaotic index sequence lx by using Equation (22) and Equation (32). Then, decipher

the secret keys α, β, γ according to the Proposition 3.
9: return lx, α, β, γ;

Theoretical analysis and experimental results indicate that only a maximum of 2.5× 3
√

w× h plain
images are needed to decipher the chaotic index sequence lx, and only a maximum of six plain images
are needed to decipher secret keys α, β, γ. Therefore, only a maximum of 2.5× 3

√
w× h + 6 is needed

to crack the cipher image with w× h resolution.

5. Numerical Simulation Experiments

In the numerical simulation experiments, the secret keys are set as key0 = 0.34, µ0 = 3.9, α = 20,
β = 37, γ = 46, the image is with 512× 512 resolution. According to the steps for deciphering the
image chaotic encryption algorithm given in Section 4, the deciphering algorithm of the origin cipher
is implemented by the C program language. Simulations are operated under a laptop computer
with Intel Core i7-8550U CPU (Santa Clara, CA, USA) 1.80 GHz, 8 GB RAM, the operating system is
Microsoft Windows 10 (Redmond, WA, USA). Using the original algorithm to encrypt and use the
algorithm proposed in this paper to crack an image with size of 512× 512 takes about 0.115 s and
10.702 s, respectively. Since the encryption process of the algorithm is independent of plaintext and
ciphertext, the equivalent key obtained by deciphering any ciphertext image can be used to decipher all
ciphertext images of the same resolution. Taking the standard 2D plain gray image Lena, Cameraman,
Livingroom as three examples, the plain images, the cipher images, and the deciphered images are
shown in Figure 6, respectively.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 6. Plain images ((a–c) row), cipher images ((d–f) row), and deciphered images ((g–i) row) of
Lena ((a–g) column), cameraman ((b–h) column), and living room ((c–i) column).

Although the previous analysis is for grayscale images, the original encryption algorithm can be
easily extended to encrypt color images by encrypting each of the three channels of the color image as
a separate grayscale image. In this case, the attack method proposed in this paper is still valid. Take a
real-life image with 1024× 2048 resolution as an example. Encrypting this image using the original
encryption algorithm, it takes about 0.53 s to encrypt the three color channels with the same key, and it
takes about 107.36 s to decipher the corresponding ciphertext using the attack method proposed in this
paper. Encrypting three color channels with three different sets of keys takes about 1.42 s, and it takes
about 318.45 s to decipher the corresponding ciphertext. The results are shown in Figure 7.

(a)

(b)

(d)

(c)

(e)

Figure 7. The result of the deciphering of the real-life image. (a) the original image; (b) encrypting the
three color channels with the same key; (c) the deciphered image corresponding to (b); (d) encrypting
the three color channels with three different sets of keys; (e) the deciphered image corresponding to (d).
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6. Suggestions for Improvement

According to the analysis in Section 3, the original algorithm is insecure and cannot resist the
choice of plaintext attack, and the complexity of the attack method is relatively low. To deal with its
security defects, the corresponding suggestions for improvement to enhance the security are as follows:

(1) Enhance the sensitivity of the encryption algorithm to plaintext and ciphertext. According to
the analysis in Section 3, the original algorithm has a universal equivalent key lx, α, β, γ. The original
algorithm is not sensitive to both plaintext and ciphertext. The root cause of this defect is that the
generation of Latin cubes is independent of plaintext image. This vulnerability can be solved by
introducing some statistical properties of plaintext, such as the sum of all pixel values, into the
generation phase of the Latin cubes.

(2) The mechanism used in the diffusion phase is too simple to achieve the avalanche effect of
cryptography, which makes the encryption algorithm vulnerable to differential attacks. To fulfill
this demand, increasing the number of encryption rounds or exploiting some complex diffusion
mechanisms are worthy options.

7. Conclusions

This paper investigates the security of a Latin-bit cube-based image chaotic encryption algorithm.
The algorithm adopts a first-scrambling-diffusion-second-scrambling three-stage encryption scheme.
Although the designer claims that the algorithm has passed various statistical tests, the security analysis
results in this paper demonstrate that the algorithm has some security vulnerabilities. In particular,
the generation of Latin cubes is independent of plain image, and the change in the number of bits
in the cipher image follows the change of any one bit in the plain image with obvious regularity.
Thus, the equivalent secret keys lx, α, β, γ can be cracked by a chosen plaintext attack and differential
attack. Only a maximum of 2.5× 3

√
w× h + 6 plain images are needed to decipher the equivalent

secret keys. Theoretical analysis and numerical simulation experiment results verify the effectiveness
of the analytical method.
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