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Abstract: The goal of continuous variable quantum key distribution (CVQKD) is to be diffusely
used and adopted in diverse scenarios, so the adhibition of atmospheric channel will play a crucial
part in constituting global secure quantum communications. Atmospheric channel transmittance is
affected by many factors and does not vary linearly, leading to great changes in signal-to-noise ratio.
It is crucial to choose the appropriate modulation variance under different turbulence intensities to
acquire the optimal secret key rate. In this paper, the four-state protocol, back-propagation neural
network (BPNN) algorithm was discussed in the proposed scheme. We employ BPNN to CVQKD,
which could adjust the modulation variance to an optimum value for ensuring the system security
and making the system performance optimal. The numerical results show that the proposed scheme
is equipped to improve the secret key rate efficiently.

Keywords: continuous variable quantum key distribution; atmosphere turbulence; machine learning;
back-propagation neural network

1. Introduction

The flying start of quantum communication makes secure communication conceivable in
practice [1–3]. As an important applicatory adhibition in the quantum communications, quantum key
distribution (QKD) permits communication objects to generate a public secret key at the existence
of eavesdropping, and this approach implements secure key interchange that does not rely on
computational complexity [4–9]. Discrete-variable quantum key distribution (DVQKD) as well as
continuous-variable quantum key distribution (CVQKD) are two primary ways to implement QKD.
DVQKD protocol demands greatly faint light pulses in the process of generation and detection [5,6].
Another method of protocol, CVQKD, can utilize standard components of fiber optic communication
without the need for a single photon detector [7–10].

Nowadays, QKD has entered a new stage of development with the goal of widespread
application and adoption under a variety of environmental conditions. Long distance QKD in the
atmospheric turbulence channel has been realized [11–13]. Experimental advances in this field have
enabled the transmission of quantum light over horizontal communication links to be shown to be
successful [14–19], and the satellite-to-ground DVQKD has been confirmed to exceed 1200 km [20].
Schemes employing single-photon detectors are influenced by background noise [21]; at the same time,
coherent detection uses a bright local oscillator (LO) operating as a filter to decrease the background
noise [22].

In the process of atmospheric propagation, the beam as a whole experiences random broadening,
deformation and random deflection. The main influence comes from the turbulence fluctuation of a
refractive index. In addition, the beam can be weaken by backward scattering and absorption. For weak

Entropy 2019, 21, 908; doi:10.3390/e21090908 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-9306-2061
http://www.mdpi.com/1099-4300/21/9/908?type=check_update&version=1
http://dx.doi.org/10.3390/e21090908
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 908 2 of 17

turbulence, the atmosphere mainly causes beam wandering, and this case may be well depicted by
the log-negative Weibull distribution [23], while, for moderate and strong turbulence, the beam will
be stretched and deformed to form a smooth probability distribution of the transmittance (PDT).
In addition, the elliptic-beam model gives consistent results with this situation [24]. Furthermore,
this model can also be employed to analyze atmospheric quantum channels under different weather
circumstances [25].

The secure key rate depends on the modulation variance, transmittance and excess noise. Unlike
optical fiber channels, atmospheric channel transmittance is affected by many factors and does not
vary linearly. Therefore, it is crucial to select a suitable modulation variance for different turbulence
intensities. This is a kind of a parameter optimization that could guarantee the system security and
make the system performance optimal. Previously, to obtain the optimal parameters, it always recurred
to simulation and iteration. With enough time and iteration in advance, the approach is mature and
accurate [26,27]. Nevertheless, emulators often consume a large amount of time, notably when running
optimizers, which must be repeated many times. Parameter optimization becomes more complex
when we extend point-to-point communication to communication networks.

Machine learning provides formidable implements for settling matters in many fields, such as
estimating parameters, output forecast on the basis of previous input data, data sorting, and pattern
identification [28,29]. In recent years, machine learning technology has been diffusely used both in
coherent optical communication [30–34] and QKD systems [35–39]. The support vector regression (SVR)
is applied to predict the time-along intensity evolutions of the laser light and the LO pulse to improve
system performance [35]. In addition, for parameter optimization, this has been done with machine
learning in measurement-device-independent (MDI) DVQKD [38,39]. Hence, the above-mentioned
methods provide an idea for parameter optimization in CVQKD at the atmospheric turbulence channel.

In this paper, we propose an approach that employs a back propagation artificial neural network
(BPNN), which is one of the most popular machine learning tools. The theory of BPNN is described in
detail, and parameter optimization on atmospheric channels is proposed. In parameter optimization,
BPNN is mainly used to predict, rather than search, the optimized parameter. We employ BPNN to
CVQKD, which could adjust the modulation variance to an optimal value to ensure the system security
and make the system performance optimal. The numerical results show that the proposed scheme is
equipped to improve the secret key rate efficiently.

The structure of the paper is listed next. In Section 2, we briefly introduce the transmission models
under different intensities of turbulence and the security analysis—whereafter, the Monte Carlo method
is employed to estimate transmittance distribution of the atmospheric turbulence channel. In Section 3,
we propose the BPNN-based CVQKD scheme. Section 4 verifies the performance improvement and
security analysis of the CVQKD system with numerical simulations. In the end, the conclusions are
drawn in Section 5.

2. Transmittance and Security Analysis

In this section, the main purpose is to analyze the security of the atmospheric channel. Due to the
fluctuating of the atmospheric channel, we first analyze the transmittance of the channel according
to different turbulence intensity. In addition, we then apply the transmittance analyzed above to
the calculation of the secret key rate, in order to obtain the CVQKD security analysis under the
atmospheric channel.

The Rytov variance is used for depicting the turbulence intensity, and its expression is [40,41]

σ2
R = 1.23C2

nk7/6L11/9, (1)

where C2
n is the refraction index structure parameter, k denotes the optical wave number, and L

represents the horizontal propagation distance. In the case of horizontal propagation, C2
n can be seen
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as a constant. As shown in Table 1, the value of C2
n we used is on the basis of long-term radiosonde

measurements in Hefei, Anhui, China [42].

Table 1. The values (median) of C2
n in four seasons.

Spring Summer Autumn Winter

C2
n (m−2/3 × 10−15) 2.03 2.12 5.56 7.46

2.1. Transmittance Analysis

In a weak turbulent atmosphere, beam-wandering plays a primary role. Generally, they are
induced by unstable adjustment of a radiation source and aperture truncation of the light at the
receiving end [43]. The characterization of the beam wandering mechanism and channel models of
fluctuation are demonstrated in [23].

Under the circumstance of beam wandering (see Figure 1a), an approximate analytical representative
of transmission efficiency can be expressed as

T2 = T2
0 exp[−( r

R
)λ], (2)

where r denotes the distance of beam-deflection. T0 denotes the transmission coefficient maximum
for the specified beam-spot radius value W, R and λ are scale and shape parameters. The above
parameters will be explained in detail in “Appendix A”.

Figure 1. (a) in the beam wandering case, the fluctuation of transmittance results from the variation
of the beam-deflection distance r; (b) the elliptical beam profile is characterized with the half axis W1

and W2, where W1 rotates on the angle Φ relating to the x-axis. Beam wandering is characterized by
parameter r, which represents the beam-centroid position with respect to the center of the aperture.

Designed for simplicity, the aperture radius a is normalized, so that the distribution of T2

is acquired. As shown in Figure A1, T2 decreases with the increase of beam deflection distance,
while the maximum increases with the falling of beam spot radius W. On the basic of Ref. [44], the
fluctuation of beam-deflection distance r is subject to the Rice distribution [45] with the variance σ2

and the distant d from the center of the aperture. Under the circumstance of d = 0, this distribution is
simplified to the log-negative Weibull distribution,

P(T) =
2R2

σ2λT
(2ln

T0

T
)2/λ−1exp[− R2

2σ2 (2ln
T0

T
)2/λ], (3)

for T ∈ [0, T0] and P(T) = 0, otherwise. Then, the mean of the fading probability distribution can be
calculated from 〈T〉 =

∫ T0
0 TP(T)dT and 〈

√
T〉 =

∫ T0
0

√
TP(T)dT.
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As for strong turbulence, the elliptic-beam model can well describe its characteristics.
For now, the probability distribution for free space transmittance could be obtained by using the
Glauber–Sudarshan P function on the basic of elliptic beam approximation [24,46]. Compared with
the log-normal model [23], the elliptic-beam model is more consistent with the experimental data [47].
Similarly, this model can also be employed to analyze atmospheric quantum channels under different
weather circumstances [25].

As depicted in Figure 1b, the elliptic-beam model can describe any spot at the receiving aperture
with five parameters, v = (x0, y0, W1, W2)

T and Φ. Here, (x0, y0) represents the position of the beam
centroid and reflects the degree of beam wandering, while (W1, W2) denotes the half axis of elliptical
beam section, and Φ is the angle between the half axis W1 and the x-axis. The above three parameters
are used to describe the characteristic of beam broadening and distortion, and give a definition of all
possible directions. With this ellipse hypothesis, the transmittance can be approximated as

T = T0exp
{
−
[ r/a

R( 2
We f f (Φ−φ0)

)

]λ[2/We f f (Φ−φ0)]}
, (4)

where a denotes the aperture radius, We f f ( ) represents the effective point radius, T0 denotes the
transmission coefficient maximum for the centered beam, and R( ) and λ( ) are scale and shape
functions, respectively. The above parameters will be explained in detail in “Appendix A”.

On the basic of the above equations, the probability distribution of atmospheric transmittance
can be calculated by the Monte Carlo method. It is evident that the transmittance T is at rest with
five parameters {x0, y0, Θ1, Θ2, ϕ}, where W2

i = W2
0 expΘi. Parameter ϕ is uniformly distributed and

irrelevant to the other parameters. The vector v = (x0, y0, Θ1, Θ2)
T is a Gaussian random vector.

The above-mentioned parameters are elaborated in “Appendix A”. The density distribution of the
horizontal link transmittance is simulated by the Monte Carlo method, which is shown in Figure 2.
It is obvious that the distance and refraction index structure parameter C2

n affect the transmittance.
With the increase of distance and C2

n, the transmittance declines.
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Figure 2. (a) the probability density function of transmittance at a distance of 3 km, 6 km, and 10 km
for the case of C2

n = 2.03× 10−15; (b) the probability density function of transmittance at a distance of
3 km, 6 km, and 10 km for the case of C2

n = 7.46× 10−15. The initial beam-spot radius W0 = 20 mm,
and the receiving aperture radius a = 60 mm.

The average value of the PDT could be represented by the simulated transmission value [25]

〈 f (T)〉 ≈ 1
N

N

∑
i=1

f (χextT(vi, ϕi)), (5)
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where T(vi, ϕi) is acquired from Equation (4), and the absorption and scattering losses describe with
extinction factor χext ∈ [0, 1] which is a stochastic variable [25]. Hence, the fading transmittance’s
average value has access to acquire

〈T〉 = χext
1
N

N

∑
i=1

T(vi, ϕi), (6)

〈
√

T〉 =
√

χext
1
N

N

∑
i=1

√
T(vi, ϕi). (7)

2.2. Secret Key Rate in the Atmosphere Turbulence Channel

For the sake of the CVQKD investigation in the atmospheric channel, we firstly make analysis
centering around the key rate through the fading channel. The schematic diagram of discrete
modulated CVQKD in the atmosphere turbulence channel is shown in Figure 3. First, Alice discretely
modulates the quantum signal and then dispatches it to Bob via a fading channel whose feature
is transmittance distribution T. After taking over the quantum signal, Bob conducts the coherent
detection on the received signals and acquires the raw key data. A practical detector is featured by an
efficiency η and a noise vel on account of detector electronics.

Figure 3. Schematic diagram of prepare-and-measure discrete modulated continuous variable quantum
key distribution (CVQKD) in the atmosphere turbulence channel. Alice discretely modulates the
quantum signal, and Bob performs the coherent detection on the received states. PM, phase modulator,
BS, beamsplitter, and PBS, polarization beamsplitter.

Here, the reachable secret key rate of atmospheric discrete modulation coherent state CVQKD is
presented on the basis of the calculation results of the above sections. In the case of collective attack,
assume that Alice and Bob apply the reverse reconciliation with reconciliation efficiency β; the key rate
can be given by [48]

K = βI(a : b)− χ(b : E). (8)

With the assumption of channel’s transmittance 〈T〉, 〈
√

T〉 and excess noise ε, the covariance matrix of
ρAB is shown as [49]

γAB =

(
(VA + 1)I 〈

√
T〉Zσz

〈
√

T〉Zσz [〈T〉(VA + ε) + 1]I

)
, (9)

where Z = VA(ξ
3/2
0 ξ−1/2

1 + ξ3/2
1 ξ−1/2

2 + ξ3/2
2 ξ−1/2

3 + ξ3/2
3 ξ−1/2

0 ), with

ξ0,2 =
1
2

exp(−0.5VA)[cosh(−0.5VA)± cos(−0.5VA)],

ξ1,3 =
1
2

exp(−0.5VA)[sinh(−0.5VA)± sin(−0.5VA)].
(10)
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According to covariance matrix, γAB, I (a:b) and χ (b:E) can be acquired (see Appendix B).
Figure 4 shows the secret key rate versus the transmittance and modulation variance. The results
indicate that the maximum key rate can be obtained by adjusting the modulation variance. Therefore,
the optimal modulation variance VA can be derived by maximizing the key rate under diverse
system conditions. The system conditions include the transmission distance L, the Rytov variance σ2

R,
the detector efficiency η, and the electrical noise vel .
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Figure 4. (a) key rate as a function of modulation variance VA and transmittance; (b) key rate as a
function of modulation variance VA for various distances. From top to bottom, the distance increases
by 1 km. The excess noise ε is set as 0.01, detector efficiency η = 0.6, electrical noise vel = 0.01.

In this section, we have analyzed the transmittance of the atmospheric channel under different
turbulence intensity and calculate the secret key rate of discrete modulated CVQKD in the atmospheric
channel. Through the above analysis, we conclude that adjusting the modulation variance can increase
the secret key rate of the system.

3. BPNN-Based CVQKD Scheme

Different from optical fiber channel, the transmittance of the atmospheric channel is nonlinear.
Factors affecting transmittance include not only distance but also climatic conditions. In order to
achieve the maximum secret key rate transmission, it is very important to choose an appropriate
modulation variance at Alice end. BPNN can be applied to the system to predict the most suitable
modulation variance VA quickly and accurately. For simplicity, we convert the above relationship into
the mathematical formula as follows:

−→u = (L, σ2
R, 〈T〉).

−→v = (VA).
(11)

The secret key rate K is the function of VA, which is K = f (−→v ). Modulation variance optimization
could be regarded as searching for −→vopt to maximize K, as indicated

−→vopt = argmax−→v ∈V [K = f (−→v )]. (12)

At the beginning, we invent an input layer that contains three neurons. They receive distance L,
Rytov parameter σ2

R and transmittance 〈T〉 as the input, respectively. For input parameters, L is the
distance between Alice and Bob, and Rytov parameter σ2

R is mainly dependent on refraction index
structure parameter C2

n. Transmittance 〈T〉 is relevant to atmosphere turbulence. Then, a hidden layer
comprised of eight neurons is enhanced to connect the input layer. In the end, an output layer of only
one neuron is installed, which will output the modulation variance VA.
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Here, we prepare the training data for BPNN. First, a program was written to randomly sample
the input data space, randomly select the combination of −→u (for which we generate 1000 sets of data
from L = 0− 11km, σ2

R = 0− 20, 〈T〉 = 0− 1), and calculate the corresponding optimal parameters −→v
and the secret key rate by using the local search algorithm (LSA).

The next step is to train BPNN. We record all the above-mentioned −→u and −→v as the training
dataset U and V. Then, we introduce the BPNN that is applied to predict VA . First, we extract VA
from −→vopt and make a label dataset V1. Then, we put the dataset U into BPNN and adjust the network
connection weights with the back propagation algorithm (BPA) according to the difference between
the output of the BPNN and label dataset V1. The working principle of BPNN is described in detail in
Appendix C. Once trained, the neural network can find the optimal parameters and key rate directly
according to any input, which greatly speeds up the parameter optimization process.

After the training is achieved, three groups of data are randomly selected using the training
network, and the outcomes are recorded in Table 2. The table indicates that the predicted parameters
and the matching key rate are very familiar with the optimal values acquired by LSA, for the parameters
predicted by BPNN reaching 99.99% of the optimal key rate. As depicted in Figure 5, we compared
the BPNN-predicted and optimized parameters by scanning the distance from 0 to 11 km. Compared
with the traditional LSA, the BPNN performs very well in predicting optimal values for modulation
variance and attains a very similar key rate level.
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Figure 5. (a) comparison of BPNN-predicted and optimized modulation variance VA; (b) comparison
of the key rate generated using the BPNN predicted parameter and optimized key rate. The excess
noise ε is set as 0.01, detector efficiency η = 0.6, and electrical noise vel = 0.01.

Table 2. Optimal vs. back-propagation neural network (BPNN)-predicted parameters. The modulation
variance VA is the BPNN-predicted parameter, and key rate K is generated by applying the BPNN
predicted VA. The parameters L, σ2

R, 〈T〉 and C2
n are the systems conditions. Moreover, C2

n and σ2
R can

be converted by the formula σ2
R = 1.23C2

nk(7/6)L(11/9), hence the input dimension is 3 instead of 4.

Method L σ2
R 〈T〉 C2

n VA K

Optimized 2 km 2.3269 0.8597 2× 10−15 0.70 0.2550
BPNN 2 km 2.3269 0.8597 2× 10−15 0.6975 0.2556

Optimized 4 km 8.2922 0.3859 2× 10−15 0.1160 0.0388
BPNN 4 km 8.2922 0.3859 2× 10−15 0.1161 0.0391

4. Performance Analysis

In this part, we analyze the key rate that can be realized according to the consequences of
Sections 2 and 3. The secret key rate is evaluated by the Monte Carlo method. The excess noise
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induced by the phase fluctuation is incapable of compensating precisely yet, and after adopting
diverse valid compensation approaches, it is tough to evaluate the actual excess noise [50]. Therefore,
we ignore the change of phase excess noise free space situations temporarily. However, we still study
the key rates that can be achieved at different fixed excess noise levels: ε = 0.01 and ε = 0.03.

The secret key rate with excess noise ε = 0.01 is illustrated in Figure 6a. As Figure 6a shows, the
secret key rate of the system employing BPNN is higher than LSA, a little higher but not much. Then,
the excess noise is set as ε = 0.03, and the performance is as portrayed in Figure 6b. In comparison
with Figure 6a, the realized transmission distance is significantly shortened.

(a) (b)

Figure 6. The secret key rate as a function of distance for local search algorithm (LSA) and BPNN in
the summer and winter. (a) ε = 0.01; (b) ε = 0.03.

The performance profiling in this section points out a few of pivotal cores. Above all, the BPNN
based CVQKD system furnishes a higher achievable key rate and more efficient parameter optimization.
Secondly, we find that transmittance fluctuations are negative to key rates. Therefore, the effect of
beam wandering, broadening and deformation should be emphasized in practical experiments. Third,
due to the considerable influence of excess noise, the phase excess noise will be much larger than 0.03;
valid approaches to possess the phase excess noise are required to improve the key rate.

5. Conclusions

In this work, considering that the fluctuating of the atmospheric turbulence channel has significant
influences on the performance and practical security of CVQKD system, we put forward a method
to optimize the relevant system. Here, we employ machine learning to CVQKD, which could adjust
the modulation variance to an optimal value to ensure the system security and make the system
performance optimal. The transmittance is simulated in consideration of not only the atmospheric
turbulence, but also the absorption and scattering losses. The LSA algorithm is adopted to generate
optimal data as training data of BPNN. Meanwhile, by comparing the two algorithms, we get that
a BPNN based CVQKD system furnishes a higher achievable key rate and more efficient parameter
optimization. In particular, this approach can be applied to any measurable physical parameter of
signals in atmospheric turbulence or fiber channel [35,39].
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Appendix A. The Atmospheric Transmittance Analysis
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Figure A1. Transmission efficiency T2 as a function of the beam deflection distance r for different
values of the beam-spot radius W. The aperture radius a is normalized.

In this appendix, we will demonstrate the formulas for the aforementioned parameters in
Section 2.1. Under the circumstance of beam wandering (see Figure 1a), an approximate analytical
representative of transmission efficiency can be expressed as

T2 = T2
0 exp[−( r

R
)λ], (A1)

where r denotes the distance of beam-deflection, λ and R are the shape and scale parameter, respectively,
which can be derived

λ =8
a2

W2

exp[−4 a2

W2 ]I1(4 a2

W2 )

1− exp[−4 a2

W2 ]I0(4 a2

W2 )

× [ln(
2T2

0

1− exp[−4 a2

W2 ]I0(4 a2

W2 )
)]−1,

(A2)

R = a[ln(
2T2

0

1− exp[−4 a2

W2 ]I0(4 a2

W2 )
)]−(1/λ), (A3)

and T0 denotes the transmission coefficient maximum for the specified beam-spot radius value W; one
can be given by

T2
0 = 1− exp[−2

a2

W2 ], (A4)

where a denotes the aperture radius. Obviously, the transmittance efficiency T2 is dominated by the
ratio a/W and reduced at T0. Designed for simplicity, the aperture radius a is normalized, so that the
distribution of T2 is acquired.
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For strong turbulence, the maximal transmittance for a centered beam T0 can be given by

T0 =1− I0
(
a2 W2

1 −W2
2

W2
1 W2

2

)
exp

(
− a2 W2

1 + W2
2

W2
1 W2

2

)
− 2
{

1− exp
[
− a2

2
(

1
W1
− 1

W2
)
]}

× exp
[
−
{ (W1+W2)

2

|W2
1−W2

2 |

R( 1
W1
− 1

W2
)

}λ(1/W1−1/W2)]
,

(A5)

which is a function of the two eigenvalues W2
i , i = 1, 2. The shape λ and scale R functions are given by

λ(ξ) =2a2ξ2 exp[−a2ξ2]I1(a2ξ2)

1− exp[−a2ξ2]I0(a2ξ2)

×
[
ln(2

1− exp[−0.5a2ξ2]

1− exp[−a2ξ2]I0(a2ξ2)
)
]−1

,
(A6)

R(ξ) =
[
ln
(

2
1− exp[−0.5a2ξ2]

1− exp[−a2ξ2]I0(a2ξ2)

)]−(1/λ(ξ))
. (A7)

In the case of ϕ = Φ− φ0, the effective squared spot radius is expressed as

W2
e f f (ϕ) =4a2

{
W
( 4a2

W1W2
exp

[ a2

W2
1
(1 + 2 cos2(ϕ))

]
× exp

[ a2

W2
2
(1 + 2 sin2(ϕ))

])}
.

(A8)

On the basic of the above equations, the probability distribution of atmospheric transmittance
can be calculated by the Monte Carlo method. It is evident that the transmittance T is decided
by five parameters {x0, y0, Θ1, Θ2, ϕ}, where Wi is log-normally distributed and it can be acquired
by W2

i = W2
0 expΘi. Parameter ϕ is uniformly distributed and irrelevant to the other parameters.

The relevance of {x0, y0, Θ1, Θ2} is represented by covariance matrix [24,25]

Ξ =


〈x2

0〉 0 0 0
0 〈x2

0〉 0 0
0 0 〈Θ2

1〉 〈Θ1Θ2〉
0 0 〈Θ1Θ2〉 〈Θ2

2〉

 . (A9)

For weak turbulence, the elements of the covariance matrix Ξ can be given by [24]

〈x2
0〉 = 〈y2

0〉 = 0.33W2
0 σ2

RΩ−
7
6 ,

〈Θ2
1〉 = 〈Θ2

2〉 = ln
[
1 +

1.2σ2
RΩ

5
6

(1 + 2.96σ2
RΩ

5
6 )2

]
,

〈Θ1Θ2〉 = ln
[
1−

0.8σ2
RΩ

5
6

(1 + 2.96σ2
RΩ

5
6 )2

]
,

(A10)
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with

Ω =
kW2

0
2L

,

〈Θ1,2〉 = ln
[ (1 + 2.96σ2

RΩ
5
6 )2

Ω2
√
(1 + 2.96σ2

RΩ
5
6 )2 + 1.2σ2

RΩ
5
6

]
.

(A11)

In the case of strong turbulence, these elements are expressed by [24]

〈x2
0〉 = 〈y2

0〉 = 0.75W2
0 σ

8
5
R Ω−1,

〈Θ2
1〉 = 〈Θ2

2〉 = ln
[
1 +

13.14γσ
12
5

R Ω−1

(γ + 1.71σ
12
5

R Ω−1 − 2.99σ
8
5
R Ω−1)2

]
,

〈Θ1Θ2〉 = ln
[
1 +

0.65γσ
12
5

R Ω−1

(γ + 1.71σ
12
5

R Ω−1 − 2.99σ
8
5
R Ω−1)2

]
,

(A12)

with

γ =
1 + Ω2

Ω2 ,

〈Θ1,2〉 = ln
[ (γ + 1.71σ

12
5

R Ω−1 − 2.99σ
8
5
R Ω−1)2√

(γ+1.71σ
12
5

R Ω−1−2.99σ
8
5
R Ω−1)2+ 3.24γσ

8
5
R Ω−1

]
.

(A13)

The weak turbulence results can be applied, e.g., for short propagation distances with σ2
R < 1.

In near-to-ground propagation, the latter condition is fulfilled for optical frequencies for night-time
communication. The strong turbulence results are applied for short distance communication, σ2

R � 1.
For a near-to-ground communication scenario, this corresponds to the day-time operation on clear
sunny days.

Appendix B. Secret Key Rate

With the assumption of channel’s transmittance 〈T〉, 〈
√

T〉 and excess noise ε, the covariance
matrix of ρAB is shown as [49]

γAB =

(
(VA + 1)I 〈

√
T〉Zσz

〈
√

T〉Zσz [〈T〉(VA + ε) + 1]I

)
. (A14)

According to γAB, the mutual information of Alice and Bob for homodyne detection is

I(a : b) =
1
2

log2
1

1− 〈
√

T〉2VA
〈T〉(V+χtot)

, (A15)

where χtot =
(1+υel)

η〈T〉 − 1 + ε.
The maximum information that Eve can be accessed χ(b : E) is expressed by

χ(b : E) =
2

∑
i=1

G(
λi − 1

2
)−

5

∑
i=3

G(
λi − 1

2
), (A16)

where G(x) = (x + 1) log2(x + 1) − x log2 x, and the formulas to calculate λi, i = 1, 2, . . . , 5 are
derived from
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λ2
1,2 =

1
2
(A±

√
A2 − 4B), (A17)

λ2
3,4 =

1
2
(C±

√
C2 − 4D), (A18)

λ5 = 1, (A19)

with

A = V2 + 〈T〉2(V + χline)
2 − 2〈T〉Z2,

B = (〈T〉V2 + 〈T〉Vχline − 〈
√

T〉2Z2)2,
(A20)

C =
AXh + V

√
B +
√

B
〈T〉(V + χtot)

,

D =
√

B
V +
√

Bχh
〈T〉(V + χtot)

,

(A21)

where χline = 1/〈T〉 − 1 + ε, χh = (1− η + υel)/η.

Appendix C. Back-Propagation Neural Network

Figure A2. The basic structure of BPNN. It contains three layers, namely the input layer, the hidden
layer and the output layer.

The back-propagation neural network (BPNN) is the most elementary and widely used neural
network. Its output result adopts forward propagation while the error takes in back propagation.
The feedforward neural network refers to the hierarchical arrangement of neurons, which is made up
of input layer, hidden layer and output layer. Neurons in each layer of this neural network only receive
input from neurons in the previous layer, and the latter layer has no signal feedback to the former
layer. Each layer converts the input data to some extent, and then utilizes the outcome as the input of
the following layer up to the eventual outcome. The back propagation is used to adjust the network
weights and thresholds during training, which needs to be supervised. When your network is not
well trained, the output must be different from what you think; then, we will get a deviation, and the
deviation of one level forward, layer by layer to get the error δ(i). This is the feedback. The feedback is
used to find the partial derivative, which is typically used for gradient descent. Then, the gradient
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descent is applied to acquire the minimum value of the cost function, so that the error between the
expectation and the output can be reduced as much as possible.

Table A1. Parameter definition.

Parameter Definition

θk Threshold of the k-th neuron in output layer
γj Threshold of the j-th neuron in hidder layer
vij The weight between the i-th node in the input layer and the j-th node in the hidden layer
wjk The weight between the j-th node in the hidden layer and the k-th node in the output layer
αj The input value that the j-th neuron received in the hidden layer
βk The input value that the k-th neuron received in the output layer

f (x) Activation function.
η Learning rate

The flow diagram of the back-propagation neural network algorithm is shown in Figure A3, it can
be roughly divided into five steps:

Step 1: Initialize network weights and offsets. We know that, after training, the connection
weight (network weight) between different neurons is diverse. Therefore, in the initialization stage,
we give each network connection weight a small random number (generally −1.0~1.0 or −0.5~0.5),
and each neuron has a bias (bias can be regarded as the weight of each neuron), which will also be
initialized to a random number.

Step 2: Forward propagation. Enter a training pattern and figure out the output result of each
and every neuron. Each neuron works out a linear combination of its inputs. The calculation formula
of the activation value of each neuron in the hidden layer is indicated as

αj =
m

∑
i=1

vijxi. (A22)

Then, the output value of the j-th neuron in the hidden layer is f (αj − γj), where f (x) = 1
1+e−x .

The input value that the k-th neuron received in the output layer is

βk =
n

∑
j=1

wjkbj. (A23)

In the end, the final output of the k-th neuron in the output layer is

yk = f (βk − θk). (A24)

Step 3: Calculation error and back propagation. This stage is the learning process of the algorithm.
In the learning process, we hope that the output of the algorithm can be consistent with our real value
to the greatest extent. When the output value and real value is different, there will ineluctably be an
error. The lesser the error, the better the prediction effect of the algorithm. Obviously, the input data
are known, and the variables are only those connection weights that will affect the output.
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Figure A3. The flow diagram of the back-propagation neural network algorithm.

For training example (xh, yh), suppose the output of the neural network is ŷh = (ŷh
1, ŷh

2, . . . , ŷh
p).

Therefore, the mean square error in the training example (xh, yh) is expressed as

Eh =
1
2

p

∑
k=1

(ŷh
k − yh

k)
2. (A25)

Based on the gradient descent strategy, the BP algorithm adjusts the parameters in the direction
of the negative gradient of the target. In the case of learning rate η, for the error Eh in the formula
Equation (A25), there is the following formula:

∆wjk = −η
∂Eh
∂wjk

= ηgkbj,
(A26)

where
gk = ŷh

k(1− ŷh
k)(y

h
k − ŷh

k). (A27)

Similarly, ∆θk, ∆vij and ∆γj can be derived

∆θk = −ηgk, (A28)

∆vij = ηejxi, (A29)

∆γj = −ηej, (A30)
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with

ej = −
∂Eh
∂αj

= bj(1− bj)
p

∑
k=1

wjkgk.
(A31)

Step 4: Adjust connection weights and thresholds. At this stage, the connection weight and
threshold are adjusted in accordance with the error of hidden layer neurons.

Step 5: End of the training. For each sample, if its error is less than the set threshold or the
number of iterations has been reached, then the training is over. Otherwise, the training is resumed at
the second step.
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