Use and Abuse of Entropy in Biology: A Case for Caliber
Abstract
:1. Introduction
2. Uses of Entropy in Biology
2.1. Statistical Entropy
2.2. Information
3. Abuse of Entropy in Biology
3.1. Entropy and Order
3.2. Entropy-Driven Systems
3.3. Mischaracterization of Biological Systems
4. Caliber
5. Discussion
5.1. Connecting Caliber to Other Thermodynamic Quantities
5.2. Informed Pathways
5.3. Ergodicity
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Roach, T.N.F.; Salamon, P.; Nulton, J.; Andresen, B.; Felts, B.; Haas, A.; Calhoun, S.; Robinett, N.; Rohwer, F. Application of Finite-Time and Control Thermodynamics to Biological Processes at Multiple Scales. J. Non-Equilib. Thermodyn. 2018, 43, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Cushman, S. Calculation of Configurational Entropy in Complex Landscapes. Entropy 2018, 20, 298. [Google Scholar] [CrossRef] [Green Version]
- Ulanowicz, R.E. Growth and Development: Ecosystems Phenomenology; Springer: Berlin, Germany, 2012. [Google Scholar]
- Brooks, D.; Wiley, E. Evolution as an entropic phenomenon. In Evolutionary Theory: Paths into the Future; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Roach, T.N.F.; Nulton, J.; Sibani, P.; Rohwer, F.; Salamon, P. Entropy in the Tangled Nature Model of evolution. Entropy 2017, 19, 192. [Google Scholar] [CrossRef] [Green Version]
- Roach, T.N.F.; Nulton, J.; Sibani, P.; Rohwer, F.; Salamon, P. Emergent structure in a stochastic model of ecological evolution. Ecol. Model. 2019, 401, 129–133. [Google Scholar] [CrossRef]
- Roach, T.N.F.; Abieri, M.L.; George, E.E.; Knowles, B.; Naliboff, D.S.; Smurthwaite, C.A.; Kelly, L.W.; Haas, A.F.; Rohwer, F.L. Microbial bioenergetics of coral-algal interactions. PeerJ 2017, 5, e3423. [Google Scholar] [CrossRef] [Green Version]
- Gnaiger, E. Physiological calorimetry: Heat flux, metabolic flux, entropy and power. Thermochim. Acta 1989, 151, 23–34. [Google Scholar] [CrossRef]
- Ludovisi, A. Effectiveness of entropy-based functions in the analysis of ecosystem state and development. Ecol. Indic. 2014, 36, 617–623. [Google Scholar] [CrossRef]
- Müller, F.; Leupelt, M. Eco Targets, Goal Functions, and Orientors; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Walsberg, G.; Hoffman, T. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J. Exp. Biol. 2005, 208, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- McLean, J.A.; Tobin, G. Animal and Human Calorimetry; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Boltzmann, L. Vorlesungen über Gastheorie—I. Theil: Theorie des Gase mit Einatomigen Molekülen, deren Dimensionen Gegen die Mittlere Weglänge Verschwinden; J.A. Barth: Leipzig, Germany, 1896; Volume 1. [Google Scholar]
- Paneru, G.; Lee, D.Y.; Tlusty, T.; Pak, H.K. Lossless Brownian Information Engine. Phys. Rev. Lett. 2018, 120, 020601. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Jayannavar, A.M. A multipurpose information engine that can go beyond the Carnot limit. J. Stat. Mech. Theory Exp. 2016, 2016, 103207. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2006, 113, 363–375. [Google Scholar] [CrossRef]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Jost, L. The Relation between Evenness and Diversity. Diversity 2010, 2, 207–232. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Carranza, M.L.; Acosta, A.; Ricotta, C. Analyzing landscape diversity in time: The use of Rènyi’s generalized entropy function. Ecol. Indic. 2007, 7, 505–510. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Lan, T.; Chen, Y.; Gao, P. Calculating the Wasserstein Metric-Based Boltzmann Entropy of a Landscape Mosaic. Entropy 2020, 22, 381. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Li, Z. Computation of the Boltzmann entropy of a landscape: A review and a generalization. Landsc. Ecol. 2019, 34, 2183–2196. [Google Scholar] [CrossRef]
- Cushman, S. Entropy in landscape ecology. Entropy 2018, 20, 314. [Google Scholar] [CrossRef] [Green Version]
- Wicken, J.S. Information transformations in molecular evolution. J. Theor. Biol. 1978, 72, 191–204. [Google Scholar] [CrossRef]
- Wicken, J. Entropy, information, and nonequilibrium evolution. Syst. Zool. 1983, 32, 438–443. [Google Scholar] [CrossRef]
- Wicken, J. Evolution, Information and Thermodynamics: Extending the Darwinian Program; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Salthe, S.N. Ecology and infodynamics. J. Soc. Evol. Syst. 1998, 21, 223–231. [Google Scholar] [CrossRef]
- Salthe, S.N. Infodynamics, a Developmental Framework for Ecology/Economics. Conserv. Ecol. 2003, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Salthe, S.N. What is Infodynamics? In Understanding Complexity; Springer: Boston, MA, USA, 2001; pp. 31–38. [Google Scholar]
- Ulanowicz, R.E. Ecology, the Ascendent Perspective; Columbia University Press: New York, NY, USA, 1997. [Google Scholar]
- Landsberg, P.T. Can entropy and “order” increase together? Phys. Lett. A 1984, 102, 171–173. [Google Scholar] [CrossRef]
- Varela, F.G.; Maturana, H.R.; Uribe, R. Autopoiesis: The Organization of Living Systems, lts Characterization and a Model. In Facets of Systems Science; International Federation for Systems Research International Series on Systems Science and Engineering; Springer: Boston, MA, USA, 1991; Volume 7, pp. 559–569. [Google Scholar]
- Luisi, P.L. Autopoiesis: A review and a reappraisal. Naturwissenschaften 2003, 90, 49–59. [Google Scholar] [CrossRef]
- Schrodinger, E. What Is Life? Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Moore, W. Basic Physical Chemistry; Prentice Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Annila, A.; Salthe, S. Physical foundations of evolutionary theory. J. Non-Equilib. Thermodyn 2010, 35, 301–321. [Google Scholar] [CrossRef]
- Nicolis, G.; Prigogine, I. Fluctuations in Nonequilibrium Systems. Proc. Natl. Acad. Sci. USA 1971, 68, 2102–2107. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I.; Nicolis, G. Biological order, structure and instabilities. Q. Rev. Biophys. 1971, 4, 107–148. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes, 1st ed.; Charles C Thomas Publisher: Springfield, IL, USA, 1955. [Google Scholar]
- Prigogine, I.; Nicolis, G.; Babloyantz, A. Thermodynamics of evolution. Phys. Today 1972, 25, 23–28. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. The Minimum Entropy Production Principle. Annu. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Ghosh, K.; Inamdar, M.; Lee, H.J.; Fraser, S.; Dill, K.; Phillips, R. Trajectory approach to two-state kinetics of single particles on sculpted energy landscapes. Phys. Rev. Lett. 2009, 103, 050603. [Google Scholar] [CrossRef] [Green Version]
- Firman, T.; Balázsi, G.; Ghosh, K. Building predictive models of genetic circuits using the principle of maximum caliber. Biophys. J. 2017, 113, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Nevozhay, D.; Adams, R.M.; van Itallie, E.; Bennett, M.R.; Balázsi, G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput. Biol. 2012, 8, e1002480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, K.; Dixit, P.D.; Agozzino, L.; Dill, K.A. The maximum caliber variational principle for nonequilibria. Annu. Rev. Phys. Chem. 2020, 71, 213–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, R.A.; Delgado, J.D.; Herrera, A.M.; Riera, R.; Navarro, R.M.; Melián, C.; Dieguez, L.; Quirós, Á. Effects of two traits of the ecological state equation on our understanding of species coexistence and ecosystem services. Ecol. Model. 2013, 265, 1–13. [Google Scholar] [CrossRef]
- Herrera, A.M.; Riera, R.; Rodríguez, R.A.; Santander, J.; Miranda, J.V.; Perdomo, M.E.; Quirós, Á.; Fath, B.D. From a stationary to a non-stationary ecological state equation: Adding a tool for ecological monitoring. Ecol. Model. 2016, 320, 44–51. [Google Scholar] [CrossRef]
- Rodríguez, R.A.; Herrera, A.M.; Otto, R.; Delgado, J.D.; Fernández-Palacios, J.M.; Arévalo, J.R. Ecological state equation. Ecol. Model. 2012, 224, 18–24. [Google Scholar] [CrossRef]
- Wiley, E.; Brooks, D. Victims of history—a nonequilibrium approach to evolution. Syst. Biol. 1982, 31, 1–24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roach, T.N.F. Use and Abuse of Entropy in Biology: A Case for Caliber. Entropy 2020, 22, 1335. https://doi.org/10.3390/e22121335
Roach TNF. Use and Abuse of Entropy in Biology: A Case for Caliber. Entropy. 2020; 22(12):1335. https://doi.org/10.3390/e22121335
Chicago/Turabian StyleRoach, Ty N. F. 2020. "Use and Abuse of Entropy in Biology: A Case for Caliber" Entropy 22, no. 12: 1335. https://doi.org/10.3390/e22121335
APA StyleRoach, T. N. F. (2020). Use and Abuse of Entropy in Biology: A Case for Caliber. Entropy, 22(12), 1335. https://doi.org/10.3390/e22121335