
entropy

Article

Differential Invariants of Measurements, and Their
Relation to Central Moments

Eivind Schneider

Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic;
eivind.schneider@uhk.cz

Received: 31 August 2020; Accepted: 30 September 2020; Published: 3 October 2020

Abstract: Due to the principle of minimal information gain, the measurement of points in an affine
space V determines a Legendrian submanifold of V ×V∗ ×R. Such Legendrian submanifolds are
equipped with additional geometric structures that come from the central moments of the underlying
probability distributions and are invariant under the action of the group of affine transformations
on V. We investigate the action of this group of affine transformations on Legendrian submanifolds
of V × V∗ × R by giving a detailed overview of the structure of the algebra of scalar differential
invariants, and we show how the scalar differential invariants can be constructed from the central
moments. In the end, we view the results in the context of equilibrium thermodynamics of gases,
and notice that the heat capacity is one of the differential invariants.
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1. Introduction

It has been known since the work of Gibbs [1,2] that thermodynamics can be formulated in the
language of contact geometry. Because the fundamental thermodynamic relation takes the form of a
contact structure on an odd-dimensional manifold, closed systems in thermal equilibrium correspond
to Legendrian submanifolds with respect to this contact structure. More recently, some effort has been
devoted towards studying an additional metric structure in the context of thermodynamics (see for
example [3,4] and references therein).

Both the contact structure and the metric can be given statistical interpretations [5,6]. The principle
of minimal information gain (similar to Jaynes’ principle of maximal entropy, [7]), applied to a random
vector taking values in an affine space V, gives a contact structure on V ×V∗ ×R. The variance of the
random vector determines a metric on Legendrian submanifolds. In fact, for each integer k ≥ 2, the
kth central moment gives a symmetric k-form on Legendrian submanifolds [6].

In this framework, the group of affine transformations on V plays an important role, as it acts on
V ×V∗ ×R, and on the space of Legendrian submanifolds, while preserving the geometric structures
mentioned. If we treat Legendrian submanifolds that are related by a transformation in this group as
equivalent, it is clear that the important quantities are those that are invariant under this group action.
Such quantities will be the main focus of this paper. In particular, we give a detailed description of the
differential algebra of scalar differential invariants, building upon the work done in [8].

The paper is organized as follows. We start in Section 2 by recalling how the process of measuring
points in an affine space leads to symplectic and contact geometry, following [6]. We explain how
Legendrian submanifolds come equipped with symmetric k-forms corresponding to kth central
moments. We end the section by discussing the action of the Lie group Aff(V) of affine transformations
on V. In Section 3, we recall notions from the geometric theory of PDEs and explain the concept of
scalar differential invariants. We show how the group Aff(V) acts on the jet spaces, and that its Lie
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algebra of vector fields is the largest Lie algebra of vector fields on V that preserves the central moments.
In Section 4, we use the central moments to find generators for the field of rational scalar differential
invariants. We compute the Hilbert and Poincaré functions for the field. We also find invariant
derivations, and give a finite set of generators for the set of differential invariants, as a differential
algebra. We compute differential syzygies for the case dim V = 2. In Section 5, we apply our results to
the thermodynamics of gases in equilibrium. We find a generating set of differential invariants and
invariant derivations with respect to Aff(V), and we notice that the heat capacity (at constant pressure)
is one of the fundamental scalar differential invariants. We also compute differential invariants with
respect to two different subgroups of Aff(V) before we finish with a discussion of the significance of
differential invariants.

2. From Random Vectors to Differential Geometry

We start by describing how the principle of minimal information gain applied to the measurement
of points in an affine space leads to contact and symplectic geometry. We follow closely the approach
of [6].

2.1. Measuring Points in Affine Spaces

A random vector is a map from a probability space to the affine space V ' Rn:

X : (Ω,A, µ0)→ V

Here Ω is the sample space, A the σ-algebra of “events”, and µ0 a probability measure. We interpret X
as a measurement of x0 ∈ V if

Eµ0(X) =
∫

Ω
Xdµ0 = x0.

By choosing an affine frame in V, the integral above can be defined coordinate-wise.
The measurement of a different vector x ∈ V is made by changing the probability measure from

µ0 to µ, using the probability measure as a control parameter, in a way so that Eµ(X) = x. We now
find conditions that determine µ.

Assume first that µ0 is absolutely continuous with respect to µ. Then the Radon-Nikodym theorem
implies that dµ = ρdµ0. We require ρ to satisfy the conditions

Eµ(X) =
∫

Ω
Xρdµ0 = x,

∫
Ω

ρdµ0 = 1. (1)

In addition we require µ to be the probability distribution “closest” to µ0 in the sense that it minimizes
the information gain, or the Kullback-Leibler divergence:

I(µ, µ0) =
∫

Ω
ρ ln ρ dµ0

This is the principle of minimal information gain. It is similar to Jaynes’ maximum-entropy principle [7].
As Jaynes put it, it is the only unbiased assignment we can make. Note that Jensen’s inequality gives
I(µ, µ0) ≥ 0. Moreover, we have I(µ, µ0) = 0 if ρ = 1.

Minimizing I(µ, µ0) under the constraints (1) gives

ρ =
1

Z(λ)
e〈λ,X〉 (2)

where λ ∈ V∗ is a covector of Lagrange multipliers corresponding to the constraints given by the
first equation of (1), and Z(λ) =

∫
Ω e〈λ,X〉dµ0 is the partition function (see [6] for details). Thus ρ is

determined by λ, and λ = 0 implies ρ = 1.
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Let D ⊂ V∗ be a simply connected domain, containing 0, on which Z(λ) is defined and smooth.
Due to the first condition of (1), we have dλZ = Z(λ)x. The differential dλZ is an element in T∗λ D
which can be identified with V = (V∗)∗. In this identification, x0 ∈ V is identified with 0 ∈ T∗λ D.
By defining H(λ) = − ln Z(λ), we get

x = −dλ H. (3)

This defines an n-dimensional manifold

L = {x = −dλ H | λ ∈ D} ⊂ V ×V∗.

By choosing an affine frame on V with origin x0 (and its dual frame on V∗), we get coordinates xi on V
and λi on V∗. In these coordinates, the linear basis of the vector space associated to V can be identified
with dλi ∈ T∗λ D, and L is then given by the n equations xi = −Hλi .

The space V ×V∗ is a symplectic space equipped with the symplectic form

ω = dλi ∧ dxi, (4)

and L is a Lagrangian submanifold: ω|L = 0. We use the Einstein summation convention, and sum
over repeated indices.

Since the information gain I(µ, µ0) depends on ρ, and therefore on λ, it can be considered as a
function on L. By using (2) we get

I(µ, µ0) = H(λ) + 〈λ, x〉 = H(λ)− 〈λ, dλ H〉

on L. If the point x ∈ V can be “measured”, then equation (3) can be solved for λ. If λ(x) is a (local)
solution, we may write

I(x) = H(λ(x)) + 〈λ(x), x〉.

Let u be a coordinate on R. We have the relation Ixi = λi, so the submanifold

L̃ = {u = I(x), λi = Ixi (x)} ⊂ V ×V∗ ×R

is Legendrian with respect to the contact form θ = du− λidxi on V ×V∗ ×R.
The Legendrian submanifold L̃ depends on the initial random vector. In this way, the statistical

object we started with is translated into a geometric object L̃. This shows that our model of physical
measurements, based on random vectors and the principle of minimal information gain, is always
accompanied by a form of thermodynamics, where the contact form du− λidxi plays the role of the
fundamental thermodynamic relation.

We note that in some cases, it is convenient to hide the information gain from our consideration
and consider the Lagrangian submanifold L ⊂ V × V∗ instead of L̃ ⊂ V × V∗ ×R. We will switch
between these two viewpoints.

2.2. Central Moments

Let L̃ continue to denote the Legendrian manifold corresponding to the random vector X. It can
be parametrized either by the measured quantity x ∈ V or by the parameter λ ∈ V∗ (we will mostly
use the latter choice).

The kth moment of X (with respect to µ) is defined by

mk =
∫

Ω
X⊗kρdµ0.
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It depends on λ and defines a symmetric tensor on L̃. We continue to use coordinates xi on V and λi
on V∗, coming from the choice of affine frame on V with origin x0 and linear basis dλi. If we write
X = Xidλi, we get

mk =

(∫
Ω

Xi1 · · ·Xik ρdµ0

)
dλi1 ⊗ · · · ⊗ dλik =

Zλi1
···λik

Z
dλi1 ⊗ · · · ⊗ dλik .

Assuming that the function Z is smooth, the differentiation is symmetric, and thus mk is a symmetric
k-form defined on L̃. The equality

Z
∫

Ω
Xi1 · · ·Xik ρdµ0 = Zλi1

···λik

can be shown by induction, using (2).
The kth central moment σk of X is defined as the kth moment of X−m1, where

m1 =
Zλi

Z
dλi = −Hλi dλi = xidλi.

They are related through the formula

σk =
k

∑
i=0

(−1)k−i
(

k
i

)
mi ·m

(k−i)
1 ,

where the product is the symmetric tensor product. Note that the tensor σk is completely determined
by L̃, or even by the corresponding Lagrangian manifold L ⊂ V ×V∗.

The second central moment, or variance, determines a positive definite metric

σ2 = −Hλiλj dλi ⊗ dλj

on Legendrian submanifolds. It can also be given locally as Ixixj dxi ⊗ dxj. Or if we consider only the
Lagrangian submanifold L ⊂ V ×V∗, defined by n functions xi(λ), it can be given by xi

λj
dλi ⊗ dλj.

Notice that the positive definiteness of σ2 puts conditions on L̃. Thus, the measurement process does
not lead to arbitrary Legendrian manifolds, but only to ones where the symmetric k-forms can be
properly interpreted as central moments.

The metric σ2 has been studied previously in different contexts. In particular it was treated by
Ruppeiner [3,4] as a metric on V (in our notation). Ruppeiner was also interested in computing and
giving a physical interpretation to its scalar curvature. However, as was pointed out in [6], and which
we will discuss further in this paper, the group Aff(V) which appears naturally in this context is
smaller than the full Lie pseudogroup of diffeomorphisms. As a result, the scalar curvature is not
the most fundamental invariant. In [5], σ2 was treated as a metric on Legendrian submanifolds of
V ×V∗ ×R in the same way as we do in this paper. There, they also showed that it can be extended to
a nondegenerate metric on V ×V∗ ×R.

2.3. The Action of the Group of Affine Transformations

In the framework outlined above, we get quite naturally an action of the affine group Aff(V).
One can view it as coming from the arbitrary choice of affine frame on V. The action extends to
V ×V∗ ×R in the obvious way:

(xi, λj, u) 7→ (Ai
kxk + Bi, (A−1)l

jλl , u), A ∈ GL(n), B ∈ Rn.

This Lie group action preserves the contact structure on V × V∗ × R (or the symplectic structure
on V ×V∗). Thus, it also gives an action on the space of Legendrian (or Lagrangian) submanifolds.
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Moreover, the tensor σk is preserved by Aff(V) for every k ≥ 2. This will be discussed further in
the next section. In particular, we will show in Theorem 2 in Section 3.2 that the Lie algebra of the
Aff(V)-action is the largest Lie algebra of vector fields on V that preserves the tensor σ2. Because of
this, Aff(V) plays an important role in the theory of measurements, and this Lie group will be the
focus of our attention in most of this paper.

We also have the invariant 0-form α0 = u and 1-form du− λidxi. The latter form vanishes when
restricted to L̃, so we consider instead α1 = λidxi which also is invariant since u, and therefore du, is.
Since xi = −Hλi on L̃, we have dxi = xi

λj
dλj = −Hλiλj dλj. And thus

α1 = xi
λj

λidλj = −Hλiλj λidλj.

Remark 1. Notice that there may be situations for which it is desirable to consider proper subgroups of Aff(V)

only, perhaps because the space V has additional structure. For example, in the case where V is a vector space,
it may be more appropriate to consider only the action of GL(V). In this case, the regular kth moment mk will
be invariant.

3. Jets and PDEs

The theory of jet spaces lets us treat functions, sections of bundles, submanifolds of a fixed
dimension and, more generally, solutions of PDEs geometrically. In particular it gives a transparent
picture of the algebra of scalar differential invariants. We will use most of this section to fix notation
and definitions, sufficient for our use, and refer to the standard literature (for example [9–11]) for
details. We recommend [12] for a comprehensive introduction the theory of jet spaces and differential
invariants, and [13] for a more concise overview. The paper [14] can be added to either one of these as
an updated treatment of the theory of scalar differential invariants.

3.1. Jets

We have seen that the Legendrian submanifolds in V × V∗ ×R can be represented, locally, by
a function I(x) on V. Let Jk(V) denote the space of k-jets of functions on V. It is a bundle over V.
As coordinates on Jk(V) we will use

xi, u, uxi , uxixj , ..., uxi1 ···xik , i1 ≤ · · · ≤ ik.

We have

dim Jk(V) = n +

(
n + k

k

)
.

By identifying uxi with λi we get an identification of J1(V) with V × V∗ × R, and the contact
form on V × V∗ ×R is identified with the contact form on J1(V). A Legendrian submanifold L̃ of
J1(V) ' V × V∗ × R can be prolonged canonically to an n-dimensional submanifold L̃k ⊂ Jk(V),
by requiring that L̃k is an integral manifold of the Cartan distribution on Jk(V).

Alternatively, we may remove information gain from the picture, and consider Lagrangian
submanifolds of V ×V∗ with the symplectic form ω. (The information gain may be recovered later,
up to an additive constant, by solving the system Ixi = λi.)

Let Jk(V × V∗, n) denote the space of k-jets of n-dimensional submanifolds of V × V∗.
Its dimension is given by

dim Jk(V ×V∗, n) = n + n
(

n + k
n

)
.

The symplectic form ω defines a PDE E1 ⊂ J1(V ×V∗, n). A submanifold L ⊂ V ×V∗ is a Lagrangian
submanifold if and only if its 1-jets are contained in E1. Using coordinates xi, λj on V×V∗, a Lagrangian
submanifold L is locally determined by n functions xi(λ) for i = 1, ..., n. (For thermodynamics of gases
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this corresponds to writing the internal energy and volume as functions of temperature and pressure.)
Since dxi = xi

λj
dλj on L, the restriction of the symplectic form ω = dλi ∧ dxi to L is given by

ω|L =
n

∑
i,j=1

xi
λj

dλi ∧ dλj.

Thus, the manifold L is Lagrangian (ω|L = 0) if and only if

Fij = xi
λj
− xj

λi
= 0. (5)

If we use the coordinates

λi, xj, xj
λi

, ..., xj
λi1
···λik

, i1 ≤ · · · ≤ ik,

on Jk(V ×V∗, n), it is clear that the equations (5) define E1 ⊂ J1(V ×V∗, n).
By differentiating the (n

2) equations xi
λj

= xj
λi

with respect to the variables λ1, ..., λn we get

n(n
2) additional equations of order two. We add these to the original set of first-order equations,

and we denote the corresponding manifold in J2(V × V∗, n) by E2. Similarly, we get submanifolds
Ek ⊂ Jk(V ×V∗, n) for every positive integer k by adding all derivatives (of appropriate order) of the
first-order equations. We will also use the notation E0 = J0(V ×V∗, n) = V ×V∗.

By counting the number of equations, we easily get the following statement.

Theorem 1. The dimension of Ek is given by

dim Ek = dim Jk+1(V)− 1 = n +

(
n + k + 1

n

)
− 1,

for k ≥ 0.

Note that by throwing away the information gain from the picture, we get a natural projection
Jk+1(V)→ Ek ⊂ Jk(V ×V∗, n), which is reflected in the counting above.

The central moment σk can be interpreted as a horizontal symmetric form on Ek (or on Jk(V)).
Loosely speaking, this means that it is defined by the same formula as before, only that its coefficients
is now considered as functions on Ek (or on Jk(V)). For example, in the formula xi

λj
dλi ⊗ dλj for σ2,

the coefficient xi
λj

is viewed as a function on Ek rather than a function on V∗. Indeed, it is one of the

coordinate functions on Jk(V ×V∗, n). If a Lagrangian manifold is given, σk can be restricted to the kth
prolongation of L and get back its original meaning. In this way, the theory of jet spaces lets us work
with functions and tensors on L that depend on xi(λ) and their derivatives without specifying L.

3.2. The Action of the Affine Group on Jk(V) and Ek

In Section 2.3 we explained how Aff(V) acts on V ×V∗ ×R. The action on V induces uniquely an
action on V ×V∗ ×R which preserves the contact form θ = du− λidxi. This also gives a group action
of Aff(V) on J1(V). More generally, a transformation on J0(V) uniquely induces a transformation on
Jk(V) for every positive integer k (it transforms functions on V and, as a consequence, their k-jets).
In this way, the Aff(V)-action can be prolonged to Jk(V). The same is true for the corresponding Lie
algebra of vector fields defined on J0(V).
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We illustrate this by prolonging a vector field on the base of J0(V) = V ×R to a vector field on
J2(V), and refer to [10] for a more general treatment. Consider the vector field X = ai(x)∂xi on V ×R.
The unique vector field on J1(V) that preserves the Cartan distribution and projects to X is given by

X(1) = ai(x)∂xi − as
xj(x)uxs ∂u

xj .

Note that when ai are affine functions, this corresponds exactly to the Aff(V)-action described in
Section 2.3. The prolongation of X to J2(V) is given by

X(2) = ai∂xi − as
xj uxs ∂u

xj − (Dxm(uxs)as
xl + Dxl (uxs)as

xm + usas
xl xm)∂uxl xm .

In this formula l ≤ m is assumed in the summation, and Dxi is the total derivative operator. The total
derivative is used in order to avoid expressions such as ux2x1 , which is not a function on J2(V). In the
case m ≥ s, we have Dxm(uxs) = uxsxm . For m ≤ s, we have Dxm(uxs) = uxmxs .

Remark 2. In a similar way we get an Aff(V)-action on Jk(V ×V∗, n) for k ≥ 0. Notice that since Aff(V)

preserves the symplectic structure on V ×V∗, it preserves the subset Ek ⊂ Jk(V ×V∗, n), and we may consider
the Aff(V)-action on Ek.

When we say that σk is Aff(V)-invariant, we mean that it is invariant as a horizontal symmetric
form with respect to the Aff(V)-action on Jk(V). More precisely, we have ϕ∗σk = σk for every
ϕ ∈ Aff(V), where ϕ is understood as a transformation Jk(V)→ Jk(V).

Now, let us see which conditions we get on the functions ai if we require the vector field X(2)

from above to preserve the variance σ2 = Dxixj(u)dxi ⊗ dxj (i.e. LX(2)σ2 = 0). Here Dxixj = Dxj ◦ Dxi .
We have

LX(2)(σ2) = X(2)(Dxixj(u))dxi ⊗ dxj + Dxixj(u)
(

LX(2)(dxi)⊗ dxj + dxi ⊗ LX(2)(dxj)
)

,

and

X(2)(uxixj) = −(Dxj(uxs)as
xi + Dxi (uxs)as

xj + usas
xixj),

LX(2)(dxs) = d(i
X(2)

f
dxs) = d(as) = as

xi dxi.

The terms of LX(2)(σ2) that depend on first-order derivatives of ai cancel, and we see that LX(2)(σ2)

vanishes if and only if all second-order partial derivatives of ai vanish, implying that ai are affine
functions on V. We get the following statement.

Theorem 2. Let X = ai(x)∂xi be a vector field on V ×R. Then X preserves σ2 (i.e. LX(2)(σ2) = 0) if and only
if X is an affine vector field.

The fact that affine vector fields preserve the tensors σk and that, due to the above theorem, they
are the only vector fields on V to do so, emphasizes the importance of the Aff(V)-action in the context
of measurements.

3.3. Differential Invariants

Since Aff(V) acts on Jk(V), we can look for functions on Jk(V) that are Aff(V)-invariant.

Definition 1. A (scalar) differential invariant of order k is a function on Jk(V) which is constant on
Aff(V)-orbits.
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Notice that a differential invariant of order k is also a differential invariant of order k + 1.
This determines a filtration on the algebra of differential invariants.

Due to the natural projection Jk+1(V)→ Ek ⊂ Jk(V ×V∗, n), any function on Ek gives a function
on Jk+1(V). Essentially, the only thing we loose by considering functions on Ek, is the zero-order
invariant u corresponding to the information gain. In the remaining sections we will mostly consider
Lagrangian submanifolds of V ×V∗, and therefore we will usually not mention the information gain
explicitly in our description of differential invariants. Notice also that, by our definition, an invariant
defined on Ek will be of order k + 1 and not, in general, of order k.

We follow [14] and consider the field of rational differential invariants. This is sufficient for
separating orbits in general position as the group action, and the PDE on which it acts, is algebraic.
More precisely, for every k ≥ 1, there is a Zariski-open subset of Ek−1 on which the field of rational
differential invariants of order k separate orbits. The set of rational differential invariants can also
be considered as a differential algebra. By using invariant derivations, the differential algebra of
differential invariants can be finitely generated.

4. Scalar Differential Invariants

In this section, we construct scalar differential invariants from the symmetric tensors σk and the
1-form α1 which was discussed in Section 2.3. We end up with a transcendence basis for the field of
differential invariants of order k, for every k, and we find a finite set of generators for the differential
algebra of differential invariants. Differential syzygies are computed for the case dim V = 2.

As is common when looking for differential invariants, we will be satisfied with obtaining a
number of independent differential invariants of order k equal to the codimension of an orbit in general
position in Ek−1. In other words, we will generate a differential algebra of differential invariants
which, for each order k, contains a transcendence basis for the field of differential invariants of order k.
In general, the field of rational differential invariants of order k will be an algebraic extension of the
field generated by the transcendence basis. In this section, we will focus on Lagrangian submanifolds
of V ×V∗ and therefore, in most cases, disregard the differential invariant of order zero corresponding
to the information gain.

Remark 3. All results in this section may be useful also if we want to consider a subgroup G ⊂ Aff(V),
for example due to preservation of additional structure on V. All scalar and tensorial invariants will be invariant
also with respect to G. The essential changes in the algebra of scalar differential invariants will occur on the level
of third-order invariants, where new invariants will appear.

4.1. From Invariant Symmetric Forms to Scalar Invariants

We will now find the scalar differential invariants. We use α1, σ2 and σ3 to construct an invariant
frame on L ⊂ V ×V∗.

1. The symmetric 2-form σ2 is nondegenerate, and is used to construct a vector field v1 = σ−1
2 (α1).

2. By using σ2 again, we turn the symmetric 2-form iv1 σ3 into a linear map A : TL→ TL.
3. We use A to define the n− 1 additional vector fields vi = Ai−1v1 for i = 2, ..., n.

We require that v1, ..., vn constitute a frame on L. This puts conditions on A, and therefore on the 2-jets
of L. These conditions hold on a Zariski-open subset of E2.

Note that all the steps above can be taken without fixing the manifold L if we treat α1 and σk
for k ≥ 2 as horizontal symmetric forms on Ek. The inverse of σ2 = sijdλi ⊗ dλj is then given by

σ−1
2 = sijDλi ⊗ Dλj , where Dλi is the total derivative. Note that dλi(Dλj) = δ

j
i . Thus, v1 = λiDλi and

vi = vijDλj , where vij are (rational) functions on E2 determined by the algorithm above. These are
horizontal vector fields on E∞.

4. The functions σk(vi1 , ..., vik ) are rational, scalar differential invariants.
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Remark 4. Note that this idea has previously been used, with slight modifications, when considering subgroups
of Aff(V). Differential invariants of the actions of the Euclidean group and the general linear group on functions
were considered in [15,16], respectively.

The next step is justifying that we can find, among these differential invariants that we have
constructed, a transcendence basis for the field of differential invariants of order k, for each order k.

Lemma 1. There is only one independent differential invariant of order 2. It can be given in coordinates by

σ2(v1, v1) = xi
λj

λiλj.

Proof. Consider the action of Aff(V) on the 2-jet of the information gain I(x) at the point x = x0.
By using translations on V, we may set x0 = 0, so that the 2-jet is given by j20(I)(x) = I(0) + aixi +

aijxixj. The linear and quadratic terms can be encoded in terms of a one-form and a nondegenerate
metric, respectively (in fact, by α1 and σ2). The action by GL(V) (the stabilizer of 0) preserves
the degree of monomials, and we can use it to normalize the quadratic terms to get j20(I)(x) =

I(0) + bixi + ∑i(xi)2. Next, we use the stabilizer O(V) of the quadratic form, and rotate the expression
into j20(I)(x) = I(0) + cx1 + ∑i(xi)2. We have used up all the freedom the group gives us, and the 2-jet
is brought to normal form. There is only one free constant c, in addition to I(0), so there is at most
one invariant of second order in addition to the zero-order information gain, namely the length of the
one-form (or its square).

Before we consider the differential invariants of third order, we consider the invariants of higher
order, which is an easier task. At points in general position in E2, the horizontal vector fields v1, ..., vn are
linearly independent. Notice that the function σk(Dλi1

, ..., Dλik
) is a sum of xi1

λi2 ···λik
and lower-order

terms. Since the coefficients of vi depend on E2, the invariants σ4(vi1 , ..., vi4), with i1 ≤ · · · ≤ i4,
are algebraically independent when restricted to a generic fiber of E3 → E2. This argument is easily
extended to k > 4, and we obtain the following statement.

Lemma 2. The differential invariants σk(vi1 , ..., vik ), with i1 ≤ · · · ≤ ik and k ≥ 4, are algebraically
independent. Moreover, for each k ≥ 4, the number of independent functions among them, when restricted to a
generic fiber of Ek−1 → E2, is equal to the dimension of the fiber.

We deduce from the lemma that the Aff(V)-action is locally free on E2, meaning that the dimension
of an orbit in general position in E2 is equal to dim Aff(V) = n2 + n. Since we have dim E2 =

n + (n+3
3 )− 1, the codimension of an orbit in general position is given by

dim E2 − dim Aff(V) =
n3 + 11n

6
.

Therefore, in addition to the invariant of order two, there exist n3+11n−6
6 algebraically independent

differential invariants of order three. We will verify that we have found all of them.
It is clear from the construction of the invariant frame {v1, ..., vn} that we have the relations

ivi σ2 = ivi−1 iv1 σ3, i = 2, ..., n.

Note how this is consistent with the fact that there is only one second-order invariant σ2(v1, v1). It also
follows that there will be relations between σ3(v1, vi, vj):

σ3(v1, vi−1, vj) = σ3(v1, vi, vj−1), i, j = 2, .., n. (6)
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In two dimensions this holds trivially, since σ3 is symmetric. In three dimensions the additional relation
takes the form

σ3(v1, v1, v3) = σ3(v1, v2, v2).

In four dimensions we get two additional relations:

σ3(v1, v1, v4) = σ3(v1, v2, v3), σ3(v1, v2, v4) = σ3(v1, v3, v3)

For dim V = n ≥ 3 we get (n−1
2 ) relations between the (n+2

3 ) components of σ3. The difference is
n3+11n−6

6 .

Lemma 3. The algebraic relations between the (n+2
3 ) differential invariants σk(vi, vj, vk), with i ≤ j ≤ k,

are exactly the (n−1
2 ) relations given by (6).

Proof. It is sufficient to prove that there are (n+2
3 ) − (n−1

2 ) = n3+11n−6
6 algebraically independent

functions in this set of differential invariants. We will do this by restricting to a suitable
n3+11n−6

6 -dimensional submanifold in E2, and show that there are n3+11n−6
6 independent functions

among the invariants, also after restricting to this submanifold. After the appropriate submanifold is
found, the statement of the lemma follows quite easily.

First we restrict the invariants to the fiber of E2 → E1 given by

λ1 = 1, λ2 = 0, · · · , λn = 0, xi = 0, xi
λj

= δij, i, j = 1, ..., n.

On this fiber, the expressions for the tensors α1 and σ2 are significantly simplified:

α1 = dλ1, σ2 =
n

∑
i=1

(dλi)
2.

We restrict further to a submanifold of this fiber, of codimension (n−1
2 ), by setting

x1
λiλj

= 0, j = 2 + i, ..., n, i = 1, ..., n− 2.

On this subset, we have

v1 = Dλ1 , v2 = x1
λ1λ1

Dλ1 + x1
λ1λ2

Dλ2 ,

v3 = ((x1
λ1λ1

)2 + (x1
λ1λ2

)2)Dλ1 + x1
λ1λ2

(x1
λ1λ1

+ x1
λ2λ2

)Dλ2 + x1
λ1λ2

x1
λ2λ3

Dλ3 , ...

and, in general, the only nonzero components of vk are in the λi-directions for i = 1, ..., k. Moreover,
the coefficients for vk depend only on the variables x1

λk−1λk−1
and x1

λk−1λk
in addition to the variables of

which vk−1 depend. This allows for an induction argument, since the expression for vi is independent
of n = dim V. We have

σ3 = Dλjλk (xi) dλi ⊗ dλj ⊗ dλk.

For dim V = 2 we get

σ3(v1, v1, v1) = x1
λ1λ1

, σ3(v1, v1, v2) = (x1
λ1λ1

)2 + (x1
λ1λ2

)2,

σ3(v1, v2, v2) = (x1
λ1λ1

)3 + 2x1
λ1λ1

(x1
λ1λ2

)2 + (x1
λ1λ2

)2x1
λ2λ2

,

σ3(v2, v2, v2) = (x1
λ1λ1

)4 + 3(x1
λ1λ1

)2(x1
λ1λ2

)2 + 3x1
λ1λ1

(x1
λ1λ2

)2x1
λ2λ2

+ (x1
λ1λ2

)3x2
λ2λ2

.

These four functions are clearly independent, and thus the lemma is proved in the case dim V = 2.
With an appropriate choice of ordering of the functions σ3(vi, vj, vk), each new function depends on
the same variables as the previous function in addition to xi

λjλk
, for 1 ≤ i ≤ j ≤ k ≤ 2.
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Due to the particular form of σ3 and v1, ..., vn, when restricted to our submanifold, it is clear
that this type of pattern will continue. By extending the sequence of functions, with one at a time,
each variable xi

λjλk
will be introduced with the function σ3(vi, vj, vk), where j = i, ..., k and i = 1, ..., k

and k = 1, ..., n (this also indicates the appropriate ordering). There are two possible obstructions to
this, and we have to justify that they are, in fact, not obstructions.

Firstly, the function σ3(v1, v1, v3) will depend on the same variables as the four we found above,
in addition to x1

λ1λ3
. This new variable is zero on our submanifold, and thus σ3(v1, v1, v3) is not

independent from the previous ones. However, this is exactly what we want, as we are already aware
of the relation σ3(v1, v1, v3) = σ3(v1, v2, v2). The situation is similar for σ3(v1, v1, v4) and σ3(v1, v2, v4),
and so on.

Secondly, even though the derivations depend in nontrivial ways on the variables, this fact does
not interfere with the pattern. The potential new variables coming from the derivations will always
be introduced (to our sequence of functions) with σ3(v1, vi−1, vi), and these new variables would
be x1

λi−1λi−1
and x1

λi−1λi
. The first one was introduced already by σ3(v1, vi−1, vi−1), and the second is

exactly the one that should be introduced here, as it is equal to σ3(Dλ1 , Dλi−1 , Dλi ). The fact that x1
λ1λ2

is squared in σ3(v1, v1, v2) is a consequence of this.

These lemmas imply that we have in the following sense constructed a complete set of rational
differential invariants.

Theorem 3. For every order k, the field generated by σ2(v1, v1) and σj(vi1 , ..., vij), where i1 ≤ · · · ≤ ij and
j = 3, ..., k generates a field of differential invariants with transcendence degree equal to the codimension of an
Aff(V)-orbit in general position in Ek−1.

Let sk denote the codimension of an Aff(V)-orbit in Jk(V), in general position, for k ≥ 0.
This number is the same as the transcendence degree of the field of rational scalar differential invariants
of order k. The Hilbert function for the filtered field of differential invariants is defined as Hk = sk− sk−1
for k ≥ 1, and H0 = s0. From the discussion above we deduce the following statement.

Theorem 4. The Hilbert function for the field of differential invariants is given by

H0 = 1, H1 = 0, H2 = 1, H3 =
n3 + 11n− 6

6
, Hk =

(
n + k− 1

k

)
, k ≥ 4.

Note that for n = 2, the formula for H3 coincides with that for Hk, as both gives 4.
We define the Poincaré function corresponding to the Hilbert function by the series P(z) =

∑∞
k=0 Hkzk which converges to a rational function for |z| < 1.

Theorem 5. The Poincaré function for the field of differential invariants is given by

P(z) = (1− z)−n − z
2

(
(n− 1)(n− 2)z2 + (n + 2)(n− 1)z + 2n

)
.

4.2. The Differential Algebra of Differential Invariants

The differential algebra of differential invariants is finitely generated (see [14] and references
therein). The invariant horizontal vector fields v1, ..., vn act on the differential invariants as derivations,
resulting in new differential invariants which, in general, are of higher order. It is clear that we get,
by taking invariant derivatives of the kth-order invariants σk(vi1 , ..., vik ), a set of Hk+1 independent
differential invariants of order k + 1, for k ≥ 4 (since the coefficients of the derivations vi are only
of order 3). See for example [12] (Theorem 5.48). Thus, the algebra of differential invariants can be
generated by the differential invariants of order 4, together with the invariant derivations.
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Theorem 6. The differential algebra of scalar differential invariants is generated by the invariant derivations
v1, ..., vn and the scalar invariants σ2(v1, v1), σ3(vi, vj, vk), and σ4(vi, vj, vk, vl).

Note that this generating set of differential invariants is not minimal. As explained in in the
previous section, some of the invariants σ3(vi, vj, vk) are algebraically related to each other. Moreover,
many of the invariants σ4(vi, vj, vk, vl) can be constructed by computing invariant derivatives of the
third-order invariants. In particular, when n = 2 the algebra of differential invariants can be generated
by v1, v2 and the differential invariants of order three.

4.3. Differential Syzygies for dim V = 2

The algebra of differential invariants is not a freely generated differential algebra; there are
differential syzygies among the generators. We will find the syzygies in the simplest case,
when dim V = 2. This will also let us sharpen Theorem 6 for this particular case.

Let us use the notation

I21 = σ2(v1, v1), I22 = σ2(v1, v2), I23 = σ2(v2, v2), I31 = σ3(v1, v1, v1),

I32 = σ3(v1, v1, v2), I33 = σ3(v1, v2, v2), I34 = σ3(v2, v2, v2).

We have I22 = I31 and I23 = I32. In order to write the differential syzygies in a relatively compact
form, it will be useful to have the following definitions:

J1 =
I21 I33 − I22 I32

I21 I23 − I2
22

, J2 =
I22 I33 − I23 I32

I21 I23 − I2
22

, J3 =
I21 I34 − I22 I33

I21 I23 − I2
22

, J4 =
I22 I34 − I23 I33

I21 I23 − I2
22

When dim V = 2, the third-order invariants are sufficient to generate the whole algebra. Furthermore,
if we compute invariant derivatives of I21, we get

v1(I21) = 2I21 + I31, v2(I21) = 2I31 + I32.

This implies that the invariants I21, I33, I34 are sufficient for generating the algebra of differential
invariants, together with v1 and v2. Let us express the differential syzygies relating these generators.

The derivations v1, v2 satisfy the commutation relation

[v1, v2] =

(
(I33 − I42)I22 − I23(I32 − I41)

I21 I23 − I2
22

− 3I21

)
v1 +

(
−(I33 − I42)I21 + I22(I32 − I41)

I21 I23 − I2
22

+ 1

)
v2,

where I41 = σ4(v1, v1, v1, v1) and I42 = σ4(v1, v1, v1, v2). The commutation relation determines some
of the differential syzygies. When finding the rest of them, we consider only higher-order invariant
derivatives of the form va2

2 ◦ va1
1 , where ai are non-negative integers.

Invariant derivatives of I21 give k− 1 differential invariants of order k for k ≥ 3 while the invariant
derivatives of I33 and I34 give 2(k− 2) differential invariants of order k for k ≥ 4. This implies that we
get 4 differential invariants of order three, 7 of order four and, in general, 3k− 5 of order k for k ≥ 4.
The Hilbert function is given by Hk = k + 1 for k ≥ 3, implying that there are 2k− 6 syzygies for k ≥ 4.
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Since the differential invariants are rational, finding the differential syzygies becomes a completely
algebraic problem. The first two differential syzygies (for k = 4) are found with the help of Maple,
and they are given by

S1 = 3J4 v1(v1(I21))− (2J1 + 2J2 + 3J3) v2(v1(I21)) + J1 v2(v2(I21))− v2(I33) + v1(I34)

−(4J2 + 6J4) v1(I21) + (4J1 + 6J2 + 6J3) v2(I21)− J2 I33 + (4 + 2J1)I34 + 8J2 I21 = 0,

S2 = −4J2 v1(v1(I21)) + (4J1 − 2) v2(v1(I21)) + v2(v2(I21))− 2 v1(I33) + I34 − 4J1 I33

+(8J1 − 2J2
1 + 6J2) v1(I21) + (4J2 − 12J1 + 4) v2(I21) + (4J2

1 + 2J1 J2 + 4J2 − 16J1)I21 = 0.

Notice that the invariants Ji can be expressed in terms of I21, I33, I34, v1(I21) and v2(I21).
Since only S1 depends on invariant derivatives of I34, it is clear that the invariant derivatives

of S1 = 0 and S2 = 0 will give 2(k − 3) additional independent syzygies involving differential
invariants of order k for each k ≥ 4. Thus, they generate the desired number of differential syzygies.
The commutation relation can be used to ensure that the syzygies are written purely in terms of
invariants of the form va2

2 ◦ va1
1 (I), where I is I21, I33 or I34. We get the following theorem.

Theorem 7. The differential algebra of scalar differential invariants is generated by the invariant derivations v1

and v2, and the scalar differential invariants I21, I33 and I34. The differential syzygies are generated by S1 = 0
and S2 = 0.

Remark 5. In [5] it was noted that there is a relation between the curvature of σ2 and higher moments. Indeed,
when dim V = 2 the scalar curvature of σ2 can be written as

−1
2
(I21 I23 − I2

22)I34 + (2I31 I23 − I21 I33)I33 − I3
32

(I21 I23 − I2
22)

2
.

5. Thermodynamics of Gases

We will now apply the ideas above to the context of gases in thermodynamic equilibrium.
Consider the thermodynamic space with variables p, T, e, v, s corresponding to pressure, temperature,
internal energy, volume and entropy. The entropy is related to the information gain I by the formula
dI = −ds. By aligning the one-form θ = dI − λidxi with the fundamental thermodynamic relation
−ds + T−1de + pT−1dv = 0, we see that we can get the standard thermodynamics of gases from the
measurement of a point (e, v) ∈ V, and the principle of minimal information gain. The relationship
between p, T, e, v and x1, x2, λ1, λ2 is

x1 = e, x2 = v, λ1 = −T−1, λ2 = −pT−1.

We will suppress the information gain, or entropy, from the picture, and consider a system in
thermodynamic equilibrium as a Lagrangian submanifold of V ×V∗ on which the symplectic form

ω = dθ =
1

T2 (de ∧ dT + pdv ∧ dT + Tdp ∧ dv)

vanishes. We will assume T 6= 0 throughout.
Similarly as above, we let the Lagrangian submanifold L ⊂ V ×V∗ be given by two functions

e(T, p), v(T, p). Restricting ω to such a submanifold gives

ω|L =
1

T2 (ep + pvp + TvT)dp ∧ dT,
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implying that L is Lagrangian if and only if

F = ep + TvT + pvp = 0.

The differential equation F = 0 determines the submanifold E1 in J1(V∗ ×V, 2).

5.1. The Group Action

In the (nonlinear) coordinates T, p, e, v, the Lie algebra corresponding to the Aff(V) action on
V ×V∗ is spanned by the six vector fields

∂e, ∂v, ∂p − v∂e, e∂e + T∂T + p∂p, v∂v − p∂p, e∂v + Tp∂T + p2∂p.

Orbits in general position in E1 are six-dimensional. The subset on which the orbit dimension decreases
is given by T(epvT − eTvp) = 0. Positive definiteness of σ2 implies positivity of the left-hand side of
this equation (see the end of Section 5.2).

One can ask if it is appropriate to consider arbitrary affine transformation on points (e, v). We will
consider the action by two different subgroups of Aff(V), in addition to the full group of affine
transformations, and write down the differential invariants for each of these three group actions.
The choices of the two subgroups are based on recent results concerning the thermodynamics of fluids
on two different manifolds.

In [17], the symmetries of compressible viscid fluids were found. Some of the symmetries are
purely geometrical, such as translations, rotations and Galilean transformations. In addition there are
some symmetries that act on thermodynamic variables. In particular there is a three-dimensional Lie
algebra that is spanned by

e∂e + T∂T + p∂p, v∂v − p∂p, v∂e − ∂p.

It corresponds to the group action given by (e, v) 7→ (Ae + Cv, Bv) for A, B ∈ R \ {0}, C ∈ R.
In [18], the symmetries of compressible viscid fluids on a spherical layer were found. In this

case, the thermodynamic part of the symmetry Lie algebra is a Lie subalgebra of the one above. It is
spanned by

v∂e − ∂p, v∂v + 2e∂e + 2T∂T + p∂p.

It corresponds to the group action given by (e, v) 7→ (A2e + Bv, Av) for A ∈ R \ {0}, B ∈ R.

Remark 6. To be precise, in both [17,18] there is also a vector field ∂s corresponding to translation in entropy.
These transformations are not contained in Aff(V), and since we consider here only differential invariants of
Lagrangian submanifolds of V ×V∗, they will not affect our description of differential invariants. However, we
swiftly note that if we extend the Lie algebras above with this vector field, the differential invariant of order zero
that corresponds to entropy will not be invariant any more.

5.2. Differential Invariants with Respect to Aff(V)

The algebra of differential invariants with respect to Aff(V) was in principle completely described
in section 4. We found both generators and syzygies for the case dim V = 2. In the new coordinates,
the tensors α1, σ2 and σ3 are given by
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α1 = − 1
T
((pvT + eT)dT − TvTdp) ,

σ2 =
1

T2

(
(pvT + eT)dT2 − 2TvTdTdp− Tvpdp2

)
,

σ3 =
1

T3

(
(2(pvT + eT) + T(pvTT + eTT))dT3 − 3T(TvTT + 2vT)dT2dp

− 3T(TvTp + vp)dTdp2 − T2vppdp3
)

.

In this section we will use a slightly different set of generators for the algebra of differential
invariants. With the help of the DifferentialGeometry and JetCalculus packages and the pdsolve
procedure in Maple we find a generating set of invariants whose expressions are simpler in the current
choice of coordinates. It is possible to find the second-order differential invariants by solving the
system of linear partial differential equations given by X(1)

i ( f (T, p, e, v, eT , vT , vp))|F=0 = 0 for a basis
X1, ..., X6 of the Lie algebra of vector fields corresponding to the group action.

First of all, we have the following invariant derivations:

∇1 = −TDT , ∇2 =
TvT DT + (eT + pvT)Dp

(eTvTT − eTTvT)T

And we remember from the previous section that the Hilbert function for the field of rational differential
invariants is given by H1 = 0, H2 = 1 and Hk = k + 1 for k ≥ 3.

The verification of the theorems in this section consists of two parts. Firstly, one must check that
the functions and derivations given are invariant, something we recommend doing with the help of
Maple. Secondly, one must verify that the differential invariants and invariant derivations allow us
to generate a sufficient amount of independent differential invariants (compare with Hk). Due to the
simple form of the differential invariants and invariant derivations, this is straightforward.

Theorem 8. The differential invariants

I2 = pvT + eT , I31 = −(pvTT + eTT)T, I32 =
(eTvTT − eTTvT)

2T3

epvT − eTvp
,

I33 =

(
2TvT I2vTT + I2

2 vTp + v2
T(I2 + I31)

)
T

(epvT − eTvp)
,

I34 =
T2 (3T2v2

T I2vTT + 3TvT I2
2 vTp + I3

2 vpp + Tv3
T I31 + 4Tv3

T I2 + 3vTvp I2
2
)
(eTvTT − eTTvT)

(epvT − eTvp)2

constitute a transcendence basis for the field of third-order differential invariants.

Here we have recycled the notation I3i that we used in Section 4.3. These are not exactly the
generators we used above, but I2 = σ2(v1, v1). We notice that this second-order differential invariant
is what is known in thermodynamics as the heat capacity (at constant pressure). Thus the concept
of heat capacity is given to us automatically if we consider the action of the affine group on V ×V∗

(a subgroup of the affine group will lead to more scalar differential invariants).

Example 1. Requiring I2 to be constant singles out a special set of Lagrangian submanifolds. They are solutions
to the system

F = ep + TvT + pvp = 0, I2 = pvT + eT = C
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for C ∈ R, and they are given by

e = f1(p)T − f ′2(p)p2, v =
(C− f1(p))T

p
+ f ′2(p)p + f2(p).

By using the invariant derivations∇1 and∇2 we can generate the algebra of differential invariants.
Notice that I31 = ∇1(I2).

Theorem 9. The differential algebra of scalar differential invariants is generated by the invariant derivations
∇1 and ∇2, together with the differential invariants I2, I32, I33, I34.

Notice also that the tensor σ2 takes diagonal form when written in terms of the frame ∇1,∇2:

σ2(∇1,∇1) = I2, σ2(∇1,∇2) = 0, σ2(∇2,∇2) = I2/I32

Positive definiteness of σ2 implies I2 > 0 and I32 > 0 (the latter may be replaced by
(epvT − eTvp)T > 0).

5.3. Differential Invariants with Respect to a Three-Dimensional Subgroup

Now, let us consider the three-dimensional group from [17] which acts by (e, v) 7→ (Ae + Cv, Bv)
for A, B ∈ R \ {0}, C ∈ R.

The Hilbert function is in this case given by H1 = 1 and Hk = k + 1 for k ≥ 2. Thus, we get
4 invariants of order two.

Theorem 10. The differential invariants

e + pv
T

,
TvT

v
, eT + pvT , eT − ep

vT
vp

generate the field of second-order differential invariants.

We notice that the last two invariants are the heat capacity at constant pressure and at constant
volume, respectively. The derivations TDT and T

v Dp are invariant, and by using them we can generate
the algebra of differential invariants.

Theorem 11. The differential algebra of differential invariants is generated by the following two differential
invariants of order 1 and two invariant derivations:

J1 =
e + pv

T
, J2 =

Tvp

v2 , ∇̃1 = TDT , ∇̃2 =
T
v

Dp

The generators are related by the differential syzygy

∇̃1(J2) + ∇̃2(∇̃2(J1))− J2∇̃2(J1) = 0.

The invariant J2 can be written in terms of the invariants in Theorem 10. We use it here because it
gives a simple differential syzygy.

Example 2. Let us find the Lagrangian submanifolds for which J1 is constant. By solving the system

F = ep + TvT + pvp = 0, J1 =
e + pv

T
= C,
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for C ∈ R, we get
e = (C− f (p))T, pv = f (p)T.

5.4. Differential Invariants with Respect to a Two-Dimensional Subgroup

Now, let us consider the two-dimensional Lie group from [18] which acts by (e, v) 7→ (A2e +
Bv, Av) for A ∈ R \ {0}, B ∈ R.

The Hilbert function is in this case given by Hk = k + 1 for k ≥ 1. Thus, we get 5 invariants of
order two.

Theorem 12. The differential invariants

pv + e
T

,
v2

T
, vvT , vp, pvT + eT

generate the field of second-order differential invariants.

The derivations TDT and vDp are invariant, and by using them we can generate the algebra of
differential invariants. We reuse the notation from the previous subsection.

Theorem 13. The differential algebra of differential invariants is generated by the following two differential
invariants of order 1 and two invariant derivations:

J1 =
pv + e

T
, J2 =

v2

T
, ∇̃1 = TDT , ∇̃2 = vDp

The generators are related by the differential syzygy

2∇̃2(J1) + ∇̃1(J2)− J2 = 0.

5.5. The Significance of the Differential Invariants

We end the paper with a discussion on the significance of the differential invariants. In order to
simplify the discussion, we will focus mainly on the group action of the two-dimensional Lie group
considered in the previous subsection, but the ideas are general. We denote the Lie group by G.

A differential invariant I is a function on Ek ⊂ Jk(V ×V∗, 2) that is constant on G-orbits. It can be
restricted to a Lagrangian submanifold L, resulting in a function I|L on L. For example, if L is given
by a particular pair of functions e(T, p) and v(T, p), then the differential invariant eT + pvT restricts
to a function eT(T, p) + pvT(T, p). A transformation from the Lie group under consideration, such as
(T̃, p̃, ẽ, ṽ) = (T, p− A, e + Av, v), transforms the functions e(T, p) and v(T, p) into two new functions
ẽ(T̃, p̃) = e(T, p− A)− Av(T, p− A) and ṽ(T̃, p̃) = v(T, p− A), but the differential invariant remains
the same:

ẽT(T̃, p̃) + p̃ṽT(T, p) = eT(T, p− A) + (p− A)vT(T, p− A)

This function gives the same value at the point (T, p) in L as at the point (T̃, p̃) in the transformed
Lagrangian manifold L̃. Thus, if we treat Lagrangian manifolds that are related by a transformation
in G as equivalent, the differential invariants play an important role, as they are the scalar functions
determined by e(T, p) and v(T, p) and their derivatives that only depend on the equivalence class of L.

The differential invariants can also be used to distinguish non-equivalent Lagrangian manifolds
and classify them. Consider the differential invariants

J1 =
pv + e

T
, J2 =

v2

T
, K1 = vvT , K2 = vp, K3 = pvT + eT .
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If we restrict these invariants to a Lagrangian submanifold L, we get five functions
that depend on T and p. We consider the subset of R5 parametrized by
(J1|L(T, p), J2|L(T, p), K1|L(T, p), K2|L(T, p), K3|L(T, p)). For generic Lagrangian manifolds this
is a two-dimensional surface, and we call it the signature surface of L. Clearly, two equivalent
Lagrangian manifolds give the same signature surface.

We will now generate the algebra of differential invariants in a different way than we did above.
Let ∂̂1, ∂̂2 denote the Tresse derivatives with respect to the pair J1, J2. They are derivations of the
form aDT + bDp, where a and b are functions on E1, that are uniquely determined by the condition
∂̂i(Jj) = δij. Here it is important that

d̂J1 ∧ d̂J2 =
v

T2

(
J2 − 2J1K2 − 3K1 + 2K2K3 + 2K2

1/J2

)
dT ∧ dp 6= 0,

where d̂ is the horizontal differential. This condition determines an Zariski-open subset in E1, and we
consider only Lagrangian manifolds whose 1-jets lie in this open subset. Another way to say it is
that we consider only Lagrangian manifolds L such that d(J1|L) ∧ d(J2|L) 6= 0 for every point in L.
Note that this condition guarantees that the signature surfaces are two-dimensional.

It is not difficult to check that we can generate all differential invariants by using these five
differential invariants and the Tresse derivatives. Then, since all differential invariants can be generated
from J1, J2, K1, K2, K3 and the Tresse derivatives, it becomes clear that the signature manifold of L
contains all information about its invariants. Since the field of rational differential invariants separates
orbits in general position in Ek for every k [14], distinguishing non-equivalent Lagrangian manifolds
(with jets in general position) comes down to comparing their signature surfaces.

Now we will find conditions that the signature surfaces must satisfy. By computing ∂̂i(Kj), we get
six differential invariants of order three. Since H3 = 4, there are at least two differential syzygies.
In fact, there are exactly two and they are given by

0 =
(
(−2J2K2(J1 − K3) + (J2 − K1)(J2 − 2K1))∂̂1(K1) + J2(J2 − 2K1)(J1 − K3)∂̂1(K2)

+ J2(J2 − 2K1)
2∂̂2(K2) + 2J2K2(J2 − K1)∂̂1(K3) + 4J2

2 K2
2 ∂̂2(K3)− J2K1K2

)
,

0 =
(
(2J2

2 K2(J1 − K3)− J2(J2 − K1)(J2 − 2K1))∂̂2(K1) + J2
2 (J1 − K3)

2∂̂1(K2)

+ J2
2 (J2 − 2K1)(J1 − K3)∂̂2(K2) + J2(J2 − K1)

2∂̂1(K3) + 2J2
2 K2(J2 − K1)∂̂2(K3)

− K1(K1(J2 − K1) + J2K2(J1 − K3))
)

.

All higher-order syzygies are differential consequences of these. The Tresse derivatives play the
role of partial derivatives with respect to J1 and J2 (their restriction to a Lagrangian submanifold L
are partial derivatives with respect to J1|L and J2|L), and these two differental syzygies are partial
differential equations that the signature manifolds must satisfy. They are often called the quotient or
factor equations. Their solutions can be interpreted as equivalence classes of Lagrangian submanifolds.
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