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Abstract: In this article, we present a generalized view on Path Integral Control (PIC) methods.
PIC refers to a particular class of policy search methods that are closely tied to the setting of Linearly
Solvable Optimal Control (LSOC), a restricted subclass of nonlinear Stochastic Optimal Control (SOC)
problems. This class is unique in the sense that it can be solved explicitly yielding a formal optimal
state trajectory distribution. In this contribution, we first review the PIC theory and discuss related
algorithms tailored to policy search in general. We are able to identify a generic design strategy that
relies on the existence of an optimal state trajectory distribution and finds a parametric policy by
minimizing the cross-entropy between the optimal and a state trajectory distribution parametrized
by a parametric stochastic policy. Inspired by this observation, we then aim to formulate a SOC
problem that shares traits with the LSOC setting yet that covers a less restrictive class of problem
formulations. We refer to this SOC problem as Entropy Regularized Trajectory Optimization. The
problem is closely related to the Entropy Regularized Stochastic Optimal Control setting which is
often addressed lately by the Reinforcement Learning (RL) community. We analyze the theoretical
convergence behavior of the theoretical state trajectory distribution sequence and draw connections
with stochastic search methods tailored to classic optimization problems. Finally we derive explicit
updates and compare the implied Entropy Regularized PIC with earlier work in the context of both
PIC and RL for derivative-free trajectory optimization.

Keywords: entropic inference; entropy regularization; stochastic search methods; path integral control

1. Introduction

Finding controllers for systems that are high dimensional and continuous in space is still one
of the most challenging problems faced by the robotic and control community. The goal is to find a
feedback policy that stabilizes the system and that possibly also encodes rich and complex dynamic
behavior such as locomotion [1]. A feedback policy is a state- and time-dependent function u(t, x) with
u representing the input applied to the system that is in a state x at time f. A well-known paradigm
to design such policies is Stochastic Optimal Control (SOC) [2]. The policy is determined such that
when applied to the system, it is expected to accumulate a minimized cost over a specified finite time
horizon. Finding such an optimal feedback policy is an elegant and appealing theoretical idea but
meets significant difficulties in practice. Explicit expressions for the optimal policy u*(t, x) rarely exist
and one often has to resort to local solutions instead. Such local solutions can be found by so called
trajectory optimization algorithms (In this work we focus on discrete-time system and model-based
strategies, in the sense that a simulator is available that closely approximates the actual dynamics) [3,4].
These yield open-loop solutions of the form u*(t) = u*(t, x*(t)) where the signals u*(t) and x*(t) are
optimal in the sense that they minimize the accumulated cost starting from a given fixed initial state.
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In hierarchical control approaches such trajectory optimizers are used to discover rich and
complex dynamic behaviors “offline” [5]. The system is then stabilized “online” using a linearized
feedback-controller around the optimal trajectory. The locally linear feedback-controller is usually
designed such that uf, (¢, x) = k(t) +K(t)x(t) = u*(t) +K(t)(x(t) — x*(t)) where K(t) =~ Vu(t, x*(t))
and k(t) = u*(t) + K(t)x*(t). The gradient K(¢) is approximated by defining a Linear Quadratic
Regulator (LQR) problem around the optimal trajectory using a second order Taylor expansion. In fact,
this LQR problem then also provides a correction to {x*(t), u*(t) } were this linearization point may
not be optimal. As such, a new trajectory {u*(¢),x*(t)} is obtained around which a new LQR can
be defined. Iterating this approach will incrementally improve the trajectory. This is exactly how
gradient based trajectory optimization algorithms work such as Differential Dynamic Programming
(DDP) [3,6] and iterative LQR (iLQR) [7]. It is implied that gradient based trajectory optimizers
require a differentiable model and cost function. Furthermore, they are notoriously ill-suited to
handle state constraints. A second application is that of Model Predictive Control (MPC). The idea
is to compute an optimal trajectory initialized with the current state measurement and apply the
optimal open-loop controller every sample instant. This approach provides a “just-in-time” service
and circumvents computation of the explicit policy altogether. MPC is feasible provided that the
trajectory optimization problem can be solved in a single sample period [8]. This poses hard real-time
requirements on the trajectory optimizer that are rarely met in practice, specifically for nonlinear
dynamics with state and input constraints.

1.1. Stochastic Search Methods

In this article, we are interested in solving the trajectory optimization problem above using a
sample based optimization method, or a so-called stochastic search method. Stochastic search methods
rely on randomness to probe the optimization space and maintain mechanisms that eventually guide
that randomness towards prosperity. Broadly speaking, a stochastic search method maintains a prior
population and generates a posterior population based on the prosperity of the individuals.

Evolutionary Strategies (ESs) refer to a particular subclass of stochastic search algorithms tailored
to static optimization, that, as opposed to population based algorithms [9], engage a parametric
(0) search distribution model, 7(x|f) : X +— R>g. Every main generation, g, a sample population,
Xy = {x"é}, is generated from a search distribution 77(x|6,) and the search distribution parameters,
g1 < 0g, are updated based on the relative success of the individual samples. The objective
function value f(x*) is used as a discriminator between prosperous and poor behavior of each
individual, x* [10]. When iterated this concept spawns a sequence of distributions, {m¢}. The update
procedure is devised so that the distribution sequence migrates gradually through the optimization
space and concentrates around the optimal solution eventually. Although that limiting the sequence to
a parametric distribution family may compromise the inherent expressiveness or elaborateness of the
associated search, it also elevates the determination of update rules, from what are basically heuristics,
to a more rigorous and theoretical body [11,12]. Well-known members are the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) [11,13] and the Natural Evolutionary Strategy (NES) [14].
Most ESs consider a multivariate Gaussian parametric distribution and provide appropriate update
procedures for the mean, ji¢, and covariance, X,. Examples of application on medium to high scale
problems for non-differential design optimization are [15-21].

ng(x) = N(Gg) = N(x|l/lgr):g)

In the present work, we aim to address trajectory optimization problems, exploiting stochasticity
as a natural means of exploration, in a similar fashion as how ESs address static optimization problem.
The trajectory optimization problem is however fundamentally different in the sense that we can no
longer probe the optimization space directly. We can only do so by applying stochastic policies to the
system, then observe how the system evolves and infer an updated search distribution from these
system rollouts.
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Specifically, we are interested in locally linear Gaussian feedback policies of the following form,
that we can apply to the system to artificiality inject the required stochasticity. Clearly this policy
resembles the locally linear feedback trajectory as was describe in the previous paragraph and the idea
can in that sense be understood as a sample based implementation of the iLQR or DDP algorithm.

gt (1]x) = N (u|x;0g,) = N (ulkgr + Kgix,Zg 1)

The covariance determines the explorativeness of the policy and therefore the diverseness of the
samples. Our goal is to actively shape it to stimulate exploration.

1.2. Path Integral Control

In the previous decade, a novel class of stochastic search algorithms was discovered that partially
answer our question. This class is known as Path Integral Control (PIC). PIC is closely related to
the Linearly Solvable Optimal Control (LSOC) prolem. LSOC is a restrictive subset of the Stochastic
Optimal Control (SOC) framework (see Section 2) and is characterized by a number of remarkable
properties (see Section 3.1) [22-24]. It was already pointed out that PIC and ES exhibit structural
similarities [25,26]. This lead to the development of a PIC-CMA algorithm. This method deviates from
the theory of LSOC and adapts the policy covariance in analogy with CMA-ES. This modification
improved the convergence properties significantly yet ignores the underlying theory of LSOC. Other
attempted generalizations include [27,28].

There has been keen interest in such algorithms as stochastic search algorithms may exhibit
several advantages over gradient based algorithms [25,26,28]. So far it has been used in guided policy
search to generate a set of prior optimal trajectories that were then used to fit a global policy [29] and
is one of the two algorithms promoted by the Lyceum robot learning environment [30]. The use of
PIC algorithms for real-time control applications was only recently considered as their execution is
similar to Monte Carlo (MC) algorithms and were therefore thought to be too time critical to perform
in real-time. However, with the rise of affordable GPUs and the ease of parallelization of MC based
methods, it may become feasible in the near future to iterate dynamic stochastic search algorithms in
real-time [31,32]. Nevertheless, practitioners of such methods have raised issues concerning the update
of the covariance matrix [25,29,31,32]. It seems a mechanism is inherent to the existing framework that
makes the covariance matrix vanish, compromising exploration. In other words, the search distribution
collapses prematurely. Many authors suggested that the issue is limitedly understood and that it seems
unlikely that it can be resolved with the theory at hand.

Furthermore, it is clear that ESs and PIC methods are closely related and that therefore PIC
method may benefit from the rich body of work concerning ESs. However, as PIC are derived solely
from the theory of LSOC, we argue that they are only limitedly understood and their similarity has
been circumstantial. Recently, Williams et al. provide a novel derivation of the PI> method from an
information-theoretic background [32]. Other authors have explored the relation between LSOC and
information-theory [32-34], however these studies aimed for a physical connection and understanding.

In this paper, we venture on a different strategy and aim to identify a generalized set of PIC
methods. We aim to describe an overarching optimization principle that leads us to derive to ESs in
the context of static optimization and PIC methods in the context of dynamic optimization. Therefore,
we approach the problem from an algorithmic point of view, rather than searching for a deeper physical
interpretation or understanding. To establish the overarching framework, we identify the principle
of entropic inference as a suitable setting to synthesize stochastic search algorithms and derive an
entropic optimization framework from it. This will also allow us to derive a generalized set of PIC
methods which are no longer limited to the LSOC setting and therefore do not inherit any of its
inherent limitations. Furthermore, the mutual theoretical background paves way for a knowledge
transfer from ES to PIC. Finally, this viewpoint provides us with a unique opportunity to relate PIC to
existing Entropy Regularization paradigms in Reinforcement Learning [35-38].
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1.3. Contributions

As our efforts span a rather extensive body of earlier work and aim to provide a holistic view of
related subjects, we feel inclined to list our original contributions.

e  We provide a comprehensive overview of existing Path Integral Control tailored to policy search.
Here we point out a mutual underlying design principle which allows for a formal comparison
and classification.

e We propose an original and intuitive argument for the introduction of entropy regularization
terms in the context of optimization that is based on the principle of entropic inference.

o  We untie the derivation of Path Integral Control methods from its historical roots in Linearly
Solvable Optimal Control and illustrate that a similar set of algorithms can be derived directly from
the more timely framework of Entropy Regularized Optimal Control. Therefore, we introduce the
framework of Entropy Regularized Trajectory Optimization and derive the Entropy Regularized
Path Integral Control (ERPIC) method. We consider this to be our primary contribution.
Furthermore, this work elevates the structural similarity between Evolutionary Strategies, such as
the CMA-ES [13] and NES [14], and PIC methods originally pointed out and exploited in [25], to a
formal equivalence.

e  We give a formal comparison of preceding PIC methods and ERPIC tailored to derivative-free
trajectory optimization with control affine dynamics and locally linear Gaussian policies.

2. Preliminaries and Notation

Let us first introduce a number of relevant concepts and establish notation.

2.1. General Notation

We denote the set of continuous probability density functions over any closed set X C R” as
P(X) ={p: X — Rxo| [, m(x)dx = 1}. We will not always specify the argument as it is implied by
the distribution definition. The statement 77 o« p with 77 € P denotes that 7t is proportional to p up
to a normalization constant. The expectation of f over a probability density function 7 is denoted as
Er[f] = [y 7(x)f(x)dx. We will also need a number of information theoretic measures.

The differential entropy is defined as

H{n] = Ex[-logn] = — / log 7t(x)7t(x)dx

This is widely interpreted as a metric of uncertainty. However, more precisely it is to say that it is
a measure for the amount of information left to be specified about some epistemological uncertain
variable X for which we have represented our belief with a probability density function 7 [39].

The Kullback-Leibler divergence or relative entropy between two probability density functions 7t

and p is defined as

Dir | p] =Ex [log ﬂ = /X n(x)log 7;((;)) dx >0

The relative entropy is always positive but not symmetric D [ || p] # D [p || 7t]. An interpretation
is given in Section 4.

2.2. Dynamic System Models

Further, we will consider controlled stationary deterministic or stochastic discrete-time systems.
We use x € X to represent the system state and u € U to denote the input or control effort.
Deterministic systems are modeled with a state-space function x;11 = f(xt, us), f: X XU — X.
Stochastic systems are modeled by a state transition distribution function x;y1 ~ p(xpq|xe, ue),
p: X xX x U— Rsj. We also define two classes of non-stationary feedback policies. Deterministic
policies are denoted as u; = u(t,x;), u : Zx X +— U, and stochastic policies are denoted as
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up ~ m(ug|t,x¢), T Z XU x X — Rsg. Note that any deterministic dynamic system can also
be represented as a stochastic system using the Dirac delta, p(x'|x, u) = d(x’ — f(x,u)). Analogously,
any deterministic policy can also be represented as a stochastic policy, 7t(u|t, x¢) = 6(u — u(t, x¢)).

A realization of a system with policy u or 7 over a horizon T results into a trajectory
T = {xoup,x1,11,...,x7_1,ur—1,x7} € T C Si1r X Apr—1 or a state trajectory 7, =
{x0,x1,...,x7_1,x7} € Ty C S1.7- In any case, we will assume that trajectories T € 7 agree with the
underlying system dynamics and is induced by a stochastic (or deterministic) policy.

Considering that we work within a stochastic setting, we can associate a probability to each
trajectory. The trajectory distribution or path distribution induced by a policy 7 is denoted as p(t| 7).
The state trajectory distribution induced by a policy 7t is denoted as p(7x). These distributions can be
factorized in a product of transition probabilities.

T_

p(tlm) = T1,Zy Pl us)mw(uelt, x)
T-1

Pn(Tx) - tho pﬂf(xt-‘r1|t/ .Xt)

Here, we defined the controlled state transition distribution. Note that the control effort is now
entirely explicit.

pr(Xeg1lt, xi) = /P(xt+1|xt/ut)7f(ut|f/xt)dut

This definition also implies two state trajectory distributions of particular interest. The distribution
pu induced by a deterministic policy # and the uncontrolled or free trajectory distribution which we
denote as pg.

We can associate a cost to a trajectory T € 7. In a general setting, we consider the cost R : 7 +— R
that accumulates atarater : § x A — R.

R(7) = rr(xr) + ZtT:_Ol re(xe, ut)

Analogously, we can associate a cost C : Ty +— R to state trajectories 7, € Ty. Here, the control
efforts is accounted for implicitly through the accumulation rate ¢ : & x X +— R that penalizes
transitions x — x" (Note that we will often change between the use of time subscripts and the prime
notation to indicate an increment in the time dimension)

T-1
C(Tx) = CT(xT) + Zt:O Ct(xl‘/ xt-‘rl)

If there exists an inverse dynamic function f~! so that u = f~1(x,x") when x’ = f(x,u), C and
R are equivalent in the sense that r¢(x, f~1(x,x')) = c;(x,x") and r7(x) = c7(x). We emphasize here
that the existence of such an inverse model is a mere formal assumption. In the practical setting to be
presented, we will never actually have to invert the system dynamics given that we will have access
to u.

Finally, we are also interested in the exotic cost function L : 7y — R. The total cost can be
decomposed as the superposition of a cost L that accumulates with a solely state dependent rate
[: X — R and a term that accounts for the control effort. Specifically we are interested in the situation
where the control efforts are penalized indirectly by introducing the logarithm of the ratio between the
controlled and free state transition probabilities. This specific choice will have a remarkable technical
consequence later on. Further, note that L is therefore of the same type as C and operates on 7y .
It follows that if the transition x — x’ is likelier when the system is controlled, i.e., p, (x'|x) > p(x’|x)
the ratio is larger than 1 and so its logarithm is positive, effectively inducing a cost. Alternatively,
when the transition becomes less probable, this induces a negative penalty, again inducing a cost. As a
result it will depend on L whether the use of p, over py is beneficial or not.
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T-1 T-1

B PulXegat, xt)
L(t) = Ir(xr) + t;) Ie(xe) + t;) log  Greealt 1)

L)

2.3. Stochastic Optimal Control

We are interested in finding policies that minimize the expected induced cost. Hence we address
the Stochastic Optimal Control (SOC) problem. Such policies are known to be stabilizing and
are capable of encoding very rich and complex dynamic behavior even for considerably simple
cost formulations.

ut = arganEp(T\u)[R(T)] (1)

Solving (1) poses a so-called dynamic optimization problem. The prefix dynamic emphasizes that
the optimization variables are constrained by a causal structure which allows to break the problem
apart into several subproblems that can be solved recursively. This problem property is also known as
optimal substructure which can be exploited by dedicated solution algorithms.

Correspondingly, the problem above can also be represented with the recursive Bellman equation.
Here, V; : A} — R represents the value function or optimal cost-to-go, i.e., the cost that is accumulated
if we initialize the system in state x at time f and control it optimally until the horizon T.

V(t,x)= min / m(ult, x) (rt(x,u) + / V(t+1,x")p(x'|t, x,u)dx’) du

We emphasize that we presume the policy to be stochastic. However, unless there is the
incentive to maintain a stochastic policy for the purpose of exploration, the expression minimizes for a
deterministic policy so that the expectation over the policy can be omitted [40]. This redundant form
is however appealing for later comparison. Further, note that if also p(x'|x, u) = §(x’ — f(x,u)), this
problem reduces to deterministic optimal control.

V(t,x)= muinrt(x,u) + / V(t+1,x")p(x'|x,u)dx’ )

Throughout this manuscript we will further assume that the initial state is fixed and known
exactly, i.e., x(0) = x. We could stress this formally with our notation and exemplify that any function
associated to problem (2), be it u(t, x) 7t(u|t, x) or V(t,x) or any of the implied functions p(x'|t, x)
and p(7y) are conditional on xg. In order not to overload the notational burden we simply assume
this to be true throughout the paper. This assumption will allow us to concentrate on local solutions or
so called trajectory optimizers.

2.4. Local Parametric Policies

The algorithms we present here do not aim to retrieve an exact solution to the problem above,
but instead operate on a restricted class of parametrized policies 7t(u|t, x,0) where 6 refers to the
policy parameter. Considering that we are interested in trajectory optimizers, we restrict our focus to
locally linear Gaussian policies of the form 7t(ult, x,0) = N (u|u; + Kix, %), so that 6 = {6;}]_, with
0; = {uy, K¢, 2t }. Here K¢ represented a feedback gain matrix and X the covariance matrix which
controls the stochasticity and therewith the explorative incentive of the policy. This parametrization
allows to approximate the exact solutions in the neighborhood of an optimal open-loop trajectory
initialized at for example x(0) = xp.
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3. Path Integral Control

In this section we give a brief introduction to the theory of LSOC and give an overview of
existing PIC methods rooting directly from it. In almost all preceding contributions (apart from those
following [22]), LSOC is addressed in a continuous time setting and a discretization is only performed
afterwards in order to derive practical methods. Here we will directly address the LSOC problem in a
discrete time setting as it better suits our requirements and as such also avoid the tedious technicalities
involved with the discretization.

Second, we give a comprehensive overview of the class of PIC methods. As far as we are aware
of, this is the first time such a formal comparison is made, revealing an overarching design principle
shared by all algorithmic formulations. The identification of this design principle makes it easier to
pinpoint the core prerequisite of any PIC method and will allow us to introduce a generalized set of
PIC methods in Section 4.3.

3.1. Discrete Time Linearly Solvable Optimal Control

Formally, the discrete time LSOC framework refers to the following SOC problem,

V(t,x) = minl;(x) + / p(x'|t, x,u) (log m +V(t+1, x’)) dx’ (3)

= minli(x) + D [py I po] + Ep, [V (t+1,x7)]

We emphasize that the control effort is penalized implicitly through the Kullback-Leibler
divergence between the controlled and free state transition probabilities. For a formal motivation for
this particular penalty formulation, we refer the reader to the work in [22,33] and recall the intuitive
justification that was already given in Section 2. Here, we are mostly interested in the technical
implications that are associated with this problem formulation.

Problem (3) implies the existence of an optimal policy uj g (t, x)

Uisoc(t, x) = arg mum Ii(x) + D [pu || po] +Ep, [V(t+1, x)]

In general the problem can not be solved exactly for uj g (t, x). However, the following theorem
establishes a relation between the optimal policy u{ ¢ (t, x), the optimal state transition distribution
Puteoe (x|t,x) and the optimal state trajectory distribution Pu oo (Tx), and summarizes the most
profound results in the context of LSOC.

Theorem 1. With V (t, x) defined as in (3), the following problems are equivalent,

ursoc(t, x) = argminly(x) + D [pu || po] + Ep, [V (t + 1,x')] 4
Pujoc (Y|t X) =arg min () + D pu || po] + Ep, [V(E+1, )] ®)
Puiso (T) =arg min Ep, [L] = By, [L] +Dpu || po] ©)

The latter can be solved explicitly

Puisoc (x'[t, x) o PO(x/|f,X)€7V(t+1rx')

Puisoc (1) & po(Ta)e” ()

where V (t,x) is governed by the recursion

V(t,x) = li(x) —|—log/po(x’|t,x)e*V(t+1,X’)dx/
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and where uj g0 (t, x) and pyr__(X'|t, x) are related as

Lsoc
P”fsoc<xl|t’ x) = p(x'|x, uisoc(t, x))

The proof relies on the calculus of variations. These peculiar results follow directly from the
fact that the problem does no longer depend on u explicitly. For details we refer the reader to
earlier references.

Most remarkable is that the equivalence of problems (4) and (5) implies that we can lift the
optimization problem from the control space to the state transition distribution space. Second,
although we can not solve to u; g (t, x) directly, we can solve for the induced optimal state transition
distribution, py:_ (x'|t, x). Note that therefore we should still identify V (¢, x). The equivalence of (5)
and (6) follows from the recursive definition of V (¢, x) that can be evaluated exactly, and thus implies
the existence of an explicit optimal state trajectory distribution, py;_ - (Tx) also. This is a unique trait
of the LSOC setting and lies at the very root of every PIC method. The reason why there exists an
explicit solution is a direct consequence from the control effort penalization which makes it possible to
lift the optimization problem. As an unfortunate side effect, the system uncertainty and the control
penalization are now somehow entangled. This we identify as a fundamental limitation of the LSOC
setting and related methods.

A final remark can be made with respect to control affine system dynamics, ' = a(x) + B(x)u,
disturbed by unbiased Gaussian noise ¢ ~ N (Z|0,X) in the control subspace. In this case, it is
possible to derive an explicit expression for the optimal control policy u{go(f, x). The controlled
transition distribution is then given by p(x’|x,u) = N (x'|a(x) + B(x)u, B(x)ZB(x) ") and the control
policy ujgoc(t, ) can be extracted by comparing the expected value of x’ based on either distribution
p(x'|x, uigoc (tx)) or pur (x|t x).

It is easily verified that

Epvit) [g'eiwﬂ’x,)} By (ralt,x) [é'e’i(rx““f"')]

u* t,x) = 7 = 7 7
tsoc(t x) Epo(x,“’x) [E—V(t-&-l,x )} ]Epg(x’|t,x) |:e*L(Tx‘t+1rx/):| @)

This is the discrete time version of the property given in for example [41] Theorem 1, and clearly
illustrates the path integral terminology. Moreover, it follows that the optimal policy can be estimated
with Monte Carlo sampling from the free system dynamics making it appealing to use directly in
an MPC setting [31,32,42]. However, as noted in the introduction we are mostly interested in its
applications as a trajectory optimization method.

In the following section, we detail a number of policy search methods that effectively exploit this
peculiar setting. All of them would rely on the stochastic system dynamics to explore the solution space.

3.2. Path Integral Control (PIC) Methods

The unique traits of the LSOC framework have been exploited to derive a class of so called PIC
methods. The interested reader is referred to earlier references [26-28,30,32,41,43-47]. An overview
of applications was already given in the introduction. Originally, the optimal policy was estimated
directly from (7) using Monte Carlo samples generated with the free system, i.e., pg. Other methods
evolved beyond that idea but the basic principle remained the same. In any case the goal is to find
the optimal policy u{ g (t, x) relying on the inherent stochasticity of the system. To be able to give a
concise overview, we distilled a generic design principle that allows to derive different PIC methods.
Note that the authors have identified this principle and that the derivations included in the references
may not explicitly state this concept.

The principle is based on two distributions. We assume the existence of a formal but explicit goal
state trajectory distribution, say p,+, and, use a parametrized path distribution, p,, ), induced by some
parametric policy, u(6).
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It is then possible to infer the optimal policy by projecting the parametrized distribution p,, )
onto the optimal distribution p,+, and, determine the corresponding optimal policy parameter by
minimizing the projection distance. Based on the cross-entropy argument originally made by [41],
the Kullback-Leibler divergence is used as a projection operator.

The following optimization problem is addressed.

mein]D) {pu* I pu(g)] = —E; [log py(e)] + constant
= —J(60|pyr) + constant

Provided that we can sample from the distribution p,+, this expectation can be approximated
using a Monte Carlo estimator. Assuming that we can evaluate but not sample from p,+, but dispose
of a distribution p,, that we can both evaluate and sample from, another estimate can be obtained by
the idea of importance sampling. Such a distribution is easily constructed by applying some policy
ug to the system. Particularly interesting is the setting where u, is somehow informed about the
desired distribution p,+. We denote this objective with subscript ¢ to emphasize the use of the guiding

policy ug.
]g(6|Pu*) = ]Epug [% ’ log Pu(@)}

We introduce the Monte Carlo estimator [, (6|p,+) for the formal objective defined above. As a
guiding policy we substitute u () for u,

To (0w ) = Jo (6] _iMM.l k 8
g\WPuw) = Jg Pu*) = Mk21 Pu(o )(Tk) ngu(e)(Tx) (8)
= u g X

This framework admits to define an iterative strategy where 6,1 is found by optimizing the
objective fg(0| pur). As the existence of an explicit path distribution was so far a unique trait of the
LSOC setting, the derivation of PIC methods has always been tied to the framework.

Depending on the optimal distribution substituted for p,+, the parametrization of the policy u(6)
and the strategy used to solve the optimization problem, different PIC methods are obtained that can
be useful to tackle different problems. As already stated in the introduction we are interested in its
application in the context of trajectory optimization, i.e., finding local optimal control solutions for a
fixed given initial state. Therefore, we will be interested in local policy parametrizations.

Regarding the optimization strategy we can make a distinction between two approaches,
denoted as exact methods and gradient descent methods.

3.2.1. Exact Methods

For a particular subset of policy representations in combination with a control affine system
model, the objective in (8) can be maximized exactly. If these conditions are met, the exact solution 6*
can be substituted for the next guiding policy parameter 0,,1. We refer to these approaches as exact
methods. Such are particularly interesting to find local policies. We refer to Section 5 for details.

Ogy1 = arg max Jo(0]pu+)

Regarding the choice for the goal distribution p,~ we can make an additional distinction
between the Sample Efficient Path Integral Control (SEPIC) and Path Integral Relative Entropy Search
(PIREPS) method.
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Sample Efficient Path Integral Control Method

Most convenient is to substitute the desired optimal path distribution p,: __ for p,-

Pur = p”fsoc

This strategy boils down to the one proposed by Williams et al. [30,32,44] and partially with the
one proposed in [48] (In [48], the particular estimation of the system dynamics allows for a more
general solution in terms of Equation (7). However this is out of scope here as we are interested in
local policy parametrizations). The terminology stems from the fact that the sampling is done using
the informed distribution py,, as a guiding post. Furthermore, if the parametric policy is sufficiently
expressive to cover the optimal policy u; goc, this methods converges to the actual solution of the
LSOC framework. The approximate objective is evaluated as

A 1 M _ _f(k
Jg(Olpur, ) = Mk_zlpu(eg)(Tff) opo(th) e M) - log py, (g () )

SEPIC aims to solve for py: _  directly. The problem is that if the original guiding policy is too far
removed from the optimal policy, the method will not converge. Because the interesting regions in the
solution space are simply not sampled and the optimal policy is never discovered.

Path Integral Relative Entropy Policy Search

To remedy this issue [47] proposed PIREPS.

Retrospectively, this is an information-theoretic trust-region strategy which introduces a
regularization term penalizing the Kullback-Leibler divergence between the new and old path
distribution to promote more conservative policy updates. In fact, this is a form of entropy
regularization which we will come back to in Section 4. This idea was introduced independently
from [47] in [29] to generate local policies in the context of guided policy search.

Pugn = arg;?é%ﬂ) [p” I p”fsoc} +AD {p” I Pug}

The approach generates a sequence of intermediate pseudo-optimal path probabilities that aim
to improve the convergence properties. This problem can be solved explicitly and the intermediate
probabilities are substituted for p,» consequently. The idea is that the distribution py, , will be closer
to the solution space sampled by Pu(o,) and that as a direct result the policy updates will be more
robust. Note that for ¢ — oo the sequence of pseudo-optimal path probabilities collapses on p_ .

itk - () (™

S
+
>

R M -1 1 1 fk
Jo(6lpuga) = 37 1= Pty (2) 2o () - 7™ log py ) () (10)

3.2.2. Gradient Ascent Methods

Alternatively one can try maximize the objective estimator J(|p,~) using a gradient ascent
method. Such a strategy is suited for general policy parametrizations that aim to find a global
approximation of u{ g5 (t, x).

01 =05 +17" Vefg(9|l7u*)
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Again regarding the choice of the goal distribution p,+ either the Path Integral Cross Entropy
(PICE) or the Adaptive Smoothing Path Integral Control (ASPIC) method are obtained.

Path Integral Cross Entropy Method

PICE can be considered the gradient ascent version of SEPIC and was proposed in [41].

Pur = p”fsoc

Adaptive Smoothing Path Integral Control (ASPIC) Method

ASPIC can be considered the gradient ascent version of PIREPS and was proposed more recently
in [49].

A 1 -

. __1
Pugy = arg min By, [L] +AD [Pu Il Pug| P = Pug X pig" pg e T

3.3. Other Noteworthy PIC Methods

An important subset of PIC methods, or methods that are associated to the framework of LSOC at
least, are Path Integral Policy Improvement algorithms or PI?. These methods are hard to classify as they
are somewhere in between Evolutionary Search methods and policy optimization methods and rely on
a heuristic temporal averaging strategy to resolve the conflicting policy parameter update schemes.
The most important members of this class are PI? [45], PI? with Covariance Matrix Adaptation [25] and
P12 with Population Adaptation [50]. The authors of PI>-CMA, were the first to pursue the structural
equivalence between Evolutionary Strategies and PIC methods. Based on this equivalence they
proposed to adapt the policy covariance in correspondence to the CMA-ES algorithm, improving the
convergence but destroying the underlying assumption of LSOC. This idea was successfully repeated
in the context of trajectory optimization by [29].

3.4. Other Remarks

An issue of widespread concern in RL is how to shape a deliberately stochastic policy to obtain an
explorative incentive without compromising safety measures or becoming risk seeking by unfortunate
coincidence. PIC-based methods were one of the first strategies that somewhat address this issue with
the implied connection between the uncertainty and cost. Especially, in case of deterministic systems
where a deliberate stochastic policy could be introduced. Unfortunately the underlying theory of
LSOC enforces an inverse proportionality between the control noise magnitude and the control penalty
and moreover requires the control to be penalized quadratically (see later). Although justifiable
from a control engineering perspective, this also poses severe practical limitations. Nowadays,
entropy regularization seems to be a fruitful resolution to address the issue of stochastic policy
shaping in a less restrictive or predetermined fashion. As for now it is not really clear how PIC
methods relate to the framework of entropy regularized RL and whether they can benefit from recent
advances made by this community. We shall address this question in the following section.

4. Entropy Regularized Path Integral Control

The main purpose of this section is to identify a novel SOC problem that can be solved explicitly
yielding a formal optimal state trajectory distribution. The problem formulation is in that sense similar
to the LSOC setting, yet it addresses a less restricted set of optimal control problems. Based on the
general design principle for PIC methods discussed in Section 3.2, this optimal distribution can be
substituted for the goal distribution p,+ hinting at a generalized set of PIC methods which will be
investigate structurally for the purpose of model-free trajectory optimization in Section 5.
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Our problem formulation relies heavily on the concept of entropy regularization. Entropy
regularization is a setting of widespread use in the context of RL nowadays, yet it is less studied in the
context of (static) stochastic optimization or stochastic search, at least in the way that we will treat it.

As we will show our SOC framework shares properties with static stochastic optimization and
therefore the results that we derive in the latter setting will also hold in the context that enjoys our
interest. Furthermore, we note that our results related to static stochastic optimization may be of
interest to the Evolutionary Search community. Vice versa, the methods in Section 5 may benefit from
prevailing ideas in the stochastic optimization community in order to deal with the problem of sample
efficiency which is still considered to be a major challenge by the RL community. An example of such
a strategy that is potentially interesting is importance mixing [51,52].

4.1. Entropy Regularized Optimization

There exists a large body of work that addresses the relation between inference and control.
A lesser amount of work investigates the relation between inference and optimization. In this brief
section, we provide an original and convincing argument to introduce an entropic regularization term
into formal stochastic optimization problems that does not rely on an information-theoretic but on a
strictly inference related argument. Although the resulting framework and associated distributions
are known, our justification is original and in our opinion more intuitive. The concept results into a
distribution sequence which exhibits a number of interesting properties and allows to make formal
statements about convergence rates of derived practical search methods. As it will turn out these
properties also directly apply to the entropy regularized optimal control problem that we will introduce
in Section 4.3. To appreciate the argument, we must give an introduction to entropic inference.

4.1.1. Entropic Inference

Inductive inference refers to the problem of how a rational agent should update its state of
knowledge, or so-called belief, about some quantity when new information about that quantity
becomes available. Beliefs about the quantity x € & C R" are modeled as distributions. An inference
procedure refers to the computational framework that establishes how to integrate new information
with information held by any prior belief, say p, to determine an informed posterior, say 7, consistently.

A well-known framework is that of Bayesian inference which allows to process new information
in the form of data. A lesser known inference framework deals with the setting where information is
available in the form of a constraint on the family of acceptable posteriors [53]. Specifically constraints
in the form of the expected value of some function f : X — R", i.e, E[f] = u. Consequently we
can focus our attention to the subset of distributions that agree with it C¢(u) := {7 € P : Ex[f] = p}.
Any 7 € Cf(u) that satisfies the information constraint qualifies as a potential posterior belief.
The challenge thus reduces to identifying a unique posterior from among all those that could give rise
to the constraint. The solution is to establish a ranking on the set C¢(u) by determining a functional F
that associates a value to any posterior 7 relative to a given prior p. The inference procedure is then
effectively cast into an optimization problem.

n* = arg ngg?y) Flm, p]

The problem remains in finding a suitable and meaningful functional F. The measure should
promote a distribution that is maximally unbiased (i.e., maximally ignorant) about all the information
we do not possess. This principle is referred to as minimal updating. This problem setting roots back at
least to the maximum entropy principle first introduced by Jaynes [54,55]. As many authors provided
compelling theoretical arguments for the relative entropy as the only consistent measure [39,56—60],
here it is important to emphasize that no interpretation of the measure is given. It simply is the only
measure that agrees with the axioms of minimal updating.
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The following variational problem determines the framework of entropic inference.
" =argminD [t || p] s.t. Ex[f] = u (11)
neP

We now possess of a rational argument as to why an entropy regularization term is added to any
problem and what its effect will be on the solution.

4.1.2. Optimization as an Inference Problem

Let us now argue how the principle of entropic inference can be practiced to serve the purpose of
static or classic optimization. For convenience we assume that the objective f : X C R" = R has a
unique global minimum.

x* = argg{rg/’r\}f(x)

Assume we can model any beliefs we have about the solution x* by some prior distribution,
say p € P. Second, instead of supposing information in the form of the expected value of the objective
f, here we only require that the expected value with respect to the posterior, 7, is, some amount A > 0,
smaller than the expected value is with respect to the prior. In this fashion, we change our prior belief
about the optimal solution but only to the minimal extent required to decrease the expectation taken
over f with some arbitrary value A. Put differently, we obtain a posterior that makes least claim to
being informed about the optimal solution beyond the stated lower limit on the expectation. This idea
can be formalized accordingly

I;?ei%D [T || p] s.t. Ex[f] +A < Ep[f] (12)
As the relative entropy minimizes for m = p, it follows that the inequality tightens into an
equality. Nonetheless, we should be careful when we pick a value for A > 0 that respects the bound
A < E,[f] — f*. This is a practical concern that does not interfere with what we wish to accomplish,
which is to construct a minimal update procedure that we can practice to serve the purpose of
optimization. It suffices to solve the problem above for 7t using variational calculus. This yields the
following entropic update rule where A > 0 denotes the Lagrangian multiplier associated with the
inequality constraint. This update principle is well known and can be subjected to an interesting
interpretation (The posterior distribution, 7, is equal to the prior distribution, p, multiplied with a cost
driven probability shift, e*/, that makes rewarding regions more probable, resembling the concept
of Bayesian inference. The transformation p(f) « ¢e~*f maps costs to probabilities. Indeed one may
recognize the inverse log-likelihood transformation from probability to cost as it is often used in the
context of Bayesian inference) However, as far we are aware of, it has never been derived from the
theory of entropic inference or thus minimal updating, which makes it possible to appreciate it in a
more general light.
TXp- e M

The exact value of A can be determined by solving the dual optimization problem. Alternatively,
we could also pick any A > 0 without the risk of overshooting the constraint A < [E,[f] — f*. We will
show that when A — oo, the expectation E[f] collapses on the exact solution f*. Therefore, % reduces
to a temperature like quantity that determines the amount of information that is added to p, where in
the limit exactly so much information is admitted to precisely determine f* and thus x*.

The same strategy is obtained by considering the entropy regularized stochastic optimization
problem below. Here an information-theoretic trust-region is introduced to promote conservative
distribution updates but apart from the fact that the problem can be solved exactly, there is no proper
motivation, at least not in the sense of minimal updating. This strategy has been adopted by previous
authors from the optimization community [11,61].
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minE,[f]st.D[r | p] <A

eP

Again it is easier to choose a suitable value for the implied Lagrangian multiplier A > 0 than it is
for A > 0. The problem above is therefore often relaxed using a penalty function.

e

4.1.3. Theoretical Search Distribution Sequences

The entropic updating procedure suggested in (13) can be solved exactly and implies a theoretical
distribution sequence, substituting the previous posterior for the next prior.

TTg41 X Tlg - e M = meig]En[f] +AD [ || 7rg] (14)
T

Tl & T - e if (15)

The update mechanism in (14) can be used as a theoretical model to shape practical search
distribution sequences that can be used to solve the underlying optimization problem. In practice one
seeks algorithms that estimate the posterior distribution 7741 from samples taken with the prior 7.
The theory now implies that the sequence will get gradually more informed about the optimum.

As far as we are aware of, the properties of the theoretical distribution sequence in (15) have not
been studied before. In the following Theorem we summarize some of its properties. For the proof we
refer to the work in Appendix A.

Theorem 2. Assume that, without loss of generality, objective f attains a unique global minimum at the origin.
Further define the sequence of search distributions {7t} so that g o 770 - e=8f. Then, it holds that

o thedistribution sequence {7tq } collapses in the limit on the Dirac delta distribution in the sense that

I o x=x’ (16)
im 7, =

geo 8 0, x#ux"

o the function Ex,[f] of g is monotonically decreasing regardless of 7t

Ergps [f] < Eny[f] 17)

e the function H [11q] of g is monotonically decreasing if 1 is chosen uniform on X

H [g41] < H [rrg] (18)

The property (17) is suggested by the problem definition in (12). It follows that the the sequence
{Er,[f]} converges monotonically to f*, implying that {7g} should converge to x* (16). If we
thus construct a stochastic optimization algorithm that maintains a sequence of search distributions
governed by (14), the algorithm should converge monotonically to the optimal solution.

This sequence of search distributions is increasingly more informed about the solution and as a
result its entropy content deteriorates as the sequence converges to the minimum (see Appendix A).

Properties (16) and (18) thus imply that the entropy slowly evaporates. This is an important
observation indicating that the explorative incentive of the search distribution deteriorates for
increasing g. Therefore, when we would use this sequence to shape a practical search algorithm,
this property suggest that the entropy of the sample population will slowly diminish. As a result of
the finiteness of the population it will become increasingly more likely that the correct distribution
parameters cannot be inferred from the population so that the sequence collapses prematurely.
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In order to stimulate the sequence to preserve an explorative incentive, i.e., manage the entropic
content, problem (13) can be relaxed using an entropy term (7 > 0), which will force the distribution
to maintain a finite entropy.

g1 = argminEalf] + AD [1 | 5] 78l [ (19)

The entropy regularized problem above implies the following distribution sequence. This is easily
verified relying on the calculus of variations.

A

Tgt1 & 7T§‘T” ~e7Alva (20)
TTg o ﬂ(gﬁ)g ~e7%(17(/\iw)g)f I no(ﬁy . ﬂtl;(ﬁ)g 1)

As opposed to (15), sequence (21) does not collapse on the minimum, but instead converges to

Tloo X € 7. The latter is equal to the exact solution of the entropy relaxed optimization problem
defined below.
Tleo = argminEx[f] — yH [r]
neP

The derivative of the implied functions Er, [f] and H [71¢] are given by

d%Eng [f] = —yalog (A)\ﬂ) Covp, [log Tleo, lOg %} (22)

digH [1¢] = —alog (A#) (Covns {log Tloo, lOg Z—‘;’} — aVary, {log %’D (23)

where a(g) = (ﬁ)g > 0 so that limg 00 x(g) = 0.

The convergence rate of the implied function Er, [f] now also depends on the interaction between
f and 7. If the initial distribution 77 is taken to be uniform on X, so that cov, [710, f] = 0, the expected
value will decrease monotonically. As opposed to (18) the rate will stall for large g. Derivations are
provided in Appendix B.

In Section 4.3, we introduce a stochastic optimal control problem that is characterized by a similar
distribution sequence. Therefore it inherits the properties described above. The usefulness of these
theoretical distributions, is illustrated in Appendix C where we derive a stochastic search method.

Next, let us return to our original problem and briefly review entropy regularized SOC and its

usefulness to RL as a stepping stone to Section 4.3.

4.2. Entropy Regularized Optimal Control

As we already explained in the introduction, there is no reason to maintain a stochastic policy in
the generic SOC setting (2). On the other hand, a stochastic policy can be of interest to derive policy
updating algorithms that depend on stochasticity for improved exploration rather than to rely on the
stochastic system dynamics only.

As was justified rigorously in the previous section this can be achieved by introducing an entropy
relaxation term in the optimization objective. Such a term actively stimulates a stochastic policy.
Nowadays, this is a setting of widespread use in the RL community and was explored extensively
by Levine et al. particularly in the context of Actor-Critic RL algorithms [35,62]. In recent literature,
this problem has been regularized successfully using a relative entropy relaxation term in order to
limit policy oscillations between updates [36-38,63,64]. These references address the following entropy
regularized SOC problem.
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Veri(t,x) = r7¥1€i7r)1]En [re(x,u) + Ep [Vou (t+1,x")] | — yH [71] + AD [t || 7] (24)
Mg (ult, x) = argminEr [ri(x,u) + Ep [Vera (£ +1,2)]] = yH ] + AD [ || g] - (25)

Relying on the calculus of variations, one can verify that the solution is given by [38,65]

Vg+1 = ()\ + ’)’) log/ ﬂé‘% eiﬁ (rJrEF’ [VéJrlDdu

Tlgy1 & 7'(5?17 e ([

The authors in the respective references do use this problem formulation as a starting point to
derive policy search methods. Because of the expectation in the exponent, it is impossible to practice
the recursion and find an explicit expression for the corresponding optimal path distribution which
would circumvent the dependency on the value function. Therefore all of them require to estimate the
value, Vi (t, x), or state-action value function, Qg (t, x, u), either using a general function approximator
or a local approximation. As a consequence, the entropy regularized optimal control framework can
also not be used to derive a PIC method, at least not in the sense discussed in Section 3.2.

In this article, we specifically limit our focus to the class of PIC methods described in Section 3.2,
which as stated assume the existence of an explicit goal state trajectory distribution. In the following
section, we introduce an adjusted entropy regularized stochastic optimal problem for which there does
exists a formal yet explicit optimal path distribution, and that consequently can be treated with the
PIC machinery put in place.

4.3. Entropy Regularized Trajectory Optimization

As discussed in the previous section, there exists no explicit expression for the optimal path
distribution sequence in the setting of entropy regularized SOC. Consequently, the framework can not
be leveraged by the PIC design principle described in Section 3.2. Here, we aim to identify an entropy
regularized SOC problem that can be solved for an explicit trajectory distribution. As was identified
to be an essential condition in the setting of LSOC, therefore we must get rid of the stochastic policy,
7t. Therefore, we suggest to absorb it into the implied state transition distribution, p. Analogously,
this will elevate the problem from the policy to the state transition distribution optimization space,
provided that we also can get rid of the dependency of the cost rate r¢(x, u) on the control effort u.

Let us therefore assume there exists an inverse dynamic function f~! so that u = f~1(t,x,x’)
when x’ = f(t,x,u). This implies a trajectory cost rate function ¢; that accumulates into a trajectory cost
C = YL, ¢. Specifically, we have that c;(x, x') = r4(x, f~1(x,x")) and cr(x) = rr(x) (We emphasize
here that the existence of such an inverse model is a mere formal assumption. In the practical setting
to be presented in Section 5, we will never actually have to invert the system dynamics given that we
have direct access to the control values that have been applied to the system).

These definitions allow to define a stochastic state trajectory optimization problem. We can rewrite
the stochastic Bellman Equation (2) as follows,

V(t,x)= mﬂin// (re(xe,u) + V(E+1,x")) p(x'|x, u) 7w (ult, x)dudx’
and then substitute the expressions above. This yields a similar problem
V(tx) = mgn/ (ct(x, X))+ V(t+1,x")) pr(x|t, x)dx’

As there is a one-to-one correspondence between 7 and p, one can replace the minimization
with respect to the policy by a minimization with respect to the implied state transition distribution p.
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Finally, we can regularize and relax the problem according to the general entropic principles justified
in Section 4.1 and as are thus also common in the RL community.

We end up with what we refer to as the Entropy Regularized Trajectory Optimization
(ERTO) problem.

Vg+1(t,x) = min E,_[c:(x, X))+ VgH(t +1,x)] — yH [px] + AD {pn | png} (26)

prn€EP

Prg (|t x) = arg min By, [cr(x, ) + Vo (£+1,2)] = /M [pa] + AD prllpn] @)

Remark that this problem is fundamentally different from that given in (24) considering that the
penalties, D [77 || 71¢| and D {pn | png] ,and, H [r] and H [p,], do not express the same restrictions.

Analogously to the LSOC, we summarize the most profound properties of problem (26) in
the following theorem. The theorem also establishes a relation between the optimal stochastic
policy 7g(t, x), the optimal state transition distribution py, (x'[t, x) and the optimal state trajectory
distribution pr,(7x). Again, the proof relies on the calculus of variations mostly. We direct the reader
to Appendix D for details.

Theorem 3. With V,1(t, x) defined as in (26), the following problems are equivalent,

g1 (ult, x) = .artggei?rjﬂﬁj,[hI [cr(x, x") + Ver1(t+1, x")] — yH[pr] + AD [pn Il png} (28)
Pregs (X[t x) = arg ;ng;) Eplct(x, ") + Vg (t+1,2")] — vH [pr] + AD [Pn | png] (29)
Prgis (Tx) = arg min By, [C] = 9H [pa] +AD [pr |l pr] (30)

The latter can be solved explicitly,
Prgi (x"t,x) = Png(x/|t,x)J\TveffllTy(Ct(x/x’)+V(t+1,xl))
A1 ]
Prgia (Tx) = pn—g(‘[x)}\Jr’ye 1 C(w)

where Vg 1 (t, x) is governed by the recursion

Ve (t,x) = (A +7)log / P (x'|t, x)AATWe*ﬁ(cr(x,xfﬁV(tH,x/))dx/

and where 7tg(ult, x) and pr, (x'|t, x) are related as

pr, (x|t x) = / p(x'|x, u) g (ult, x)du
We list the most important implications of Theorem 3:

e Asaresult of the entropy regularization and the state trajectory lifted optimization space, it is now
possible to obtain another formal yet explicit optimal state trajectory distribution. Note that this is
not the same optimal distribution as we derived in the LSOC setting given that here the control is
not penalized through a Kullback-Leibler divergence term but is penalized implicitly through the
cost C. When we evaluate C and have access to the state-action trajectory T, we can simply replace
C by R. Here, we emphasize that py, still represents the state trajectory distribution which is now
also a function of the actions.

Y - C

A 1
_ Aty — =R
Prigs % Py’ = pr, e M (31)
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e Second, the theorem implies that we can readily apply the PIC design strategy described in
Section 3.2, substituting the optimal path distribution sequence (31) for p%, and, the parametrized
path distribution p ) induced by some stochastic parametric policy 77(6) for p, (), to derive a
generalized class of PIC methods. We refer to this class as Entropy Regularized Path Integral
Control or ERPIC.

png+1

Pn(ﬂg)

log pr(g) | + constant (32)

nbin]D) {p”gﬂ I pﬂ((’)} < Bp ) [
1 M -+ _ 1 (<
I~ M ](_le Pn(eg) (TJ]C() AT e Ay (%) . lOg pr((Q) (TJ}CC) -+ constant

e As their is no longer a formal difference between problem (19) and (30), it follows that the
properties derived for the sequence (21) also hold for the optimal state trajectory distribution
sequence {pr, } and imply monotonic convergence to pr,,(Tx) x exp (—%C (tx)).

We conclude this section with a final remark related to control affine deterministic system
dynamics, ¥’ = a(x) + B(x)u, in this setting controlled by a stochastic policy of the form
me(ult,x) = N(ulug(t,x),Z¢(t,x)). Again, it is possible to derive an explicit expression for
the optimal policy. The controlled transition distribution is given by p(x'|t,x,u) = N(x'|a(x) +
B(x)ug(t x),B(x)Z¢(t,x)B(x)"). By matching the moments of the two distributions N (x'|a(x) +
B(x)ugy1(t, x), B(x)Zg11(t, x)B(x) ") and Prgq (X[t x) we find expressions for g1 (t, x) and Xg11 (8, x).

It is easily verified that

[g ] e—)\lij(Tx\t,x)}

B (xft2)

£ x) = t 33
ug1(t, x) = ug(t, x) + e—ﬁﬁcm“"‘)] 9

Epng(fx\t,x) [

and

Zg"rl(t/ x) =

1 |t x 1 it
Epng('fx‘t,x) |:

where § ~ N(0,X(t,x)).
We point out the similarities with (7). Further note that for A = 0, the information-theoretic
trust-region is lifted in which case (33) can be applied in the same MPC sense as (7).

5. Formal Comparison of Path Integral Control Methods

In this final section, we give a formal comparison of three different PIC methods based on the
general design principle identified in Section 3.2 that are tailored to trajectory optimization. The goal
distribution p,+ can now either root from the LSOC or the ETRO setting, respectively, introduced in
Sections 3.1 and 4.3. The methods we discuss are tailored to find local solutions. That is policies
that will control the system when the initial state is equal to a given state xy. Sometimes on refers to
such strategies as trajectory-based policy optimization methods. All of the methods are model-free
and sample-based. Currently, such methods are used in the literature either to deal with complex
simulation environments where traditional gradient based trajectory optimizers fall short [28,42] or to
derive reinforcement learning algorithms [29,41,49].
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The methods discussed here are in that sense closest related to [38]. However, this algorithm
derives from the generic entropy regularized SOC problem (24) which differs significantly from the
problem formulation proposed in Section 4.3. We come back to this later.

Remark that depending on the theoretical setting, either LSOC or ETRO, we have to use a different
parametrized state trajectory distribution which has an effect on the PIC objectives. In case of LSOC
based PIC we address the following objective,

R K wp y
Jg1soc(0) = Z 10g Pu(e)(Tx) (35a)
Y w
while in case of ERTO based PIC we address
. Ko wp y
JgErTO(0) = Z 108 Pre)(Tx) (35b)
=1 Zk 1w

The values w§ differ for each methods and will be discussed in the following section.

5.1. Control Affine Systems

We concentrate on systems governed by deterministic control affine dynamics. In either case
this is the sole condition for which an explicit solution exists for the optimal policies uysoc(t, x) or
¢ (t, x), given in (7) or (33)), respectively . Furthermore, it is also the sole condition for which wg can
be evaluated exactly. This assumption introduces little practical limitations as many systems comply
to this system model.

x' =a(x) +B(x)u

Further let us assume Gaussian policies of the form

m(ult,x) = N (ulur(x), Ze(x))

In the case that we discuss methods derived from the LSOC setting, this means that we deliberately
introduce a stochastic policy to mimic stochastic system dynamics. We emphasize that in this case
Yt (x) can not be chosen freely as it is directly related to the control effort penalization. From here on
forth, we can thus consider stochastic policies in the LSOC setting as long as we silently acknowledge
that the covariance can not be chosen freely.

Then the state transition distribution is given by

pae('[t,x) = N (¥]a(x) + B(w)us (x), B(x): (x)B(x) )

We can now substitute these expression into the different PIC objectives defined throughout the

rest of the paper to find expressions for w(’é,

Therefore, we will require the following intermediate results,

log po (T} Zlogpo (xt+1 )oc—;)%Hugt—l—éut‘
o 5
10g (o, ( Z log prs,) (xkn [t ) o = L ||,

where R; = BT (BL,BT) B~ ¥, 1 and ouf ~ N(0,Z¢(xF)). These results follow from the fact that
the samples satisfy the following condition

k ks k
Xii1 = af Btugt—l—Btéut
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Finally we can write the weights wg as e~P() where the function P(-) depends on the specific

objective. We will address two LSOC based objectives associated with SEPIC (or PICE) (9) and PIREPS
(or ASPIC) (10) and the ETRO based objective associated to ERPIC (32). When we substitute the
appropriate expressions in the corresponding objectives, we obtain, respectively,

e  SEPIC (or PICE)

T-1 T-1
Psgpic = ZT(XT) + Z lt(xt) + Z % Hug,t +51/ltHit — Z % \|5ut||%{t
=0 =0 =

The function P reads as the cost accumulated over the trajectory TF where the states and control
efforts are penalized separately. The trailing term is included to compensate for the full noise
penalization [41]. To penalize the states any nonlinear function can be used, the control is penalized
using a quadratic penalty term which depends on the noise added to the system. A crucial
limitations is clearly that the exploration noise and the control cost are therefore coupled.

e PIREPS (or ASPIC)

_ 1
Ppireps = 151 Psepic

It turns out that in this setting the weights w’é‘, are simply a smoothed version of those associated
to SEPIC. For A > 1 (i.e., strong regularization) the weights will all have approximately the same
value and therefore ug 1(t,x) = ug(t,x). For 1 > A > 0 (i.e., weak regularization), the method
reduces to SEPIC.

e ERPIC
1 = = 2
Pgreic = m”T(xT) + 1 Z re(xe, up) — ﬁ Z 2 ||5”t||R,
=0 t=0

One can easily verify that in the ERPIC setting, function P represents the cost accumulated
over the trajectory TF where the states and control efforts are no longer penalized separately.
Here, a discount terms is included that promotes uncertain trajectories making sure that the
entropy of the search distribution does not evaporate eventually. Second, we wish to point out the
obvious similarities with the stochastic search method in Appendix C.

5.2. Locally Linear Gaussian Policies

In conclusion, we solve the optimization problem defined in (32) exactly. Therefore, we will
approximate the Gaussian policy N (u]u;(x), Z¢(x)) with a locally linear Gaussian feedback policy of
the form NV (u|ugs + Kg 12, Zg t).

In the ERPIC setting, the proportionality between the control penalization and the injected
noise is lifted and therefore we gain access to the full parametrization of the policies, specifically
Oct = {agt, Kot Lot }. Starting from (35b) it follows that

K wk
k
{ag1, Kqt, Lo} = max Z — & log Pr(o)(Tx)
bos 1 Liey WE
K k _
=max ) —¢ - Z log NV (u|ugs + Kgx, T r) (36)
b 1 iy WE (=
K wk

8
=max )  —z——log N (ulug; +Kgx,Xg¢)
Ot k:zi Ty w§
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This procedure then yields the following elaborate updates (we refer to Appendix E for a proper

k
derivation). Notation ((f)) is shorthand for the likelihood weighted average Y&, ﬁ f* while (f)
k=1 g

is shorthand for the empirical mean % YR, f

~ & &—1 o ~
Ugilr = Ugt + A,uu,g,t - Zux,g,tzxx,g,t (xg,t + A,ux,g,t) (37)
S S —1
Kg+l,t = Zux,g,tzﬂxx,g,t (38)
~ ~ Al]
Z“g+1,t = Zuu,g,t - Zux,g,tzxx,g,tzxu,g,t (39)

with

where Axf = xf — %4, with 25, = (xF) and Auf = uf — flg, with gy = (uf) = ug s + Kgfg, so that
Auk = suk + Kg,tAxf.

5.3. Discussion

As was made clear in the introduction of the paper, it is not our intention to provide a numerical
analysis or study. We are merely concerned with the relation between all the topics that we touched
upon. In conclusion, we will discuss therefore a number of observations that are of interest to fully grasp
the relation between Path Integral Control methods, Stochastic Search methods and Reinforcement
Learning and the implied limitations.

5.3.1. Remarks Related to Stochastic Search Methods and Variance

In this section, we comment on Stochastic Search Methods from two perspectives: The first
perspective is related to the entropy regularized optimization framework and the theoretical search
distribution sequences introduced in Section 4.1. The second perspective is related to the apparent
connections between Entropy Regularized Optimization tailored to standard optimization and Entropy
Regularized Trajectory Optimization which is tailored to optimal control problems.

As far as we are aware of, we provide an original argument to address the standard optimization
problem as a probabilistic inference problem. The idea of treating the belief about the solution as a
distribution function and aiming to reduce the expected cost value with each belief update is to our
opinion very intuitive. It seem to be ideas worth pursuing whether existing stochastic search methods
fit this abstract framework and whether other practical methods can be modeled after the theoretical
distribution sequences. However, the mathematical framework can also be rewritten as a variational
optimization problem with respect to a search distribution regularized by information-theoretic or
information-geometric trust-regions. From this perspective our entropic inference argument sheds a
new light on earlier work in the context of stochastic search methods [11,12,14,36,61,64].

By conducting an Entropy Regularization in the context of Stochastic Optimal Control that draws
direct inspiration from the LSOC setting, we were able to formulate ETRO. This problem shares
the crucial trait with the LSOC problem that made it a topic of interest in learning-based control.
As a result the problems looses the so called optimal substructure property which is characteristic to
Optimal Control and can therefore be treated as a standard entropy regularized optimization problem.
This condition has two consequences: The theoretical analysis become easier to handle. On the other
hand, the framework infers the temporal policy parameters as if they influence the entire trajectory
instead of only from time instant ¢.
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Following the latter observation, it is interesting to compare the updates in (37) with
those in Appendix C. In retrospect, these are almost identical apart from one crucial difference.
The same weights wfg‘, are used to update the temporal parameters {u¢+, Kot X} regardless of t.
This relates directly to the comment above and has a dreadful practical implication. The effect
of a random policy variations duf at time t is accounted for by the complete associated trajectory.
The trajectory itself is however influenced by random policy variations at different time instants
t e {0,...,t — 1,t + 1,...,T —1}. We remark that the approach is therefore expected to
suffer from high variance, especially for T >> 1, which will ultimately destabilize the convergence.
This observation is a fundamental flaw of the framework described in Section 3.2 and therefore holds
for any PIC methods including any existing methods. The high variance can partially be alleviated by
acknowledging that the parameter update at time instant f is independent from the stochastic variables
{xi‘,, u’t‘, 57:10 and therefore the optimization problem in (36) can be revised using temporal weights

K wk
max Z K & Kk logN(u|ug,t +Kg,tx/ z:g,t)
Ot =1 Lk—1 W t

where wgt = wg+(TF) = exp(—Pyerpic(F)) with
1 L o 2
Pereic(T) = w7 (xr) + o X (e un) — x5 2 3 [10an |k,
t=t t=t
The update is then more in line with the explicit expression for the optimal stochastic policy that
is given in (33).

5.3.2. Positioning of PIC Methods within the Field of RL

Formerly it was unclear how the framework of Linearly Solvable Optimal Control was related
exactly to other RL methods. By identifying the framework of Entropy Regularized Trajectory
Optimization and comparing it with the framework of Entropy Regularized Stochastic Optimal
Control this ambiguity is lifted. Second, the model-free (local) trajectory optimization algorithms
presented in this section are closest related to the method presented in [38]. However, this algorithm is
based on problem formulation (24) and therefore requires to estimate the Q.-function which is not
required in this strictly PIC-based setting. Related to the final comment above, this circumvents the
problem of temporal variance induced by random policy variations at different time instants and is
therefore expected to perform superiorly in practice.

6. Conclusions

In this paper, we addressed PIC methods, a class of policy search methods which have been
closely tied to the theoretical setting of LSOC. Our work was motivated primarily by an unsatisfactory
understanding and generality of Path Integral Control methods in relation with the setting of LSOC.
Nevertheless, referred class of policy search methods enjoyed interest in the RL community with
applications ranging from robust trajectory optimization and guided policy search to robust model
based predictive control.

The LSOC setting was considered to be unique in the sense that an explicit expression exists
for the optimal state trajectory distribution. The former we identified to be fundamental to the
class of PIC methods. We illustrate that the existence of such a solution is not a unique trait to
the setting of LSOC and argue that a similar solution can be derived from within the setting of
Entropy Regularized Stochastic Optimal Control, a framework of widespread use nowadays in the
RL community. The setting of Entropy Regularized Stochastic Optimal Control allows to treat a more
general class of optimal control problems than the setting of LSOC, rendering LSOC obsolete.
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In either case, the result follows from lifting the stochastic optimal control problem from the
policy to the state transition distribution space making the control implicit. As a result of this
characteristic, the properties of the implied state trajectory distribution sequence can be analyzed.
We show that the sequence converges monotonically to the solution of the underlying deterministic
optimal control problem.

To treat this sequence more formally, we give an original and compelling argument for the use of
information-geometric measures in the context of stochastic search algorithms based on the principle
of entropic inference. The main idea is to maintain a belief function over the solution space that is least
committed to any assumption about the solution, apart from the requirement that the expectation over
the objective should decrease monotonically between updates. The resulting Entropy Regularized
Optimization framework may serve as an overarching paradigm to analyze and derive stochastic
search algorithms.

In conclusion, the value of this article is in that it identifies PIC methods for what they really are,
a class of model-free and approximation free policy search algorithms that are theoretically founded
on a specific subclass of Entropy Regularized Stochastic Optimal Control. Therewith, the underlying
machinery associated to preceding derivations is untied from the peculiar setting of LSOC and the
relation between PIC methods and state-of-the-art Reinforcement Learning is finally demystified.
Nevertheless, our investigation suggests that PIC methods in fact are structurally closer related to
Stochastic Search Methods tailored to classic optimization problem than they are to state-of-the-art
Reinforcement Learning methods tailored to optimal control and decision-making problems and that
the associated policy parameter updates will therefore be prone to higher variances.
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Appendix A. Proof of Theorem 2

Proof. Proofs are given for (16)—(18), respectively.

e Consider any x* € X' : x* # x* and define f* = f(x*) > f*, then there exists a set Xfo.f C X
so that Vx € Xpe g @ f* > f(x) and a set Xpecy = X/ Xfesf 50 that Vx € Xpecs @ f* < f(x).
These definitions allow to derive an upper bound for the value of 774 (x*), specifically

o e g_gf.
ﬂg(x )= Ty = fo’>f e=8fdx + fo'<f e~ 8fdx
_ 1
- g(f*—f) g(f*—f)
fo.>fe dx—i—fo.Efe dx
1
eS(f —Hdx

fo.>f

Now as exp(f*® — f) > 1,Vx € Xpe s it follows that 73 tends to 0 for g — c0. On the other hand,
if we choose x* = x*, one can easily verify that the denominator tends to 0 and thus 73 tends to oo
as g — oo. This limit behavior agrees with that of the Dirac delta and the statement follows.
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e To proof that Ex [f] is a monotonically decreasing function of g, we simply have to verify whether
the derivative to g is strictly negative. Therefore, let us first express the expectation explicitly,
introducing the normalizer

_ J fagdx

Ery f1= J agdx

_ gt pd o 1
where a, = e~$3/ 71y with dglts = @y = —xfag

Taking the derivative to g yields

d _ [ fagdx [ fagdx [agdx
@E”«Q [f] = I u:dx o j'aggdx Ii aggdx

= —1Eq [+ 1E [
- —%Varng [f]

As the variance is a strictly positive operator, expect for 77, the statement follows.
e The entropy of the distribution 77, is equal to

1 d
H [r,] = log/agdx - W

We will also need the logarithm of a; which is loga; = log 7o — grf.

Taking the derivative of H 7, to g yields

1
- d
d [”g} _ Jagdx i ag "sfgdx B [log(ag)agdx  [log(ag)agdx [ apdx

dg T [agdx o Jagdx Jagdx Jagdx [agdx
_ [log(ag)agdx  [log(ag)agdx [aydx
Jagdx Jagdx [agdx
_ lflog(ag)fagdx _ lflog(ag)agdxffagdx
A [ agdx A Jagdx [agdx
_ 1 [logmfagdx g ffzagdx 1 [ log myagdx [ fagdx g [ fagdx [ faedx
A [ agdx AT agdx A Jagdx [agdx A2 Jagdx [agdx

= — & Varg, [f] + 1 Covr,[log 1, f]

In case we choose 7y uniform on X the entropy decreases monotonically with g. Otherwise,
the entropy might temporarily increase especially when g and 71, are far apart.
Further note that the rate of convergence increases with g.
O
Appendix B. Derivation of Derivatives in (22) and (23)

Consider the implied function of g by taking the expectation of f

[ fagdx
E =<
e /] [ agdx
Here, function a is defined as ag = 71§ - 11;%, where & = (ﬁ)g and 7o exp(—% f). We will also
needs the derivatives
a = —alog ()‘#)

/ / Teo Aty Tleo
ag = —u'log 72ag = wlog (T) log 7= ay
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Taking the derivative of Ex,[f] to g yields

d _ d . Jlog meodgdx | [log meoagdx [ agdx
@Eng [f} - _,YCTgEnS’ [log 7Too] =7 ( Ii agdxg + Jagdx fagclx‘2

. oo . oo
Ay Jlog i log 22agdx [ log mteotigdx [ log 22 agdx
—ralog ( ) ( [ agdx : + Jagdx [agdx ‘
= —yalog (/H'y) Covr, [log Tleo, lOg %’}

when 719 is chosen uniform on X’ this is always smaller than 0 due to the positive definiteness of the
covariance operator.
In a similar fashion we can address the entropy

H [71¢] log/a dy — J1oglag)agdx

Jagdx
Here we will also need the logarithm of dg which is given by
log ag = log e — & (log 710 — log 710)

Taking the derivative of H [71,] to g yields

1
dp [71_ ] _ Jagdx . f@agaédx B [log(ag)agdx  [log(ag)agdx [agdx
&= 7 agdx Ii agdx Ii agdx I agdx T agdx
_ _ Jlog(ag)azdx i [ log(ag)agdx [ afdx
Jagdx Jagdx [agdx

loe (A1 Jlog(ag)log %agdx B Jlog(ag)agdx flog ugdx
g\ ™ [ agdx Jagdx [agdx

—alog (HV) Covr, [logag,log 7me — log o)
= —alog ()‘ﬂ) ((1 —a)Covpr, [log Too, log 72 } +aCovp, [log o, log 7 D
Again, when 71 is uniform on X, the sequence decreases monotonically.

Appendix C. Entropy Regularized Evolutionary Strategy

In order to illustrate the practical use of the search distribution sequence in (20)—(21), let us
demonstrate how to cast the theoretical distribution into a practical search algorithm. To that end, we
project 7t onto a parametric distribution family 77(6) and manipulate the resulting expression into an
expectation over the prior belief 77,.

Note that this strategy is analogous to the one described in Section 3.2. As such we establish
a calculable update procedure that infers parameters from an estimated expectation using samples
taken from the prior. In particular we are interested in the Gaussian family, i.e., 77(x|0) = N (x|p, Z),
which is commonly used in the context of evolutionary strategies [11,13,14]. As a projection operator
again the relative entropy is used relying on the same argument as in [41].

7T
Gei1 = argminD [ | 7(6)] = ~ B, | 2 log 7(6)| -+constan

7t(6g)
J(0)

This problem can be solved explicitly. We propose solving it for each parameter independently
using a coordinate descent strategy, substituting the previous value of the respective other in the
objective. This strategy renders each independent problem concave [11].




Entropy 2020, 22, 1120 26 of 30

The derivative of J, to  and X equal

Vidglyz, = _ZglEﬂg [we(x) (6xg — p+ pg) ]
RO

= 1
where wq (x) = (x[0g) e /%) and Oxg = X — Jg.
We can solve these equations to provide independent update procedures for the
distribution parameters.

Het1 = pg +Erp,) [wgoxg]
T
Yop1 = ]En(gg) [wgéxgéxg}

Finally we substitute Monte Carlo estimates estimates for the expectations. We obtain the following
update which readers, familiar with the class of Evolutionary Strategies, will recognize to be similar
to those they are accustomed with (Note that if it was not for the diffusion factor ﬁ, the weights
would simply equal the exponential transformed objective. We emphasize here that f does not need to
represent the physical objective but could be any rank preserving mapping implying these updates
correspond with those of any other ES provided that the mapping is known)

Hot =g+ L g o ok

g+1 Zkzq §k§ka

k k k — .k
where wg = wg(x") and dxg = x* — pg.

Finally, we note that the weights can also be expressed as illustrated below.

w§ x exp (—;\}W (f(xk) -3 HMgH;l))

It is noted that this strategy is closely related to the work in [61].

Appendix D. Proof of Theorem 3

Proof. The equivalence of (28) and (29) follows directly from the definition of p.
The equation in (29) determines a variational problem in p; which we can solve correspondingly

/\+’ye /\Hct(x x')— ,\+7 Vey1(H+1x7)

pry(¥'[t,x) o< pr
and that we can substitute back into (26) to yield the recursive equation
b Vet (6,5) = 10g [ py (18,7 exp (—xbzca(w ') — 2 Ve (1,6 )
Either by iterating the recursion or by solving problem (30) directly, it is then also easily verified that

L — = C(1y
p”g+1(TX) o an(Tx)A Ay C(w)

proving the second statement. [
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Appendix E. Derivation of Equation (37)

Here, we address the optimization problems defined in (32). We address the specific context
where the system dynamics are control affine and where we use a locally linear Gaussian feedback

policy.
In general, we then obtain an expression of the following form and where wg, x, u, and A

are problem-specific.
min Jo(a,K,Z) =) w—ﬁ’klog/\/ (xk|yk,Ak) = {(log N (xk|yk,Ak) »
KL k Yewg

Recall we introduced the notation ((-)) to denote the likelihood weighted average in addition to notation
(-) for the empirical mean.
The logarithm can be expressed as

log NV (x|u, A) & —log |A] — tr (Afl(x —u)(x— y)T) +c

where c is some constant.
For problem (32), we have that

xk = xffH =af + B’fug,t + Blng,tx]t‘ + BFouf
yk — af + Bfu + BIKxF
AF = BfzB} "
so that
x—u=Bf (ug,t —u+ (Kgp — K)xf + (Su’t‘)

Regardless of the procedure that is used, we can express the first order optimality conditions,
where the proportionality includes matrix multiplications with positive definite matrices.

vufg & <<ug,t —u—+ (Kg,t - K)xlf + §Mltc>> =0
Vicfy o (( (g — 1+ (Kgt — K)ok + ouf ) ) = 0
Vng P 271 _ <<Zfl (xk _ yk)(xk _ #k)Tzfl» =0

These equations can be solved to yield expressions for ug 14, Kei1and Xg 1

Ugt1,t = Ugt + A,ﬁu,g,t - 2ux,g,t‘ﬁ;xl,g,t (fg,t + A,ﬁx,g,t)
Kg+l,t = iux,g,ti;xl,g,t

Z*g—i—l,t = 2uu,g,t - 2ux,g,t2;3},g,t2xu,g,t

Augr = {(duf)

Aflgt = (Bxf)

Sungt = <<Ault‘Aulf'—r )
Suxgt = (DukAxETY)
Sangt = (AxfaxyT)

wh]:ere AxléC = xf— f;g,t with £¢; = (xf) and Auf = uf — g with g = (uf) = ugs + Kg %, so that
Auy = duy + Kg 1 Axy.
This concludes the derivation.
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