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Abstract: Fano’s inequality is one of the most elementary, ubiquitous, and important tools in
information theory. Using majorization theory, Fano’s inequality is generalized to a broad class
of information measures, which contains those of Shannon and Rényi. When specialized to these
measures, it recovers and generalizes the classical inequalities. Key to the derivation is the construction
of an appropriate conditional distribution inducing a desired marginal distribution on a countably
infinite alphabet. The construction is based on the infinite-dimensional version of Birkhoff’s theorem
proven by Révész [Acta Math. Hungar. 1962, 3, 188–198], and the constraint of maintaining a desired
marginal distribution is similar to coupling in probability theory. Using our Fano-type inequalities
for Shannon’s and Rényi’s information measures, we also investigate the asymptotic behavior of the
sequence of Shannon’s and Rényi’s equivocations when the error probabilities vanish. This asymptotic
behavior provides a novel characterization of the asymptotic equipartition property (AEP) via Fano’s
inequality.

Keywords: Fano’s inequality; countably infinite alphabet; list decoding; general class of conditional
information measures; conditional Rényi entropies; α-mutual information; majorization theory;
the infinite-dimensional version of Birkhoff’s theorem; the Birkhoff–von Neumann decomposition;
asymptotic equipartition property (AEP)

1. Introduction

Inequalities relating probabilities to various information measures are fundamental tools for
proving various coding theorems in information theory. Fano’s inequality [1] is one such paradigmatic
example of an information-theoretic inequality; it elucidates the interplay between the conditional
Shannon entropy H(X | Y) and the error probability P{X , Y}. Denoting by h2 : u 7→ −u log u − (1−
u) log(1− u) the binary entropy function on [0, 1]with the conventional hypothesis that h2(0) � h2(1) � 0,
Fano’s inequality can be written as

max
(X,Y):P{X,Y}≤ε

H(X | Y) � h2(ε)+ ε log(M − 1) (1)

for every 0 ≤ ε ≤ 1− 1/M, where log stands for the natural logarithm, and the maximization is taken
over the jointly distributed pairs of {1, . . . , M}-valued random variables (r.v.’s) X and Y satisfying
P{X , Y} ≤ ε. An important consequence of Fano’s inequality is that if the error probabilities vanish,
so do the normalized equivocations. In other words,

lim
n→∞

P{Xn , Yn} � 0 �⇒ lim
n→∞

1
n

H(Xn | Yn) � 0, (2)
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where both Xn � (X1, . . . , Xn) and Yn � (Y1, . . . , Yn) are random vectors in which each component is
a {1, . . . , M}-valued r.v. This is the key in proving weak converse results in various communication
models (cf. [2–4]). Moreover, Fano’s inequality also shows that

lim
n→∞

P{Xn , Yn} � 0 �⇒ lim
n→∞

H(Xn | Yn) � 0, (3)

where Xn and Yn are {1, . . . , M}-valued r.v.’s for each n ≥ 1. This implication is used, for example, to
prove that various Shannon’s information measures are continuous in the error metric P{Xn , Yn} or
the variational distance (cf. [5–7]).

1.1. Main Contributions

In this study, we consider general maximization problems that can be specialized to the left-hand
side of (1); we generalize Fano’s inequality in the following four ways:

(i) the alphabet X of a discrete r.v. X to be estimated is countably infinite,
(ii) the marginal distribution PX of X is fixed,
(iii) the inequality is established on a general class of conditional information measures, and
(iv) the decoding rule is a list decoding scheme in contrast to a unique decoding scheme.

Specifically, given an X-valued r.v. X with a countably infinite alphabet X and a Y-valued r.v.
Y with an abstract alphabet Y, this study considers a generalized conditional information measure
defined by

Hφ(X | Y) B E[φ(PX |Y)], (4)

where PX |Y(x) stands for a version of the conditional probability P{X � x | Y} for each x ∈ X, and
E[Z] stands for the expectation of the real-valued r.v. Z. Here, this function φ : P(X) → [0,∞] defined
on the set P(X) of discrete probability distributions on X plays the role of an information measure of a
discrete probability distribution. When Y is a countable alphabet, the right-hand side of (4) can be
written as

Hφ(X | Y) �
∑
y∈Y:

PY (y)>0

PY(y)φ(PX |Y�y), (5)

where PY � P ◦ Y−1 denotes the probability law of Y, and PX |Y�y(x) B P{X � x | Y � y} denotes the
conditional probability for each (x, y) ∈ X ×Y. In this study, we impose some postulates on φ for
technical reasons. Choosing φ appropriately, we can specialize Hφ(X | Y) to the conditional Shannon
entropy H(X | Y), Arimoto’s and Hayashi’s conditional Rényi entropies [8,9], and so on. For example,
if φ is given as

φ(P) �
∑
x∈X

P(x) log 1
P(x) , (6)

then Hφ(X | Y) coincides with the conditional Shannon entropy H(X | Y). Denoting by P(L)e (X | Y)
the minimum average probability of list decoding error with a list size L, the principal maximization
problem considered in this study can be written as

Hφ(Q, L, ε,Y) B sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

Hφ(X | Y), (7)

where the supremum is taken over the pairs (X, Y) satisfying P(L)e (X | Y) ≤ ε and fixing theX-marginal
PX to a given distribution Q. The feasible region of systems (Q, L, ε,Y) will be characterized in
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this paper to ensure that Hφ(Q, L, ε,Y) is well-defined. Under some mild conditions on a given
system (Q, L, ε,Y), especially on the cardinality of Y, we derive explicit formulas of Hφ(Q, L, ε,Y);
otherwise, we establish tight upper bounds onHφ(Q, L, ε,Y). AsHφ(Q, L, ε,Y) can be thought of as a
generalization of themaximization problem stated in (1), we call these results Fano-type inequalities in this
paper. These Fano-type inequalities are formulated by the considered information measures φ(Ptype-∗)
of certain (extremal) probability distributions Ptype-∗ depending only on the system (Q, L, ε,Y).

In this study, we provide Fano-type inequalities via majorization theory [10]. A proof outline to
obtain our Fano-type inequalities is as follows.

1. First, we show that a generalized conditional information measure Hφ(X | Y) can be bounded
from above by Hφ(U | V) with a certain pair (U, V) in which the conditional distribution PU |V
of U given V can be thought of as a so-called uniformly dispersive channel [11,12] (see also
Section II-A of [13]). We prove this fact via Jensen’s inequality (cf. Proposition A-2 of [14])
and the symmetry of the considered information measures φ. Moreover, we establish a novel
characterization of uniformly dispersive channels via a certain majorization relation; we show
that the output distribution of a uniformly dispersive channel is majorized by its transition
probability distribution for any fixed input symbol. This majorization relation is used to obtain a
sharp upper bound via the Schur-concavity property of the considered information measures φ.

2. Second, we ensure the existence of a joint distribution PX,Y of (X, Y)which satisfies all constraints
in our maximization problems Hφ(Q, L, ε,Y) stated in (7) and the conditional distribution PX |Y
is uniformly dispersive. Here, a main technical difficulty is to maintain a marginal distribution
PX of X over a countably infinite alphabet X; see (ii) above. Using a majorization relation for a
uniformly dispersive channel, we express a desiredmarginal distribution PX by themultiplication
of a doubly stochastic matrix and a uniformly dispersive PX |Y . This characterization of the
majorization relation via a doubly stochastic matrix was proven by Hardy–Littleweed–Pólya [15]
in the finite-dimensional case, and by Markus [16] in the infinite-dimensional case. From this
doubly stochastic matrix, we construct amarginal distribution PY of Y so that the joint distribution
PX,Y � PX |YPY has the desired marginal distribution PX . The construction of PY is based on the
infinite-dimensional version of Birkhoff’s theorem, which was posed by Birkhoff [17] and was
proven by Révész [18] via Kolmogorov’s extension theorem. Although the finite-dimensional
version of Birkhoff’s theorem [19] (also known as the Birkhoff–von Neumann decomposition)
is well-known, the application of the infinite-dimensional version of Birkhoff’s theorem in
information theory appears to be novel; its application aids in dealing with communication
systems over countably infinite alphabets.

3. Third, we introduce an extremal distribution Ptype-∗ on a countably infinite alphabet X. Showing
that Ptype-∗ is the infimum of a certain class of discrete probability distributions with respect
to the majorization relation, our maximization problems can be bounded from above by the
considered information measure φ(Ptype-∗). Namely, our Fano-type inequality is expressed by a
certain information measure of the extremal distribution. When the cardinality of the alphabet of
Y is large enough, by constructing a joint distribution PX,Y achieving equality in our generalized
Fano-type inequality, we say that the inequality is sharp.

When the alphabet of Y is finite, we further tighten our Fano-type inequality. To do so, we prove
a reduction lemma for the principal maximization problem from an infinite- to a finite-dimensional
feasible region. Therefore, when the alphabet of Y is finite, we do not have to employ technical
tools in infinite-dimensional majorization theory, e.g., the infinite-dimensional version of Birkhoff’s
theorem. This reduction lemma is useful not only to tighten our Fano-type inequality but also to
characterize a sufficient condition of the considered information measure φ in which Hφ(Q, L, ε,Y) is
finite if and only if φ(Q) is also finite. In fact, Shannon’s and Rényi’s information measures meet this
sufficient condition.
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We show that our Fano-type inequalities can be specialized to some known generalizations of
Fano’s inequality [20–23] on Shannon’s and Rényi’s information measures. Therefore, one of our
technical contributions is a unified proof of Fano’s inequality for conditional information measures via
majorization theory. Generalizations of Erokhin’s function [20] from the ordinary mutual information
to Sibson’s and Arimoto’s α-mutual information [8,24] are also discussed.

Via our generalized Fano-type inequalities, we investigate sufficient conditions on a general source
X � {Xn � (Z(n)1 , . . . , Z(n)n )}∞n�1 in which vanishing error probabilities implies vanishing equivocations
(cf. (2) and (3)). We show that the asymptotic equipartition property (AEP) as defined byVerdú–Han [25]
is indeed such a sufficient condition. In other words, if a general source X � {Xn}∞n�1 satisfies the AEP
and H(Xn) � Ω(1) as n →∞, then we prove that

lim
n→∞

P(Ln )
e (Xn | Yn) � lim

n→∞

log Ln

H(Xn)
� 0 �⇒ lim

n→∞
H(Xn | Yn)

H(Xn)
� 0, (8)

where {Ln}∞n�1 is an arbitrary sequence of list sizes. This is a generalization of (2) and (3) and, to
the best of the author’s knowledge, a novel connection between the AEP and Fano’s inequality. We
prove this connection by using the splitting technique of a probability distribution; this technique was
used to derive limit theorems of Markov processes by Nummelin [26] and Athreya–Ney [27]. Note
that there are also many applications of the splitting technique in information theory (cf. [21,28–32]).
In addition, we extend Ho–Verdú’s sufficient conditions (See Section V of [21]) and Sason–Verdú’s
sufficient conditions (see Theorem 4 of [23]) on a general source X � {Xn}∞n�1 in which equivocations
vanish if the error probabilities vanish.

1.2. Related Works

1.2.1. Information Theoretic Tools on Countably Infinite Alphabets

As the right-hand side of (1) diverges as M goes to infinity whenever ε > 0 is fixed, the classical
Fano inequality is applicable only if X is supported on a finite alphabet (see also Chapter 1 of [33]).
In fact, if both Xn and Yn are supported on the same countably infinite alphabet for each n ≥ 1, one can
construct a somewhat pathological example so that P{Xn , Yn} � o(1) as n →∞ but H(Xn | Yn) � ∞
for every n ≥ 1 (cf. Example 2.49 of [4]).

Usually, it is not straightforward to generalize information theoretic tools for systems defined
on a finite alphabet to systems defined on a countably infinite alphabet. Ho–Yeung [34] showed
that Shannon’s information measures defined on countably infinite alphabets are not continuous
with respect to the following distances; the χ2-divergence, the relative entropy, and the variational
distance. Continuity issues of Rényi’s information measures defined on countably infinite alphabets
were explored by Kovačević–Stanojević–Šenk [35]. In addition, although weak typicality (cf. Chapter 3
of [2] that is also known as the entropy-typical sequences (cf. Problem 2.5 of [6]) is a convenient tool
in proving achievability theorems for sources and channels with defined on countably infinite (or
even uncountable) alphabets, strong typicality [6] is only amenable in situations with finite alphabets.
To ameliorate this issue, Ho–Yeung [36] proposed a notion known as unified typicality that ensures
that the desirable properties of weak and strong typicality are retained when one is working with
countably infinite alphabets.

Recently, Madiman–Wang–Woo [37] investigated relations between majorization and the strong
Sperner property [38] of posets together with applications to the Rényi entropy power inequality for
sums of independent and integer-valued r.v.’s, i.e., supported on countably infinite alphabets.

To the best of the author’s knowledge, a generalization of Fano’s inequality to the case when X is
supported on a countably infinite alphabet was initiated by Erokhin [20]. Given a discrete probability
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distribution Q on a countably infinite alphabet X � {1, 2, . . . }, Erokhin established in Equation (11)
of [20] an explicit formula of the function:

I(Q, ε) B min
(X,Y):P{X,Y}≤ε,PX�Q

I(X ∧ Y), (9)

where the minimization is taken over the pairs of X-valued r.v.’s X and Y satisfying P{X , Y} ≤ ε and
P{X � x} � Q(x) for each x ∈ X, and I(X ∧ Y) stands for the mutual information between X and Y.
Note that Erokhin’s function I(Q, ε) is the rate-distortion function with Hamming distortion measures
(cf. [39,40]). As the well-known identity I(X ∧ Y) � H(X) −H(X | Y) implies that

I(Q, ε) � H(X) − max
(X,Y):P{X,Y}≤ε,PX�Q

H(X | Y), (10)

Erokhin’s function I(Q, ε) can be naturally thought of as a generalization of the classical Fano inequality
stated in (1), where H(X) stands for the Shannon entropy of X, and the probability distribution
of X is given by P{X � x} � Q(x) for each x ∈ X. Kostina–Polyanskiy–Verdú [41] derived a
second-order asymptotic expansion of I(Qn , ε) as n →∞, where Qn stands for the n-fold product of Q.
Their asymptotic expansion is closely related to the second-order asymptotics of the variable-length
compression allowing errors; see ([41], Theorem 4).

Ho–Verdú [21] gave an explicit formula of the maximization in the right-hand side of (10); they
proved it via the additivity of Shannon’s information measures. Note that Ho–Verdú’s formula (cf.
Theorem 1 of [21]) coincides with Erokhin’s formula (cf. Equation (11) of [20]) via the identity stated
in (10). In Theorems 2 and 4 of [21], Ho–Verdú also tightened the maximization in the right-hand side
of (10) when Y is supported on a proper subalphabet ofX. Moreover, they provided in Section V of [21]
some sufficient conditions on a general source in which vanishing error probabilities (i.e., P{Xn ,

Yn} � o(1)) implies vanishing unnormalized or normalized equivocations (i.e., H(Xn | Yn) � o(1) or
H(Xn | Yn) � o(n)).

1.2.2. Fano’s Inequality with List Decoding

Fano’s inequality with list decoding was initiated by Ahlswede–Gács–Körner [42]. By a minor
extension of the usual proof (see, e.g., Lemma 3.8 of [6]), one can see that

max
(X,Y):P(L)e (X |Y)≤ε

H(X | Y) � h2(ε)+ (1− ε) log L + ε log(M − L) (11)

for every integers 1 ≤ L < M and every real number 0 ≤ ε ≤ 1 − L/M, where the maximization is
taken over the pairs of a {1, . . . , M}-valued r.v. X and aY-valued r.v. Y satisfying P(L)e (X | Y) ≤ ε. Note
that the right-hand side of (11) coincides with the Shannon entropy of the extremal distribution of type-0
defined by

Ptype-0(x) � P(M,L,ε)
type-0 (x) B


1− ε

L
if 1 ≤ x ≤ L,

ε
M − L

if L < x ≤ M,

0 if M < x < ∞

(12)

for each integer x ≥ 1. A graphical representation of this extremal distribution is plotted in Figure 1.
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Figure 1. Each bar represents a probability mass of the extremal distribution of type-0 defined in (12),
where M � 8 and L � 3.

Combining (11) and the blowing-up technique (cf. Chapter 5 of [6] or Section 3.6.2 of [43]),
Ahlswede–Gács–Körner [42] proved the strong converse property (in Wolfowitz’s sense [44]) of
degraded broadcast channels under the maximum error probability criterion. Extending the proof
technique in [42] together with the wringing technique, Dueck [45] proved the strong converse property
of multiple-access channels under the average error probability criterion. As these proofs rely on a
combinatorial lemma (cf. Lemma 5.1 of [6]), they work only when the channel output alphabet is finite;
but see recent work by Fong–Tan [46,47] in which such techniques have been extended to Gaussian
channels. On the other hand, Kim–Sutivong–Cover [48] investigated a trade-off between the channel
coding rate and the state uncertainty reduction of a channel with state information available only at
the sender, and derived its trade-off region in the weak converse regime by employing (11).

1.2.3. Fano’s Inequality for Rényi’s Information Measures

So far, many researchers have considered various directions for generalizing Fano’s inequality. An
interesting study involves reversing the usual Fano inequality. In this regard, lower bounds on H(X | Y)
subject to P{X , Y} � ε were independently established by Kovalevsky [49], Chu–Cheuh [50], and
Tebbe–Dwyer [51] (see also Feder–Merhav’s study [52]). Prasad [53] provided several refinements of
the reverse/forward Fano inequalities for Shannon’s information measures.

In [54], Ben-Bassat–Raviv explored several inequalities between the (unconditional) Rényi entropy
and the error probability. Generalizations of Fano’s inequality from the conditional Shannon entropy
H(X | Y) to Arimoto’s conditional Rényi entropy HArimoto

α (X | Y) introduced in [8] were recently and
independently investigated by Sakai–Iwata [22] and Sason–Verdú [23]. Specifically, Sakai–Iwata [22]
provided sharp upper/lower bounds on HArimoto

α (X | Y) for fixed HArimoto
β (X | Y) with two distinct

orders α , β. In other words, they gave explicit formulas of the following minimization and
maximization,

fmin(α, β, γ) B min
(X,Y):HArimoto

β (X |Y)�γ
HArimoto
α (X | Y), (13)

fmax(α, β, γ) B max
(X,Y):HArimoto

β (X |Y)�γ
HArimoto
α (X | Y), (14)

respectively. As HArimoto
β (X | Y) is a strictly monotone function of the minimum average probability

of error if β � ∞, both functions fmin(α,∞, γ) and fmax(α,∞, γ) can be thought of as reverse and
forward Fano inequalities on HArimoto

α (X | Y), respectively (cf. Section V in the arXiv paper [22]).
Sason–Verdú [23] also gave generalizations of the forward and reverse Fano’s inequalities onHArimoto

α (X |



Entropy 2020, 22, 288 7 of 59

Y). Moreover, in the forward Fano inequality pertaining to HArimoto
α (X | Y), they generalized in

Theorem 8 of [23] the decoding rules from unique decoding to list decoding as follows:

max
(X,Y):P(L)e (X |Y)≤ε

HArimoto
α (X | Y) � 1

1− α log
(
L1−α(1− ε)+ (M − L)1−αεα

)
(15)

for every 0 ≤ ε ≤ 1− L/M and α ∈ (0, 1) ∪ (1,∞), where the maximization is taken as with (11). Similar
to (11), the right-hand side of (15) coincides with the Rényi entropy [55] of the extremal distribution of
type-0. Note that the reverse Fano inequality proven in [22,23] does not require that X is finite. On the
other hand, the forward Fano inequality proven in [22,23] is applicable only when X is finite.

1.2.4. Lower Bounds on Mutual Information

Han–Verdú [56] generalized Fano’s inequality on a countably infinite alphabet X by investigating
lower bounds on the mutual information, i.e.,

I(X ∧ Y) ≥ P{X , Y} log P{X , Y}
P{X̄ , Ȳ}

+ P{X � Y} log P{X � Y}
P{X̄ � Ȳ}

, (16)

via the data processing lemma without additional constraints on the r.v.’s X and Y, where X̄ and Ȳ are
independent r.v.’s having marginals as X and Y respectively. Polyanskiy–Verdú [57] showed a lower
bound on Sibson’s α-mutual information by using the data processing lemma for the Rényi divergence.
Recently, Sason [58] generalized Fano’s inequality with list decoding via the strong data processing
lemma for the f -divergences.

Liu–Verdú [59] showed that

I(Xn ∧ Yn) ≥ log Mn + O(
√

n) (17)

as n →∞, provided that the geometric average probability of error, which is a weaker and a stronger
criteria than the maximum and the average error criteria, respectively, satisfies(

Mn∏
m�1

P{Yn ∈ Dm,n | Xn
� cm,n}

)1/Mn

≥ 1− ε (18)

for sufficiently large n, where Xn is a r.v. uniformly distributed on the codeword set {cm,n}Mn
m�1, Yn

is a r.v. induced by the n-fold product of a discrete memoryless channel with the input Xn , Mn is a
positive integer denoting the message size, {Dm,n}Mn

m�1 is a collection of disjoint subsets playing the
role of decoding regions, and 0 < ε < 1 is a tolerated probability of error. This is a second-order
asymptotic estimate on the mutual information, and is derived by using the Donsker–Varadhan lemma
(cf. Equation (3.4.67) of [43]) and the so-called pumping-up argument.

1.3. Paper Organization

The rest of this paper is organized as follows. Section 2 introduces basic notations and definitions to
understand our generalized conditional informationmeasureHφ(X | Y) and the principalmaximization
problem Hφ(Q, L, ε,Y). Section 3 presents the main results: our Fano-type inequalities. Section 4
specializes our Fano-type inequalities to Shannon’s and Rényi’s information measures, and discusses
generalizations of Erokhin’s function from the ordinary mutual information to Sibson’s and Arimoto’s
α-mutual information. Section 5 investigates several conditions on a general source in which the
vanishing error probabilities implies the vanishing equivocations; a novel characterization of the AEP
via Fano’s inequality is also presented. Section 6 proves our Fano-type inequalities stated in Section 3,
and contains most technical contributions in this study. Section 7 proves the asymptotic behaviors
stated in Section 5. Finally, Section 8 concludes this study with some remarks.
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2. Preliminaries

2.1. A General Class of Conditional Information Measures

This subsection introduces some notions in majorization theory [10] and a rigorous definition
of generalized conditional information measure Hφ(X | Y) defined in (4). Let X � {1, 2, . . . } be a
countably infinite alphabet. A discrete probability distribution P on X is a map P : X → [0, 1] satisfying∑

x∈X P(x) � 1. In this paper, motivated to consider the joint probability distributions on X ×Y, it is
called an X-marginal. Given an X-marginal P, a decreasing rearrangement of P is denoted by P↓, i.e.,
it fulfills

P↓(1) ≥ P↓(2) ≥ P↓(3) ≥ P↓(4) ≥ P↓(5) ≥ · · · . (19)

The following definition gives us the notion of majorization for X-marginals.

Definition 1 (Majorization [10]). An X-marginal P is said to majorize another X-marginal Q if

k∑
i�1

P↓(i) ≥
k∑

i�1
Q↓(i) (20)

for every k ≥ 1. This relation is denoted by P � Q or Q ≺ P.

Let P(X) be the set of X-marginals. The following definitions are important postulates on a
function φ : P(X) → [0,∞] playing the role of an information measure of an X-marginal.

Definition 2. A function φ : P(X) → [0,∞] is said to be symmetric if it is invariant for any permutation of
probability masses, i.e., φ(P) � φ(P↓) for every P ∈ P(X).

Definition 3. A function φ : P(X) → [0,∞] is said to be lower semicontinuous if for any P ∈ P(X),
it holds that lim infn φ(Pn) ≥ φ(P) for every pointwise convergent sequence Pn → P, where the pointwise
convergence Pn → P means that Pn(x) → P(x) as n →∞ for every x ∈ X.

Definition 4. A function φ : P(X) → [0,∞] is said to be convex if φ(R) ≤ λφ(P) + (1 − λ)φ(Q) with
R � λP + (1− λ)Q for every P, Q ∈ P(X) and 0 ≤ λ ≤ 1.

Definition 5. A function φ : P(X) → [0,∞] is said to be quasiconvex if the sublevel set {P ∈ P(X) |
φ(P) ≤ c} is convex for every P ∈ P(X) and c ∈ [0,∞).

Definition 6. A function φ : P(X) → [0,∞] is said to be Schur-convex if P ≺ Q implies that φ(P) ≤ φ(Q).

In Definitions 4–6, each term or its suffix convex is replaced by concave if −φ fulfills the condition.
In Definition 3, note that the pointwise convergence of X-marginals is equivalent to the convergence in
the variational distance topology (see, e.g., Lemma 3.1 of [60] or Section III-D of [61]).

Let X be an X-valued r.v. and Y aY-valued r.v., whereY is an abstract alphabet. Unless stated
otherwise, assume that the measurable space ofY with a certain σ-algebra is standard Borel, where
a measurable space is said to be standard Borel if its σ-algebra is the Borel σ-algebra generated by a
Polish topology on the space. Assuming that φ : P(X) → [0,∞] is a symmetric, concave, and lower
semicontinuous function, the generalized conditional information measure Hφ(X | Y) is defined by (4).
The postulates on φ we have imposed here are useful for technical reasons to employ majorization
theory; see the following lemma.

Proposition 1. Every symmetric and quasiconvex function φ : P(X) → [0,∞] is Schur-convex.



Entropy 2020, 22, 288 9 of 59

Proof of Proposition 1. In Proposition 3.C.3 of [10], the assertion of Proposition 1 was proved in
the case where the dimension of the domain of φ is finite. Employing Theorem 4.2 of [16]
instead of Corollary 2.B.3 of [10], the proof of Proposition 3.C.3 of [10] can be directly extended
to infinite-dimensional domains. �

To employ the Schur-concavity property in the sequel, Proposition 1 suggests assuming that φ is
symmetric and quasiconcave. In addition, to apply Jensen’s inequality on the function φ, it suffices to
assume that φ is concave and lower semicontinuous, because the domain P(X) forms a closed convex
bounded set in the variational distance topology (cf. Proposition A-2 of [14]). Motivated by these
properties, we impose the three postulates (corresponding to Definitions 2–4) on φ in this study.

2.2. Minimum Average Probability of List Decoding Error

Consider a certain communication model for which a Y-valued r.v. Y plays the role of the
side-information of an X-valued r.v. X. A list decoding schemewith a list size 1 ≤ L < ∞ is a decoding
scheme producing L candidates for realizations of X when we observe a realization of Y. The minimum
average error probability under list decoding is defined by

P(L)e (X | Y) B min
f :Y→(XL)

P{X < f (Y)}, (21)

where the minimization is taken over all set-valued functions f : Y →
(X

L

)
with the decoding range(

X
L

)
B {D ⊂ X | |D| � L}, (22)

and | · | stands for the cardinality of a set. If S is an infinite set, then we assume that |S| � ∞ as usual.
If L � 1, then (21) coincides with the average error probability of the maximum a posteriori (MAP) decoding
scheme. For the sake of brevity, we write

Pe(X | Y) B P(1)e (X | Y). (23)

It is clear that

P{X < f (Y)} ≤ ε �⇒ P(L)e (X | Y) ≤ ε (24)

for any list decoder f : Y →
(X

L

)
and any tolerated probability of error ε ≥ 0. Therefore, it suffices to

consider the constraint P(L)e (X | Y) ≤ ε rather than P{X < f (Y)} ≤ ε in our subsequent analyses.
The following proposition is an elementary formula of P(L)e (X | Y) as in the MAP decoding.

Proposition 2. It holds that

P(L)e (X | Y) � 1−E
[

L∑
x�1

P↓X |Y(x)
]
. (25)

Proof of Proposition 2. See Appendix A. �

Remark 1. It follows from Proposition 2 that Hφ(X | Y) defined in (4) can be specialized to P(L)e (X | Y) with

φ(P) � 1−
L∑

x�1
P↓(x). (26)
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The following proposition characterizes the feasible region of systems (Q, L, ε,Y) considered in
our principal maximization problem Hφ(Q, L, ε,Y) stated in (7).

Proposition 3. If PX � Q, then

1−
L·|Y|∑
x�1

Q↓(x) ≤ P(L)e (X | Y) ≤ 1−
L∑

x�1
Q↓(x). (27)

Moreover, both inequalities are sharp in the sense that there exist pairs of r.v.’s X and Y achieving the equalities
while respecting the constraint PX � Q.

Proof of Proposition 3. See Appendix B. �

The minimum average error probability for list decoding concerning X ∼ Q without any
side-information is denoted by

P(L)e (Q) B 1−
L∑

x�1
Q↓(x). (28)

Then, the second inequality in (27) is obvious, and it is similar to the property that conditioning reduces
uncertainty (cf. [2], Theorem 2.8.1). Proposition 3 ensures that when we have to consider the constraints
P(L)e (X | Y) ≤ ε and PX � Q, it suffices to consider a system (Q, L, ε,Y) satisfying

1−
L·|Y|∑
x�1

Q↓(x) ≤ ε ≤ 1−
L∑

x�1
Q↓(x). (29)

3. Main Results: Fano-Type Inequalities

Let (Q, L, ε,Y) be a system satisfying (29), and φ : P(X) → [0,∞] a symmetric, concave, and
lower semicontinuous function. The main aim of this study is to find an explicit formula or a tight
upper bound on Hφ(Q, L, ε,Y) defined in (7). Now, define the extremal distribution of type-1 by the
following X-marginal,

Ptype-1(x) � P(Q,L,ε)
type-1 (x) B


Q↓(x) if 1 ≤ x < J or K1 < x < ∞,
V(J) if J ≤ x ≤ L,
W(K1) if L < x ≤ K1,

(30)

for each x ∈ X, the weightV( j) is defined by

V( j) �V(Q,L,ε)( j) B


(1− ε) −∑ j−1

x�1 Q↓(x)
L − j + 1 if 1 ≤ j ≤ L,

1 if j > L

(31)

for each j ≥ 1, the weightW(k) is defined by

W(k) �W(Q,L,ε)(k) B


−1 if k � L,∑k

x�1 Q↓(x) − (1− ε)
k − L

if L < k < ∞,

0 if k � ∞

(32)
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for each k ≥ L, the integer J is chosen so that

J � J(Q, L, ε) B min{1 ≤ j < ∞ | Q↓( j) < V( j)}, (33)

and K1 is chosen so that

K1 � K1(Q, L, ε) B sup{L ≤ k < ∞ | W(k) < Q↓(k)}. (34)

A graphical representation of Ptype-1 is shown in Figure 2. Under some mild conditions, the following
theorem gives an explicit formula of Hφ(Q, L, ε,Y).

1 2 3 4 5 6 7 8 9

Q↓(1)

V(J � 2)

W(K1 � 7)

Q↓(1)+V(J)+V(J) � 1− ε

Figure 2. Plot of making the extremal distribution of type-1 defined in (30) from an X-marginal Q,
where L � 3. Each bar represents a probability mass with decreasing rearrangement Q↓.

Theorem 1. Suppose that ε > 0 and the cardinality ofY is at least countably infinite. Then, it holds that

Hφ(Q, L, ε,Y) � φ(Ptype-1). (35)

Proof of Theorem 1. See Section 6.1. �

The Fano-type inequality stated in (35) of Theorem 1 is formulated by the extremal distribution
Ptype-1 defined in (30). The following proposition summarizes basic properties of Ptype-1.

Proposition 4. The extremal distribution of type-1 defined in (30) satisfies the following,

• the probability masses are nonincreasing in x ∈ X, i.e.,

Ptype-1(1) ≥ Ptype-1(2) ≥ Ptype-1(3) ≥ Ptype-1(4) ≥ Ptype-1(5) ≥ · · · , (36)

• the sum of first L probability masses of is equal to 1− ε, i.e.,

L∑
x�1

Ptype-1(x) � 1− ε, (37)

consequently, it holds that

P(L)e (Ptype-1) � ε, (38)
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• the first J − 1 probability masses are equal to that of Q↓, i.e.,

Ptype-1(x) � Q↓(x) (for 1 ≤ x ≤ J − 1), (39)

• the probability masses for J ≤ x ≤ L are equal toV(J), i.e.,

Ptype-1(x) �V(J) (for J ≤ x ≤ L), (40)

• the probability masses for L + 1 ≤ x ≤ K1 are equal toW(K1), i.e.,

Ptype-1(x) �W(K1) (for L + 1 ≤ x ≤ K1), (41)

• the probability masses for x ≥ K1 + 1 are equal to that of Q↓, i.e.,

Ptype-1(x) � Q↓(x) (for x ≥ K1 + 1), (42)

and
• it holds that Ptype-1 majorizes Q.

Proof of Proposition 4. See Appendix C. �

Although positive tolerated probabilities of error (i.e., ε > 0) are highly interesting in most of the
lossless communication systems, the scenario in which the error events with positive probabilities
are not allowed (i.e., ε � 0) is also important to deal with the error-free communication systems.
The following theorem is an error-free version of Theorem 1.

Theorem 2. Suppose that ε � 0 andY is at least countably infinite. Then, it holds that

Hφ(Q, L, 0,Y) ≤ φ(Ptype-1) (43)

with equality if supp(Q) B {x ∈ X | Q(x) > 0} is finite or J � L. Moreover, if the cardinality ofY is at least
the cardinality of the continuum R, then there exists a σ-algebra onY satisfying (43) with equality.

Proof of Theorem 2. See Section 6.2. �

Remark 2. Note that J � L holds under the unique decoding rule (i.e., L � 1); that is, we see from Theorem 2
that (43) holds with equality if L � 1. The inequality J < L occurs only if a non-unique decoding rule (i.e.,
L > 1) is considered. In Theorem 2, the existence of a σ-algebra on an uncountably infinite alphabet Y in
which (43) holds with equality is due to Révész’s generalization of the Birkhoff–von Neumann decomposition via
Kolmogorov’s extension theorem; see Sections 6.1 and 6.2 for technical details.

Consider the case where Y is a finite alphabet. Define the extremal distribution of type-2 as the
following X-marginal,

Ptype-2(x) � P(Q,L,ε,Y)
type-2 (x) B


Q↓(x) if 1 ≤ x < J or K2 < x < ∞,
V(J) if J ≤ x ≤ L,
W(K2) if L < x ≤ K2

(44)

for each x ∈ X, where the three quantities V(·), W(·), and J are defined in (31), (32), and (33),
respectively, and K2 is chosen so that

K2 � K2(Q, L, ε,Y) B max{L ≤ k ≤ L · |Y| | W(k) < Q↓(k)}. (45)
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Moreover, define the integer D by

D � D(Q, L, ε,Y) B min
{(

K2 − J + 1
L − J + 1

)
, (K2 − J)2 + 1

}
, (46)

where
(a
b

)
B a!

b!(a−b)! stands for the binomial coefficient for two integers 0 ≤ b ≤ a. A graphical
representation of Ptype-2 is illustrated in Figure 3. WhenY is finite, the Fano-type inequality stated in
Theorems 1 and 2 can be tightened as follows:

Theorem 3. Suppose thatY is finite. Then, it holds that

Hφ(Q, L, ε,Y) ≤ φ(Ptype-2) (47)

with equality if ε � P(L)e (Q) or |Y| ≥ D.

Proof of Theorem 3. See Section 6.3. �

1 2 3 4 5 6 7 8 9

Q↓(1)

V(J � 2)

W(K2 � 6)

Q↓(1)+V(J)+V(J) � 1− ε

Figure 3. Plot of making the extremal distribution of type-2 defined in (44) from an X-marginal Q,
where L � 3 and |Y| � 2. Each bar represents a probability mass of the decreasing rearrangement Q↓.

Similar to Theorems 1 and 2, the Fano-type inequality stated in (47) of Theorem 3 is formulated by
the extremal distribution Ptype-2 defined in (44). The difference between Ptype-1 and Ptype-2 is only the
difference between K1 and K2 defined in (34) and (45), respectively.

Remark 3. In contrast to Theorems 1 and 2, Theorem 3 holds in both cases: ε > 0 and ε � 0. By Lemma 5
stated in Section 6.1, it can be verified that Ptype-2 majorizes Ptype-1, and it follows from Proposition 1 that

φ(Ptype-2) ≤ φ(Ptype-1). (48)

Namely, the Fano-type inequalities stated in Theorems 1 and 2 also holds for finiteY. In other words, it holds that

Hφ(Q, L, ε,Y) ≤ φ(Ptype−1) (49)

for every nonempty alphabetY, provided that (Q, L, ε,Y) satisfies (29). As |Y| ≥ D if L � 1 (see (46)), another
benefit of Theorem 3 is that the Fano-type inequality is always sharp under a unique decoding rule (i.e., L � 1).
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So far, it is assumed that the probability law PX of theX-valued r.v. X is fixed to a givenX-marginal
Q. When we assume that X is supported on a finite subalphabet of X, we can loosen and simplify our
Fano-type inequalities by removing the constraint that PX � Q. Let L and M be two integers satisfying
1 ≤ L < M, ε a real number satisfying 0 ≤ ε ≤ 1− L/M, and Y a nonempty alphabet. Consider the
following maximization,

Hφ(M, L, ε,Y) B max
(X,Y):P(L)e (X |Y)≤ε

Hφ(X | Y), (50)

where the maximization is taken over the pairs (X, Y) of r.v.’s satisfying (i) X is {1, . . . , M}-valued, (ii)
Y isY-valued, and (iii) P(L)e (X | Y) ≤ ε.

Theorem 4. It holds that

Hφ(M, L, ε,Y) � φ(Ptype-0), (51)

where Ptype-0 is defined in (12).

Proof of Theorem 4. See Section 6.4. �

Remark 4. Although Theorems 1–3 depend on the cardinality ofY, the Fano-type inequality stated in Theorem 4
does not depend on it wheneverY is nonempty.

4. Special Cases: Fano-Type Inequalities on Shannon’s and Rényi’s Information Measures

In this section, we specialize our Fano-type inequalities stated in Theorems 1–4 from general
conditional information measures Hφ(X | Y) to Shannon’s and Rényi’s information measures. We then
recover several known results such as those in [1,20–23] along the way.

4.1. On Shannon’s Information Measures

The conditional Shannon entropy [62] of an X-valued r.v. X given aY-valued r.v. Y is defined by

H(X | Y) B E[H(PX |Y)] � E

[∑
x∈X

PX |Y(x) log 1
PX |Y(x)

]
, (52)

where the (unconditional) Shannon entropy of an X-marginal P is defined by

H(P) B
∑
x∈X

P(x) log 1
P(x) . (53)

Remark 5. It can be verified by the monotone convergence theorem (cf. [63] Theorem 10.1.7) that

H(X | Y) � E
[
log 1

PX |Y(X)

]
, (54)

provided that the right-hand side of (54) is finite. In some cases, it is convenient to define the conditional Shannon
entropy H(X | Y) by the right-hand side of (54) (see, e.g., [64]).

The following proposition is a well-known property of Shannon’s information measures.

Proposition 5 (Topsøe [60]). The Shannon entropy H(·) is symmetric, concave, and lower semicontinuous.
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Namely, the conditional Shannon entropy H(X | Y) is a special case of Hφ(X | Y) with φ � H.
Therefore, defining the quantity

H(Q, L, ε,Y) B HH(Q, L, ε,Y) � sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

H(X | Y), (55)

we readily observe the following corollary.

Corollary 1. Suppose that ε > 0 and the cardinality ofY is at least countably infinite. Then, it holds that

H(Q, L, ε,Y) � H(Ptype-1)

� (J − L + 1)V(J) log 1
V(J) + (K1 − L)W(K1) log 1

W(K1)
+

∞∑
x�1:

x< J or x>K1

Q↓(x) log 1
Q↓(x)

. (56)

Proof of Corollary 1. Corollary 1 is a direct consequence of Theorem 1 and Proposition 5. �

Remark 6. Applying Theorem 2 instead of Theorem 1, an error-free version (i.e., ε � 0) of Corollary 1 can be
considered.

Remark 7. Note that Corollary 1 coincides with Theorem 1 of [21] if L � 1 andY � X. Moreover, we observe
from (10) and Corollary 1 that

I(Q, ε) � H(Q) −H(Q, 1, ε,X)

�

K1∑
x�1

Q↓(x) log 1
Q↓(x)

+V(1) logV(1)+ (K1 − 1)W(K1) logW(K1) (57)

for every X-marginal Q and every tolerated probability of error 0 ≤ ε ≤ 1 − Q↓(1), where Erokhin’s
function I(Q, ε) is defined in (9). See Section 4.3 for details of generalizing of Erokhin’s function.
Kostina–Polyanskiy–Verdú showed in Theorem 4 and Remark 3 of [41] that

I(Qn , ε) � n (1− ε)H(Q) −
√

n V(Q)
2π e−Φ−1(ε)2/2

+ O(log n) (as n →∞), (58)

where V(P) is defined by

V(P) B
∑
x∈X

P(x)
(
log 1

P(x) −H(P)
)2

(59)

and Φ−1(·) stands for the inverse of the Gaussian cumulative distribution function

Φ(u) B 1√
2π

∫ u

−∞
e−t2/2dt. (60)

IfY is finite, then a tighter version of the Fano-type inequality than Corollary 1 can be obtained as
follows:

Corollary 2. Suppose thatY is finite. Then, it holds that

H(Q, L, ε,Y) ≤ H(Ptype-2)

� (J − L + 1)V(J) log 1
V(J) + (K2 − L)W(K2) log 1

W(K2)
+

∞∑
x�1:

x< J or x>K2

Q↓(x) log 1
Q↓(x)

, (61)



Entropy 2020, 22, 288 16 of 59

with equality if ε � P(L)e (Q) or |Y| ≥ D.

Proof of Corollary 2. Corollary 2 is a direct consequence of Theorem 3 and Proposition 5. �

Remark 8. The inequality in (61) holds with equality if L � 1 (cf. Remark 3). In fact, when L � 1, Corollary 2
coincides with Ho–Verdú’s refinement of Erokhin’s function I(Q, ε) with finiteY (see Theorem 4 of [21]).

Similar to (50) and (55), we can define

H(M, L, ε,Y) B HH(M, L, ε,Y) � max
(X,Y):P(L)e (X |Y)≤ε

H(X | Y), (62)

and can give an explicit formula of H(M, L, ε,Y) as follows.

Corollary 3. It holds that

H(M, L, ε,Y) � H(Ptype-0) � h2(ε)+ (1− ε) log L + ε log(M − L). (63)

Proof of Corollary 3. Corollary 3 is a direct consequence of Theorem 4 and Proposition 5. �

Remark 9. Indeed, Corollary 3 states the classical Fano inequality with list decoding; see (11).

4.2. On Rényi’s Information Measures

Although the choices of Shannon’s information measures are unique based on a set of axioms
(see, e.g., Theorem 3.6 of [6] and Chapter 3 of [4]), there are several different definitions of conditional
Rényi entropies (cf. [65–67]). Among them, this study focuses on Arimoto’s and Hayashi’s conditional
Rényi entropies [8,9]. Arimoto’s conditional Rényi entropy of X given Y is defined by

HArimoto
α (X | Y) B α

1− α logE[‖PX |Y ‖α] �
α

1− α logE

(∑

x∈X
PX |Y(x)α

)1/α (64)

for each order α ∈ (0, 1) ∪ (1,∞), where the `α-norm of an X-marginal P is defined by

‖P‖α B
(∑

x∈X
P(x)α

)1/α

. (65)

Here, note that the (unconditional) Rényi entropy [55] of an X-marginal P can be defined by

Hα(P) B
α

1− α log ‖P‖α �
1

1− α log
∑
x∈X

P(x)α, (66)

i.e., it is a monotone function of the `α-norm. Basic properties of the `α-norm can be found in the
following proposition.

Proposition 6. The `α-norm ‖ · ‖α is symmetric and lower semicontinuous. Moreover, it is concave (resp.
convex) if 0 < α ≤ 1 (resp. if α ≥ 1).

Proof of Proposition 6. The symmetry is obvious. The lower semicontinuity was proven by
Kovačević–Stanojević–Šenk in Theorem 5 of [35]. The concavity (resp. convexity) property can
be verified by the reverse (resp. forward) Minkowski inequality. �
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Proposition 6 implies that HArimoto
α (X | Y) is a monotone function of Hφ(X | Y)with φ � ‖ · ‖α, i.e.,

HArimoto
α (X | Y) � α

1− α log
(
H‖·‖α (X | Y)

)
. (67)

On the other hand, Hayashi’s conditional Rényi entropy of X given Y is defined by

HHayashi
α (X | Y) B 1

1− α logE[‖PX |Y ‖αα ] �
1

1− α logE

[∑
x∈X

PX |Y(x)α
]

(68)

for each order α ∈ (0, 1) ∪ (1,∞). It is easy to see that ‖ · ‖αα : P(X) → [0,∞] also admits the
same properties as those stated in Proposition 6. Therefore, Hayashi’s conditional Rényi entropy
HHayashi
α (X | Y) is also a monotone function of Hφ(X | Y)with φ � ‖ · ‖αα , i.e.,

HHayashi
α (X | Y) � 1

1− α log
(
H‖·‖αα (X | Y)

)
. (69)

It can be verified by Jensen’s inequality (see, e.g., Proposition 1 of [66]) that

HHayashi
α (X | Y) ≤ HArimoto

α (X | Y). (70)

Similar to (7), we now define

H†α(Q, L, ε,Y) B sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

H†α(X | Y) (71)

for each † ∈ {Arimoto, Hayashi} and each α ∈ (0, 1) ∪ (1,∞). Then, we can establish the Fano-type
inequality on Rényi’s information measures as follows.

Corollary 4. Suppose that ε > 0 and the cardinality of Y is at least countably infinite. For every † ∈
{Arimoto, Hayashi} and α ∈ (0, 1) ∪ (1,∞), it holds that

H†α(Q, L, ε,Y) � Hα(Ptype-1)

�
1

1− α log
©­­«(J − L + 1)V(J)α + (K1 − L)W(K1)α +

∞∑
x�1:

x< J or x>K1

Q↓(x)α
ª®®¬ . (72)

Proof of Corollary 4. Let † � Arimoto. It follows from Theorem 1 and Proposition 6 that

0 < α ≤ 1 �⇒ sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

E
[
‖PX |Y ‖α

]
� ‖Ptype-1‖α, (73)

α ≥ 1 �⇒ inf
(X,Y):P(L)e (X |Y)≤ε,PX�Q

E
[
‖PX |Y ‖α

]
� ‖Ptype-1‖α. (74)

As the mapping u 7→ (α/(1− α)) log u is strictly increasing (resp. strictly decreasing) if 0 < α < 1 (resp.
if α > 1), it follows from (66), (67), (73), and (74) that

sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

HArimoto
α (X | Y) � Hα(Ptype-1). (75)

The proof for the case when † � Hayashi is the same as above, proving Corollary 4. �

Remark 10. Applying Theorem 2 instead of Theorem 1, an error-free version (i.e., ε � 0) of Corollary 4 can be
considered.
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Remark 11. Although Hayashi’s conditional Rényi entropy is smaller than Arimoto’s one in general (see (70)),
Corollary 4 implies that the maximization problemH†α(Q, L, ε,Y) results in the same Rényi entropy Hα(Ptype-1)
for each † ∈ {Arimoto, Hayashi}.

WhenY is finite, a tighter Fano-type inequality than Corollary 4 can be obtained as follows.

Corollary 5. Suppose thatY is finite. For any † ∈ {Arimoto, Hayashi} and α ∈ (0, 1) ∪ (1,∞), it holds that

H†α(Q, L, ε,Y) ≤ Hα(Ptype-2)

�
1

1− α log
©­­«(J − L + 1)V(J)α + (K2 − L)W(K2)α +

∞∑
x�1:

x< J or x>K2

Q↓(x)α
ª®®¬ , (76)

with equality if ε � P(L)e (Q) or |Y| ≥ D.

Proof of Corollary 5. The proof is the same as the proof of Corollary 4 by replacing Theorem 1 by
Theorem 3. �

Similar to (50) and (71), define

H†α(M, L, ε,Y) B max
(X,Y):P(L)e (X |Y)≤ε

H†α(X | Y) (77)

for each † ∈ {Arimoto, Hayashi} and each α ∈ (0, 1) ∪ (1,∞).

Corollary 6. For every † ∈ {Arimoto, Hayashi} and α ∈ (0, 1) ∪ (1,∞), it holds that

H†α(M, L, ε,Y) � Hα(Ptype-0) �
1

1− α log
(
L1−α(1− ε)+ (M − L)1−αεα

)
. (78)

Proof of Corollary 6. The proof is the same as the proof of Corollary 4 by replacing Theorem 1 by
Theorem 4. �

Remark 12. When † � Arimoto, Corollary 6 coincides with Sason–Verdú’s generalization (cf. Theorem 8
of [23]) of Fano’s inequality for Rényi’s information measures with list decoding (see (15)).

Remark 13. It follows by l’Hôpital’s rule that

lim
α→1

Hα(Ptype-0) � H(Ptype-0), (79)

lim
α→1

Hα(Ptype-1) � H(Ptype-1), (80)

lim
α→1

Hα(Ptype-2) � H(Ptype-2). (81)

Therefore, our Fano-type inequalities stated in Corollaries 1–6 satisfy the continuity of Shannon’s and Rényi’s
information measures with respect to the order 0 < α < ∞.

4.3. Generalization of Erokhin’s Function to α-Mutual Information

Erokhin’s function I(Q, ε) defined in (9) can be generalized to the α-mutual information (cf. [68])
as follows: Let X be an X-valued r.v. and Y a Y-valued r.v. Sibson’s α-mutual information [24] (see
also Equation (32) of [68], Equation (13) of [69], and Definition 7 of [70]) is defined by

ISibson
α (X ∧ Y) B inf

QY
Dα(PX,Y ‖ PX ×QY) (82)
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for each 0 < α < ∞, where PX,Y (resp. PX) denotes the probability measure onX ×Y (resp.X) induced
by the pair (X, Y) of r.v.’s (resp. the r.v. X), the infimum is taken over the probability measures QY on
Y, and the Rényi divergence [55] between two probability measures µ and ν onA is defined by

Dα(µ ‖ ν) B



1
α − 1 log

(∫
A

(
dµ
dν

)α
dν

)
if µ � ν and α , 1,∫

A

(
log

dµ
dν

)
dµ if µ � ν and α � 1,

∞ otherwise

(83)

for each 0 < α < ∞. Note that Sibson’s α-mutual information coincides with the ordinary mutual
information when α � 1, i.e., it holds that I(X ∧ Y) � I1(X ∧ Y). Similar to (7) and (9), given a system
(Q, L, ε,Y) satisfying (29), define

ISibson
α (Q, L, ε,Y) B inf

(X,Y):P(L)e (X |Y)≤ε,PX�Q
ISibson
α (X ∧ Y), (84)

where the infimum is taken over the pairs of r.v.’s X and Y in which (i) X isX-valued, (ii) Y isY-valued,
(iii) P(L)e (X | Y) ≤ ε, and (iv) PX � Q. By convention, we denote by

I(Q, L, ε,Y) B ISibson
1 (Q, L, ε,Y). (85)

It is clear that this definition can be specialized to Erokhin’s function I(Q, ε) defined in (9); in other
words, it holds that

I(Q, 1, ε,X) � I(Q, ε); (86)

see Remark 7.

Corollary 7 (When α � 1). Suppose that ε > 0 and the cardinality ofY is at least countably infinite. Then, it
holds that

I(Q, L, ε,Y) � H(Q) −H(Q, L, ε,Y)

�

K1∑
x�J

Q↓(x) log 1
Q↓(x)

+ (J − L + 1)V(J) logV(J)+ (K1 − L)W(K1) logW(K1). (87)

Proof of Corollary 7. The equality in (87) is trivial from the well-known identity I(X ∧ Y) � H(X) −
H(X | Y). The inequality in (87) follows from Corollary 1, completing the proof. �

Corollary 8 (Sibson, when α , 1). Suppose that ε > 0 and Y is countably infinite. For every α ∈
(0, 1) ∪ (1,∞), it holds that

ISibson
α (Q, L, ε,Y) � Hα(Q(1/α)) −HArimoto

α (Q(1/α), L, ε,Y)

�
1

α − 1 log
©­­«1−

K(1/α)1∑
x�J(1/α)

Q↓(x)

+

(
(J(1/α) − L + 1)V(1/α)(J(1/α))α + (K(1/α)1 − L)W(1/α)(K(1/α)1 )α

) (∑
x∈X

Q(x)1/α
)αª®®®¬ , (88)
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where Q(s) stands for the s-tilted distribution of Q with real parameter 0 < s < ∞, i.e.,

Q(s)(x) B Q(x)s∑
x′∈X Q(x′)s (89)

for each x ∈ X, andV(s)(·), W (s)(·), J(s), and K(s)1 are defined as in (31), (32), (33), and (34), respectively, by replacing the
X-marginal Q by the s-tilted distribution Q(s).

Proof of Corollary 8. As Sibson’s identity [24] (see also [69], Equation (12)) states that

Dα(PX,Y ‖ PX ×QY) � Dα(PX,Y ‖ PX ×Qα)+ Dα(Qα ‖QY), (90)

where Qα stands for the probability distribution onY given as

Qα(y) �
(∑

x∈X
PX,Y(x, y)α PX(x)1−α

)1/α ©­«
∑
y′∈Y

(∑
x′∈X

PX,Y(x′, y′)α PX(x′)1−α
)1/αª®¬

−1

(91)

for each y ∈ Y, we observe that

ISibson
α (X ∧ Y) � α

α − 1 log
∑
y∈Y

(∑
x∈X

PX,Y(x, y)α PX(x)1−α
)1/α

(92)

for every α ∈ (0, 1) ∪ (1,∞), provided that Y is countable. On the other hand, it follows from ([8]
Equation (13)) that

IArimoto
α (X ∧ Y) � α

α − 1 log
∑
y∈Y

(∑
x∈X

PX,Y(x, y)α∑
x′∈X PX(x′)α

)1/α

(93)

for every α ∈ (0, 1) ∪ (1,∞), provided thatY is countable. Combining (92) and (93), we have the first
equality in (88). Finally, the second equality in (88) follows from Corollary 4 after some algebra. This
completes the proof of Corollary 8. �

In contrast to (82), Arimoto defined the α-mutual information ([8], Equation (15)) by

IArimoto
α (X ∧ Y) B Hα(X) −HArimoto

α (X | Y) (94)

for every α ∈ (0, 1) ∪ (1,∞). Similar to (84), one can define

IArimoto
α (Q, L, ε,Y) B inf

(X,Y):P(L)e (X |Y)≤ε,PX�Q
IArimoto
α (X ∧ Y), (95)

and a counterpart of Corollary 8 can be stated as follows.

Corollary 9 (Arimoto, when α , 1). Suppose that ε > 0 and the cardinality ofY is at least countably infinite.
For every α ∈ (0, 1) ∪ (1,∞), it holds that

IArimoto
α (Q, L, ε,Y) � Hα(Q) −HArimoto

α (Q, L, ε,Y)

�
1

α − 1 log

(
1−

K1∑
x�J

(Q(α))↓(x)

+

(
(J − L + 1)V(J)α + (K1 − L)W(K1)α

) (∑
x∈X

Q(x)α
)−1ª®¬ . (96)
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Proof of Corollary 9. The first equality in (96) is obvious from the definition. The second equality
in (96) follows from Corollary 4 after some algebra, completing the proof. �

WhenY is finite, then the inequalities stated in Corollaries 7–9 can be tightened by Theorem 3 as
in Corollaries 2 and 5. We omit to explicitly state these tightened inequalities in this paper.

5. Asymptotic Behaviors on Equivocations

In information theory, the equivocation or the remaining uncertainty of an r.v. X relative to a correlated
r.v. Y has an important role in establishing fundamental limits of the optimal transmission ratio and/or
rate in several communication models. Shannon’s equivocation H(X | Y) is a well-known measure in
the formulation of the notion of perfect secrecy of symmetric-key encryption in information-theoretic
cryptography [71]. Iwamoto–Shikata [66] considered the extension of such a secrecy criterion by
generalizing Shannon’s equivocation to Rényi’s equivocation by showing various desired properties
of the latter. Recently, Hayashi–Tan [72] and Tan–Hayashi [73] studied the asymptotics of Shannon’s
and Rényi’s equivocations when the side-information about the source is given via a various class of
random hash functions with a fixed rate.

In this section, we assume that certain error probabilities vanish and we then establish asymptotic
behaviors on Shannon’s, or sometimes on Rényi’s, equivocations via the Fano-type inequalities stated
in Section 4.

5.1. Fano’s Inequality Meets the AEP

We consider a general form of the asymptotic equipartition property (AEP) as follows.

Definition 7 ([25]). We say that a sequence of X-valued r.v.’s X � {Xn}∞n�1 satisfies the AEP if

lim
n→∞

P
{

log 1
PXn (Xn)

≤ (1− δ)H(Xn)
}
� 0 (97)

for every fixed δ > 0.

In the literature, the r.v. Xn is commonly represented as a random vector Xn � (Z(n)1 , . . . , Z(n)n ).
The formulation without reference to random vectors means that X � {Xn}∞n�1 is a general source in the
sense of Page 100 of [33].

Let {Ln}∞n�1 be a sequence of positive integers, {Yn}∞n�1 a sequence of nonempty alphabets, and
{(Xn , Yn)}∞n�1 a sequence of pairs of r.v.’s, where Xn (resp. Yn) is X-valued (resp.Yn-valued) for each
n ≥ 1. As

lim
n→∞

P{Xn < fn(Yn)} � 0 �⇒ lim
n→∞

P(Ln )
e (Xn | Yn) � 0 (98)

for any sequence of list decoders { fn : Y →
(X
Ln

)
}∞n�1, it suffices to assume that P(Ln )

e (Xn | Yn) � o(1)
as n → ∞ in our analysis. The following theorem is a novel characterization of the AEP via Fano’s
inequality.

Theorem 5. Suppose that a general source X � {Xn}∞n�1 satisfies the AEP, and H(Xn) � Ω(1) as n → ∞.
Then, it holds that

lim
n→∞

P(Ln )
e (Xn | Yn) � 0 �⇒

��H(Xn | Yn) − log Ln
��+ � o

(
H(Xn)

)
, (99)

where |u |+ B max{0, u} for u ∈ R. Consequently, it holds that

lim
n→∞

P(Ln )
e (Xn | Yn) � lim

n→∞

log Ln

H(Xn)
� 0 �⇒ lim

n→∞
H(Xn | Yn)

H(Xn)
� 0. (100)
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Proof of Theorem 5. See Section 7.1. �

The following three examples are particularizations of Theorem 5.

Example 1. Let {Zn}∞n�1 be an i.i.d. source on a countably infinite alphabet X with finite Shannon entropy
H(Z1) < ∞. Suppose that Xn � (Z1, . . . , Zn) andYn � Xn for each n ≥ 1. Then, Theorem 5 states that

lim
n→∞

P{Xn , Yn} � 0 �⇒ lim
n→∞

1
n

H(Xn | Yn) � 0. (101)

This result is commonly referred to as the weak converse property of the source {Zn}∞n�1 in the unique decoding
setting.

Example 2. Let X � {Xn}∞n�1 be a source as described in Example 1. Even if the list decoding setting, Theorem 5
states that

lim
n→∞

P(Ln )
e (Xn | Yn) � lim

n→∞
1
n

log Ln � 0 �⇒ lim
n→∞

1
n

H(Xn | Yn) � 0, (102)

similarly to Example 1. This is a key observation in Ahlswede–Gács–Körner’s proof of the strong converse
property of degraded broadcast channels; see Chapter 5 of [42] (see also Section 3.6.2 of [43] and Lemma 1 of [48]).

Example 3. Consider the Poisson source X � {Xn}∞n�1 with growing mean λn � ω(1) as n →∞, i.e.,

PXn (k) �
λk−1

n e−λn

(k − 1)! for k ∈ X � {1, 2, . . . }. (103)

It is known that

lim
n→∞

H(Xn)
(1/2) log λn

� 1, (104)

and the Poisson source X satisfies the AEP (see [25]). Therefore, it follows from Theorem 5 that

lim
n→∞

P(Ln )
e (Xn | Yn) � 0 �⇒ |H(Xn | Yn) − log Ln |+ � o(log λn). (105)

The following example shows a general source that satisfies neither the AEP nor (99).

Example 4. Let L ≥ 1 be an integer, γ > 0 a positive real, and {δn}∞n�1 a sequence of reals satisfying δn � o(1)
and 0 < δn < 1 for each n ≥ 1. As p 7→ h2(p)/p is continuous on (0, 1] and h2(p)/p → ∞ as p → 0+, one
can find a sequence of reals {pn}∞n�1 satisfying 0 < pn ≤ min{1, (1− δn)/(δn L)} for each n ≥ 1 and

δn h2(pn)
pn

� γ for sufficiently large n. (106)

Consider a general source X � {Xn}∞n�1 whose component distributions are given by

PXn (x) �


1− δn

L
if 1 ≤ x ≤ L,

δn pn(1− pn)x−(L+1) if x ≥ L + 1
(107)

for each n ≥ 1. Suppose that Xn y Yn for each n ≥ 1. After some algebra, we have

P(L)e (Xn | Yn) � P(L)e (Xn) � δn , (108)

H(Xn | Yn) � H(Xn) � h2(δn)+ (1− δn) log L +
δn h2(pn)

pn
(109)
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for each n ≥ 1. Therefore, we observe that

lim
n→∞

P(L)e (Xn | Yn) � 0 (110)

holds, but

lim
n→∞

|H(Xn | Yn) − log L |+
H(Xn)

� 0 (111)

does not hold. In fact, it holds that H(Xn) → γ + log L as n →∞ and

lim
n→∞

PXn (x) �


1
L

if 1 ≤ x ≤ L,

0 if x ≥ L.
(112)

Consequently, we also see that X � {Xn}∞n�1 does not satisfy the AEP.

Example 4 implies that the AEP has an important role in Theorem 5.

5.2. Vanishing Unnormalized Rényi’s Equivocations

Let X be an X-valued r.v. satisfying H(X) < ∞, {Ln}∞n�1 a sequence of positive integers, {Yn}∞n�1 a
sequence of nonempty alphabets, and {(Xn , Yn)}∞n�1 a sequence of X ×Yn-valued r.v.’s. The following
theorem provides four conditions on a general source X � {Xn}∞n�1 such that vanishing error
probabilities implies vanishing unnormalized Shannon’s and Rényi’s equivocations.

Theorem 6. Let α ≥ 1 be an order. Suppose that any one of the following four conditions hold,

(a) the order α is strictly larger than 1, i.e., α > 1,
(b) the sequence {Xn}∞n�1 satisfies the AEP and H(Xn) � O(1) as n →∞,
(c) there exists an n0 ≥ 1 such that PXn majorizes PX for every n ≥ n0,
(d) the sequence {Xn}∞n�1 converges in distribution to X and H(Xn) → H(X) as n →∞.

Then, it holds that for each † ∈ {Arimoto, Hayashi},

lim
n→∞

P(Ln )
e (Xn | Yn) � 0 �⇒ lim

n→∞

��H†α(Xn | Yn) − log Ln
��+ � 0. (113)

Proof of Theorem 6. See Section 7.2. �

In contrast to Condition (b) of Theorem 6, Conditions (a), (c), and (d) of Theorem 6 do not require
the AEP to hold. Interestingly, Condition (a) of Theorem 6 states that (113) holds for every α > 1 and
† ∈ {Arimoto, Hayashi} without any other conditions on the general source X � {Xn}∞n�1.

Remark 14. If Ln � 1 for each n ≥ 1, then Conditions (c) and (d) of Theorem 6 coincide with Ho–Verdú’s result
stated in Theorem 18 of [21]. Moreover, if Ln � 1 for each n ≥ 1, and if Xn is {1, . . . , Mn}-valued for each n ≥ 1,
then Condition (a) of Theorem 6 coincides with Sason–Verdú’s result stated in Assertion (a) of Theorem 4 of [23].

5.3. Under the Symbol-Wise Error Criterion

Let L � {Ln}∞n�1 be a sequence of positive integers, {Yn}∞n�1 a sequence of nonempty alphabets,
and {(Xn , Yn)}∞n�1 a sequence of X ×Yn-valued r.v.’s satisfying H(Xn) < ∞ for every n ≥ 1. In this
subsection, we focus on theminimum arithmetic-mean probability of symbol-wise list decoding errordefined as

P(L)e,sym.(Xn | Yn) B 1
n

n∑
i�1

P(Li )
e (Xi | Yi), (114)
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where Xn � (X1, X2, . . . , Xn) and Yn � (Y1, Y2, . . . , Yn). Now, let X be an X-valued r.v. satisfying
H(X) < ∞. Under this symbol-wise error criterion, the following theorem holds.

Theorem 7. Suppose that PXn majorizes PX for sufficiently large n. Then, it holds that

lim
n→∞

P(L)e,sym.(Xn | Yn) � 0 �⇒ lim sup
n→∞

1
n

H(Xn | Yn) ≤ lim sup
n→∞

log Ln . (115)

Proof of Theorem 7. See Section 7.3. �

It is known that the classical Fano inequality stated in (1) can be extended from the average error
criterion P{Xn , Yn} to the symbol-wise error criterion (1/n)E[dH(Xn , Yn)] (see Corollary 3.8 of [6]),
where

dH(xn , yn) B |{1 ≤ i ≤ n | xi , yi}| (116)

stands for the Hamming distance between two strings xn � (x1, . . . , nn) and yn � (y1, . . . , yn). In fact,
Theorem 7 states that

lim
n→∞

1
n
E[dH(Xn , Yn)] � 0 �⇒ lim

n→∞
1
n

H(Xn | Yn) � 0, (117)

provided that PXn majorizes PX for sufficiently large n.
However, in the list decoding setting, we observe that P(L)e,sym.(Xn | Yn) � o(1) does not imply

H(Xn | Yn) � o(n) in general. A counterexample can be readily constructed.

Example 5. Let {Xn}∞n�1 be uniformly distributed Bernoulli r.v.’s, and {Yn}∞n�1 arbitrary r.v.’s. Suppose that
(Xn , Yn) y (Xm , Ym) if n , m, Xn y Yn for each n ≥ 1, and Ln � 2 for each n ≥ 1. Then, we observe that

P(L)e,sym.(Xn | Yn) � 0 (118)

for every n ≥ 1, but

H(Xn | Yn) � n log 2 (119)

for every n ≥ 1.

6. Proofs of Fano-Type Inequalities

In this section, we prove Theorems 1–4 via majorization theory [10].

6.1. Proof of Theorem 1

We shall relax the feasible regions of the supremum in (7) via some lemmas, i.e., our preliminary
results. Define a notion of symmetry for the conditional distribution PX |Y as follows.

Definition 8. A jointly distributed pair (X, Y) is said to be connected uniform-dispersively if P↓X |Y is almost
surely constant.

Remark 15. The term introduced in Definition 8 is inspired by uniformly dispersive channels named by
Massey (see Page 77 of [12]). In fact, if Y is countable and X (resp. Y) denotes the output (resp. input) of a
channel PX |Y , then the channel PX |Y can be thought of as a uniformly dispersive channel, provided that (X, Y) is
connected uniform-dispersively. Initially, Fano said such channels to be uniform from the input; see Page 127
of [11]. Refer to Section II-A of [13] for several symmetry notions of channels.
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Although an almost surely constant PX |Y implies the independence X y Y, note also that an
almost surely constant P↓X |Y does not imply the independence. We now give the following lemma.

Lemma 1. If a jointly distributed pair (X, Y) is connected uniform-dispersively, then PX |Y majorizes PX a.s.

Proof of Lemma 1. Let k be a positive integer. Choose a collection {xi}ki�1 of k distinct elements in X
so that

PX(xi) � P↓X(i) (120)

for every 1 ≤ i ≤ k. As

k∑
i�1

PX |Y(xi) ≤
k∑

x�1
P↓X |Y(x) (a.s.) (121)

and

PX(x) � E[PX |Y(x)] (122)

for each x ∈ X, we observe that

k∑
x�1

P↓X(x) � E

[
k∑

i�1
PX |Y(xi)

]
≤ E

[
k∑

x�1
P↓X |Y(x)

]
. (123)

If (X, Y) is connected uniform-dispersively (see Definition 8), then (123) implies that

k∑
x�1

P↓X(x) ≤
k∑

x�1
P↓X |Y(x) (a.s.), (124)

which is indeed the majorization relation stated Definition 1, completing the proof of Lemma 1. �

Remark 16. Lemma 1 is can be thought of as a novel characterization of uniformly dispersive channels via
the majorization relation; see Remark 15. More precisely, given an input distribution P on X and a uniformly
dispersive channel W : X → Y with countable output alphabetY, it holds that W(· | x) majorizes the output
distribution PW for every x ∈ X, where PW is given by

PW(y) B
∑
x∈X

P(x)W(y | x) (125)

for each y ∈ Y.

Definition 9. LetA be a collection of jointly distributed pairs of an X-valued r.v. and aY-valued r.v. We say
thatA has balanced conditional distributions if (X, Y) ∈ A implies that there exists (U, V) ∈ A satisfying

P↓U |V (x) � E
[
P↓X |Y(x)

]
(a.s.) (126)

for every x ∈ X.

For such a collectionA, the following lemma holds.
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Lemma 2. Suppose that A has balanced conditional distributions. For any (X, Y) ∈ A, there exists a pair
(U, V) ∈ A connected uniform-dispersively such that

Hφ(U | V) ≥ Hφ(X | Y). (127)

Proof of Lemma 2. For any (X, Y) ∈ A, it holds that

Hφ(X | Y)
(a)
� E

[
φ
(
P↓X |Y

) ]
(b)
≤ φ

(
E
[
P↓X |Y

] )
(c)
� φ

(
P↓U |V

)
(a.s.)

(d)
� E

[
φ(PU |V )

]
(a.s.)

� Hφ(U | V), (128)

where

• (a) follows by the symmetry of φ,
• (b) follows by Jensen’s inequality (see [14], Proposition A-2),
• (c) follows by the existence of a pair (U, V) ∈ A connected uniform-dispersively (see (126)), and
• (d) follows by the symmetry of φ again.

This completes the proof of Lemma 2. �

For a system (Q, L, ε,Y) satisfying (29), we now define a collection of pairs of r.v.’s as follows,

R(Q, L, ε,Y) B

(X, Y)

��������
X is X-valued,
Y isY-valued,
P(L)e (X | Y) ≤ ε,
PX � Q

 . (129)

Note that this is the feasible region of the supremum in (7). The main idea of proving Theorem 1 is
to apply Lemma 2 for this collection. The collection R(Q, L, ε,Y) does not, however, have balanced
conditional distributions in general. More specifically, there exists a measurable space Y such
that R(Q, L, ε,Y) does not have balanced conditional distributions even if Y is standard Borel.
Fortunately, the following lemma can avoid this issue by blowing-up the collection R(Q, L, ε,Y) via
the infinite-dimensional version of Birkhoff’s theorem [18].

Lemma 3. If the cardinality ofY is at least the cardinality of the continuum R, then there exists a σ-algebra on
Y such that the collection R(Q, L, ε,Y) has balanced conditional distributions.

Proof of Lemma 3. First, we shall choose an appropriate alphabet Y so that its cardinality is the
cardinality of the continuum. Denote byΨ the set of∞×∞ permutation matrices, where an∞×∞
permutation matrix is a real matrix Π � {πi, j}∞i, j�1 satisfying either πi, j � 0 or πi, j � 1 for each
1 ≤ i, j < ∞, and

∞∑
j�1

πi, j � 1 for each 1 ≤ i < ∞, (130)

∞∑
i�1

πi, j � 1 for each 1 ≤ j < ∞. (131)
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For an∞×∞ permutation matrix Π � {πi, j}i, j ∈ Ψ, define the permutation ψΠ on X � {1, 2, . . . } by

ψΠ(i) B
∞∑
j�1

πi, j j. (132)

It is known that there is a one-to-one correspondence between the permutation matrices Π and the
bĳections ψΠ; and thus, the cardinality of Ψ is the cardinality of the continuum. Therefore, in this
proof, we may assume without loss of generality thatY � Ψ.

Second, we shall construct an appropriate σ-algebra onY via the infinite-dimensional version of
Birkhoff’s theorem (cf. Theorem 2 of [18]) for∞×∞ doubly stochastic matrices, where an∞×∞ doubly
stochastic matrix is a real matrix M � {mi, j}∞i, j�1 satisfying 0 ≤ mi, j ≤ 1 for each 1 ≤ i, j < ∞, and

∞∑
j�1

mi, j � 1 for each 1 ≤ i < ∞, (133)

∞∑
i�1

mi, j � 1 for each 1 ≤ j < ∞. (134)

Similar toΨ, denote byΨi, j the set of∞×∞ permutation matrices in which the entry in the ith row
and the jth column is 1, where note thatΨi, j ⊂ Y. Then, the following lemma holds.

Lemma 4 (infinite-dimensional version of Birkhoff’s theorem; cf. Theorem 2 of [18]). There exists a
σ-algebra Γ onY such that (i)Ψi, j ∈ Γ for every 1 ≤ i, j < ∞ and (ii) for any∞×∞ doubly stochastic matrix
M � {mi, j}∞i, j�1, there exists a probability measure µ on (Y,Γ) such that µ(Ψi, j) � mi, j for every 1 ≤ i, j < ∞.

Remark 17. In the original statement of Theorem 2 of [18], it is written that a probability space (Y,Γ, µ)
exists for a given∞×∞ doubly stochastic matrix M, namely, the σ-algebra Γ may depend on M. However, the
construction of Γ is independent of M (see Page 196 of [18]); and we can restate Theorem 2 of [18] as Lemma 4.

This is a probabilistic description of an∞×∞ doubly stochastic matrix via a probability measure
on the∞×∞ permutation matrices. The existence of the probability measure µ is due to Kolmogorov’s
extension theorem. We employ this σ-algebra Γ onY in the proof.

Thirdly, we shall show that under this measurable space (Y,Γ), the collection R(Q, L, ε,Y)
has balanced conditional distributions defined in (126). In other words, for a given pair
(X, Y) ∈ R(Q, L, ε,Y), it suffices to construct another pair (U, V) of r.v.’s satisfying (126) and
(U, V) ∈ R(Q, L, ε,Y). At first, construct its conditional distribution PU |V by

PU |V (x) � E
[
P↓X |Y(ψV (x))

�� V
]

(a.s.) (135)

for each x ∈ X, where E[Z | W] stands for the conditional expectation of a real-valued r.v. Z given the
sub-σ-algebra σ(W) generated by a r.v. W , and φV is given as in (132). As ψV (x) is σ(V)-measurable
for each x ∈ X, it is clear that

P↓U |V (x) � E
[
P↓X |Y(x)

�� V
]
� E

[
P↓X |Y(ψV (ψ−1

V (x)))
�� V

]
� PU |V (ψ−1

V (x)) (a.s.) (136)

for every x ∈ X. Thus, we readily see that (126) holds, and (U, V) is connected uniform-dispersively.
Thus, by (123) and the hypothesis that PX � Q, we see that PU |V majorizes Q a.s. Therefore, it
follows from the well-known characterization of the majorization relation via∞×∞ doubly stochastic
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matrices (see Lemma 3.1 of [16] or Page 25 of [10]) that one can find an∞×∞ doubly stochastic matrix
M � {mi, j}∞i, j�1 satisfying

Q(i) �
∞∑
j�1

mi, j P↓U |V ( j) (a.s.) (137)

for every i ≥ 1. By Lemma 4, we can construct an induced probabilitymeasure PV so that PV (Ψi, j) � mi, j
for each 1 ≤ i, j < ∞. Now, the pair of PU |V and PV can define the probability law of (U, V). To ensure
that (U, V) belongs to R(Q, L, ε,Y), it remains to verity that P(L)e (U | V) ≤ ε and PU � Q.

As ψΠ is a permutation defined in (132), we have

P(L)e (X | Y)
(a)
� 1−E

[ L∑
x�1

P↓X |Y(x)
]

� 1−E
[ L∑

x�1
E[P↓X |Y(x) | V]

]
(b)
� 1−E

[ L∑
x�1

P↓U |V (x)
]

(c)
� P(L)e (U | V), (138)

where

• (a) and (c) follow from Proposition 2, and
• and (b) follows from (136).

Therefore, we see that P(L)e (X | Y) ≤ ε is equivalent to P(L)e (U | V) ≤ ε. Furthermore, we observe that

Q(i) (a)�
∞∑
j�1

mi, j P↓U |V ( j) (a.s.)

(b)
�

∞∑
j�1

E
[
1{V∈Ψi, j }

]
P↓U |V ( j) (a.s.)

(c)
�

∞∑
j�1

E
[
1{V∈Ψi, j } P↓U |V ( j)

]
(a.s.)

�

∞∑
j�1

E
[
E
[
1{V∈Ψi, j } P↓U |V ( j)

��� V
] ]

(d)
�

∞∑
j�1

E
[
E
[
1{V∈Ψi, j } PU |V (ψ−1

V ( j))
��� V

] ]
(e)
�

∞∑
j�1

E

[
E

[
1{V∈Ψi, j } PU |V

( ∞∑
k�1

1{V∈Ψk, j } k

) ����� V

] ]
�

∞∑
j�1

E

[
1{V∈Ψi, j } PU |V

( ∞∑
k�1

1{V∈Ψk, j } k

)]
(f)
� E

[ ∞∑
j�1

1{V∈Ψi, j } PU |V

( ∞∑
k�1

1{V∈Ψk, j } k

)]
(g)
� E

[
PU |V (i)

]
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� PU(i) (139)

for every i ≥ 1, where

• (a) follows from (137),
• (b) follows by the identity mi, j � P{V ∈ Ψi, j},
• (c) follows from the fact that (X, Y) is connected uniform-dispersively,
• (d) follows from (136),
• (e) follows by the definition ofΨi, j ,
• (f) follows by the Fubini–Tonelli theorem, and
• (f) follows from the fact that the inverse of a permutation matrix is its transpose.

Therefore, we have PU � Q, and the assertion of Lemma 3 is proved in the case where the
cardinality ofY is the cardinality of the continuum.

Finally, even if the cardinality ofY is larger than the cardinality of continuum, the assertion of
Lemma 3 can be immediately proved by considering the trace of the spaceY onΨ (cf. [74], p. 23). This
completes the proof of Lemma 3. �

Finally, we show that the Fano-type distribution of type-1 defined in (30) is the infimum of a
certain class of X-marginals with respect to the majorization relation ≺.

Lemma 5. Suppose that the system (Q, L, ε) satisfies the right-hand inequality in (29). For every X-marginal
R in which R majorizes Q and P(L)e (R) ≤ ε, it holds that R majorizes Ptype-1 as well.

Proof of Lemma 5. We first give an elementary fact of the weak majorization on the finite-dimensional
real vectors.

Lemma 6. Let p � (pi)ni�1 and q � (qi)ni�1 be n-dimensional real vectors satisfying p1 ≥ p2 ≥ · · · ≥ pn ≥ 0
and q1 ≥ q2 ≥ · · · ≥ qn ≥ 0, respectively. Consider an integer 1 ≤ k ≤ n satisfying qk � qi for every
i � k, k + 1, . . . , n. If

j∑
i�1

pi ≥
j∑

i�1
qi for j � 1, 2, . . . , k − 1, (140)

n∑
i�1

pi ≥
n∑

i�1
qi (141)

then it holds that

j∑
i�1

pi ≥
j∑

i�1
qi for j � 1, 2, . . . , n. (142)

Proof of Lemma 6. See Appendix E. �

Since Ptype-1 � P↓type-1 (see Proposition 4), it suffices to prove that

k∑
x�1

Ptype-1(x) ≤
k∑

x�1
R↓(x) (143)

for every k ≥ 1.
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As Ptype-1(x) � Q↓(x) for each 1 ≤ x < J (see Proposition 4), it follows by the majorization relation
Q ≺ R that (143) holds for each 1 ≤ k < J. Moreover, as P(L)e (Ptype-1) � ε (see Proposition 4), it follows
from (28) and the hypothesis P(L)e (R) ≤ ε that

L∑
x�J

Ptype-1(x) ≤
L∑

x�J

R↓(x). (144)

In addition, as (143) holds for each 1 ≤ k < J and Ptype-1(x) �V(J) for each J ≤ x ≤ L (see Proposition 4),
it follows from Lemma 6 and (144) that (143) also holds for each 1 ≤ k ≤ L.

Now, suppose that K1 � ∞. Then, it follows that

Ptype-1(x) �W(∞) � 0 (145)

for each x ≥ L + 1 (see Proposition 4). Thus, Inequality (143) holds for every k ≥ 1; therefore, we have
that R majorizes Ptype-1, provided that K1 � ∞.

Finally, suppose that K1 < ∞. Since Ptype-1(x) � Q↓(x) for each x ≥ K1 + 1 (see Proposition 4), it
follows by the majorization relation Q ≺ R that (143) holds for every k ≥ K1. Moreover, since (143)
holds for every 1 ≤ k ≤ L and every k ≥ K1, we observe that

K1∑
x�L+1

Ptype-1(x) ≤
K1∑

x�L+1
R↓(x). (146)

Finally, as (143) holds for 1 ≤ k ≤ L and Ptype-1(x) �W(K1) for L < x ≤ K1 (see Proposition 4), it
follows by Lemma 6 and (146) that (143) holds for every 1 ≤ k ≤ K1. Therefore, Inequality (143) holds
for every k ≥ 1, completing the proof of Lemma 5. �

Using the above lemmas, we can prove Theorem 1 as follows.

Proof of Theorem 1. Let ε > 0. For the sake of brevity, we write

R � R(Q, L, ε,Y) (147)

in the proof. Let Υ be a σ-algebra onY,Ψ an alphabet in which its cardinality is the cardinality of the
continuum, and Γ a σ-algebra onΨ so that R(Q, L, ε,Ψ) has balanced conditional distributions (see
Lemma 3). Now, we define the collection

R̄ B R(Q, L, ε,Y ∪Ψ), (148)

where the σ-algebra onY ∪Ψ is given by the smallest σ-algebra Υ∨ Γ containing Υ and Γ. It is clear
that R ⊂ R̄, and R̄ has balanced conditional distributions as well (see the last paragraph in the proof of
Lemma 3). Then, we have

Hφ(Q, L, ε,Y) (a)� sup
(X,Y)∈R

Hφ(X | Y)

(b)
≤ sup
(X,Y)∈R̄

Hφ(X | Y)

(c)
� sup

(X,Y)∈R̄:
(X, Y) is connected uniform-dispersively

Hφ(X | Y)
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(d)
� sup

(X,Y)∈R̄:
P(L)e (PX |Y) ≤ ε a.s.,

(X, Y) is connected uniform-dispersively

φ(PX |Y) (a.s.)

(e)
≤ sup

R∈P(X):
Q ≺ R and P(L)e (R) ≤ ε

φ(R) (a.s.)

(f)
≤ φ(Ptype-1), (149)

where

• (a) follows by the definition of R stated in (129),
• (b) follows by the inclusion R ⊂ R̄,
• (c) follows from Lemma 2 and the fact that R̄ has balanced conditional distributions,
• (d) follows by the symmetry of both φ : P(X) → [0,∞] and P(L)e : P(X) → [0, 1],
• (e) follows from Lemma 1, and
• (f) follows from Proposition 1 and Lemma 5.

Inequalities (149) are indeed the Fano-type inequality stated in (35) of Theorem 1. If ε � P(L)e (Q),
then it can be verified by the definition of Ptype-1 stated in (30) that Ptype-1 � Q↓ (see also Proposition 4).
In such a case, the supremum in (7) can be achieved by a pair (X, Y) satisfying PX � Q and X y Y.

Finally, we shall construct a jointly distributed pair (X, Y) satisfying

Hφ(X | Y) � φ(Ptype-1), (150)

P(L)e (X | Y) � ε, (151)

PX(x) � Q↓(x) (for x ∈ X). (152)

For the sake of brevity, suppose that Y is the index set of the set of permutation matrices on
{ J, J + 1, . . . , K1}. Namely, denote by Π(y) � {π(y)i, j }

K1
i, j�J a permutation matrix for each index y ∈ Y. By

the definition of Ptype-1 stated in (30) (see also Proposition 4), we observe that

k∑
x�J

Q↓(x) ≤
k∑

x�J

Ptype-1(x) for J ≤ k ≤ K1, (153)

and

K1∑
x�J

Q↓(x) �
K1∑

x�J

Ptype-1(x). (154)

Noting that K1 < ∞ if ε > 0 (see (34)), Equations (153) and (154) are indeed a majorization relation
between two finite-dimensional real vectors; and thus, it follows from the Hardy–Littlewood–Pólya
theorem (see Theorem 8 of [15] or Theorem 2.B.2 [10]) that there exists a (K1 − J + 1) × (K1 − J + 1)
doubly stochastic matrix M � {mi, j}K1

i, j�J satisfying

Q↓(i) �
K1∑
j�J

mi, j Ptype-1( j) (155)
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for each J ≤ i ≤ K1. Moreover, it follows from the finite dimensional version of Birkhoff’s theorem
[19] (see also Theorems 2.A.2 and 2.C.2 of [10]) that for such a doubly stochastic matrix M � {mi, j}K1

i, j�J ,
there exists a probability vector λ � (λy)y∈Y satisfying

mi, j �
∑
y∈Y

λy π
(y)
i, j (156)

for every J ≤ i, j ≤ K1, where a nonnegative vector is called a probability vector if the sum of the elements
is unity. Using them, we construct a pair (X, Y) via the following distributions,

PX |Y�y(x) �
{

Ptype-1(x) if 1 ≤ x < J or K1 < x < ∞,
Ptype-1(ψ̃y(x)) if J ≤ x ≤ K1,

(157)

PY(y) � λy , (158)

where the permutation ψ̃y on { J, J + 1, . . . , K1} is defined by

ψ̃y(i) B
K1∑
j�J

π
(y)
i, j j (159)

for each y ∈ Y. Then, it follows from (155) and (156) that (152) holds. Moreover, it is easy to see that
P↓X |Y�y � Ptype-1 for every y ∈ Y. Thus, we observe that (150) and (151) hold as well. This implies
together with (149) that the constructed pair (X, Y) achieves the supremum in (7), completes the proof
of Theorem 1. �

6.2. Proof of Theorem 2

Even if ε � 0, the inequalities in (149) hold as well; that is, the Fano-type inequality stated in (43)
of Theorem 2 holds. In this proof, we shall verify the equality conditions of (43).

If supp(Q) is finite, then it follows by the definition of K1 stated in (34) that K1 < ∞. Thus, the
same construction of a jointly distributed pair (X, Y) as the last paragraph of Section 6.1 proves that
(43) holds with equality if supp(Q) is finite.

Consider the case where supp(Q) is infinite and J � L. Since ε � 0, we readily see that K1 � ∞,
V(J) > 0, andW(K1) � 0. Suppose that

Y � {L, L + 1, L + 2, . . . }. (160)

We then construct a pair (X, Y) via the following distributions,

PX |Y�y(x) �


Q↓(x) if 1 ≤ x < L,
V(J) if L ≤ x < ∞ and x � y,
0 if L ≤ x < ∞ and x , y,

(161)

PY(y) �
Q(y)
V(J) . (162)

We readily see that P↓X |Y�y � Ptype-1 for every y ∈ Y; therefore, we have that (150)–(152) hold. This
implies that the constructed pair (X, Y) achieves the supremum in (7).

Finally, suppose that the cardinality of Y is at least the cardinality of the continuum. Assume
without loss of generality thatY is the set of∞×∞ permutation matrices. Consider the measurable
space (Y,Γ) given in the infinite-dimensional version of Birkhoff’s theorem (see Lemma 4). In addition,
consider a jointly distributed pair (X, Y) satisfying P↓X |Y � Ptype-1 a.s. Then, it is easy to see that (150)
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and (151) hold for any induced probability measure PY on Y. Similar to the construction of the
probability measure PV onY below (137), we can find an induced probability measure PY satisfying
(152). Therefore, it follows from (43) that this pair (X, Y) achieves the supremum in (7). This completes
the proof of Theorem 2.

6.3. Proof of Theorem 3

To prove Theorem 3, we need some more preliminary results. Throughout this subsection, assume
that the alphabetY is finite and nonempty. In this case, given a pair (X, Y), one can define

PX |Y�y(x) � P{X � x | Y � y}, (163)

provided that PY(y) > 0.
For a subsetZ ⊂ X, define

P(L)e (X | Y ‖ Z) B min
f :Y→(ZL )

P{X < f (Y)}. (164)

Note that the difference between P(L)e (X | Y) and P(L)e (X | Y ‖ Z) is the restriction of the decoding
rangeZ ⊂ X, and the inequality P(L)e (X | Y) ≤ P(L)e (X | Y ‖ Z) is trivial from these definitions stated
in (21) and (164), respectively. The following propositions are easy consequences of the proofs of
Propositions 2 and 3, and so we omit those proofs in this paper.

Proposition 7. It holds that

P(L)e (X | Y ‖ Z) � 1−E
[

min
D∈(ZL )

∑
x∈D

PX |Y(x)
]
. (165)

Proposition 8. Let β : {1, . . . , |Z|} → Z be a bĳection satisfying PX(β(i)) ≥ PX(β( j)) if i < j. It holds that

1−
∑
x∈Z

PX(x) ≤ P(L)e (X | Y) ≤ 1−
L∑

x�1
PX(β(x)). (166)

For a finite subset Z ⊂ X, denote by Ψ(Z) the set of |Z| × |Z| permutation matrices in which
both rows and columns are indexed by the elements inZ. The main idea of proving Theorem 3 is the
following lemma.

Lemma 7. For any X ×Y-valued r.v. (X, Y), there exist a subsetZ ⊂ X and an X ×Ψ(Z)-valued r.v. (U, W)
such that

|Z| � L · |Y|, (167)
PU(x) � PX(x) for x ∈ X, (168)

P(L)e (U | W) ≤ P(L)e (U | W ‖ Z) � P(L)e (X | Y), (169)
Hφ(U | W) ≥ Hφ(X | Y), (170)
PU |W�w(x) � PX(x) for x ∈ X \Z and w ∈ Ψ(Z). (171)

Proof of Lemma 7. Suppose without loss of generality that

Y � {0, 1, . . . , N − 1} (172)
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for some positive integer N . By the definition of cardinality, one can find a subsetZ ⊂ X satisfying (i)
|Z| � LN , and (ii) for each x ∈ {1, 2, . . . , L} and y ∈ Y, there exists z ∈ Z satisfying

PX |Y�y(z) � P↓X |Y�y(x). (173)

For each Π � {πi, j}i, j∈Z ∈ Ψ(Z), define the permutation ϕΠ : Z →Z by

ϕΠ(z) B
∑
w∈Z

πz,w w, (174)

as in (132) and (159). It is clear that for each y ∈ Y, there exists at least one Π ∈ Ψ(Z) such that

PX |Y�y(ϕΠ(x1)) ≥ PX |Y�y(ϕΠ(x2)) (175)

for every x1, x2 ∈ Z satisfying x1 ≤ x2, which implies that the permutation ϕΠ plays the role of a
decreasing rearrangement of PX |Y�y onZ. To denote such a correspondence betweenY andΨ(Z), one
can choose an injection ι : Y → Ψ(Z) appropriately. In other words, one can find an injection ι so that

PX |Y�y(ϕι(y)(x1)) ≥ PX |Y�y(ϕι(y)(x2)) (176)

for every y ∈ Y and x1, x2 ∈ Z satisfying x1 ≤ x2. We now construct an X ×Y ×Ψ(Z)-valued r.v.
(U, V , W) as follows: The conditional distribution PU |V ,W is given by

PU |V�v,W�w(u) �
{

PX |Y�v(ϕι(v) ◦ ϕw(u)) if u ∈ Z,
PX |Y�v(u) if u ∈ X \Z,

(177)

where σ1 ◦ σ2 stands for the composition of two bĳections σ1 and σ2. The induced probability
distribution PV of V is given by PV � PY . Suppose that the independence V y W holds. As

PU,V ,W � PU |V ,W PV PW , (178)

it remains to determine the induced probability distribution PW of W , and we defer to determine it
until the last paragraph of this proof. A direct calculation shows

PU |W�w(u) �
∑
v∈Y

PV |W�w(v)PU |V�v,W�w(u)

(a)
�

∑
v∈Y

PY(v)PU |V�v,W�w(u)

(b)
�

{
ω(u, w) if u ∈ Z,
PX(u) if u ∈ X \Z,

(179)

where

• (a) follows by the independence V y W and PV � PY , and
• (b) follows by (177) and defining ω(u, w) so that

ω(u, w) B
∑
v∈Y

PY(v)PX |Y�v(ϕι(v) ◦ ϕw(u)) (180)

for each x ∈ Z and w ∈ Ψ(Z).
Now, we readily see from (179) that (171) holds for any induced probability distribution PW of

W . Therefore, to complete the proof, it suffices to show that (U, W) satisfies (169) and (170) with an
arbitrary choice of PW , and (U, W) satisfies (168) with an appropriate choice of PW .
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Firstly, we shall prove (169). For each w ∈ Ψ(Z), denote byD(w) ∈
(Z

L

)
the set satisfying

ϕw(k) < ϕw(x) (181)

for every k ∈ D(w) and x ∈ Z \ D(w), i.e., it stands for the set of first L elements in Z under the
permutation rule w ∈ Ψ(Z). Then, we have

P(L)e (U | W)
(a)
≤ P(L)e (U | W ‖ Z)
(b)
� 1−

∑
w∈Ψ(Z)

PW (w) min
D∈(ZL )

∑
u∈D

PU |W�w(u)

(c)
� 1−

∑
w∈Ψ(Z)

PW (w) min
D∈(ZL )

∑
u∈D

ω(u, w)

(d)
� 1−

∑
w∈Ψ(Z)

PW (w) min
D∈(ZL )

∑
u∈D

∑
v∈Y

PY(v)PX |Y�v(ϕι(v) ◦ ϕw(u))

(e)
� 1−

∑
w∈Ψ(Z)

PW (w)
∑

u∈D(w)

∑
v∈Y

PY(v)PX |Y�v(ϕι(v) ◦ ϕw(u))

(f)
� 1−

∑
w∈Ψ(Z)

PW (w)
L∑

u�1

∑
v∈Y

PY(v)P↓X |Y�v(u)

� 1−
∑
y∈Y

PY(y)
L∑

x�1
P↓X |Y�y(x)

(g)
� P(L)e (X | Y), (182)

where

• (a) is an obvious inequality (see the definitions stated in (21) and (164)),
• (b) follows from Proposition 7,
• (c) follows from (179),
• (d) follows from the definition of ω(u, w) stated in (180),
• (e) follows from (176) and (181),
• (f) follows from (173), (176), and (181), and
• (g) follows from Proposition 2.

Therefore, we obtain (169).
Secondly, we shall prove (170). We get

Hφ(X | Y) �
∑
y∈Y

PY(y)φ(PX |Y�y)

�

∑
w∈Ψ(Z)

PW (w)
∑
y∈Y

PY(y)φ(PX |Y�y)

(a)
�

∑
w∈Ψ(Z)

PW (w)
∑
y∈Y

PY(y)φ(PU |V�y,W�w)

(b)
�

∑
w∈Ψ(Z)

PW (w)
∑
v∈Y

PV (v)φ(PU |V�v,W�w)

(c)
≤

∑
w∈Ψ(Z)

PW (w)φ
( ∑

v∈Y
PV (v)PU |V�v,W�w

)
(d)
�

∑
w∈Ψ(Z)

PW (w)φ(PU |W�w)
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� Hφ(U | W), (183)

where

• (a) follows by the symmetry of φ and (177),
• (b) follows by PV � PY ,
• (c) follows by Jensen’s inequality, and
• (d) follows by the independence U y W .

Therefore, we obtain (170).
Finally, we shall prove that there exists an induced probability distribution PW satisfying (168). If

we denote by I ∈ Ψ(Z) the identity matrix, then it follows from (180) that

PU |W�I(u) � PU |W�w(ϕ−1
w (u)) (184)

for every (u, w) ∈ Z ×Ψ(Z). It follows from (179) that∑
x∈Z

PX(x) �
∑
u∈Z

PU |W�I(u). (185)

Now, denote by β1 : {1, 2, . . . , LN} → Z and β2 : {1, 2, . . . , LN} → Z two bĳections satisfying
PX(β1(i)) ≥ PX(β1( j)) and β2(i) < β2( j), respectively, provided that i < j. That is, the bĳection β1 and
β2 play roles of decreasing rearrangements of PX and PU |W�I , respectively, onZ. Using those bĳections,
one can rewrite (185) as

LN∑
i�1

PX(β1(i)) �
LN∑
i�1

PU |W�I(β2(i)). (186)

In the same way as (123), it can be verified from (180) by induction that

k∑
i�1

PX(β1(i)) ≤
k∑

i�1
PU |W�I(β2(i)) (187)

for each k � 1, 2, . . . , LN. Equations (186) and (187) are indeed a majorization relation between two
finite-dimensional real vectors, because β1 plays a role of a decreasing rearrangement of PX on Z.
Combining (184) and this majorization relation, it follows from the Hardy–Littlewood–Pólya theorem
derived in Theorem 8 of [15] (see also Theorem 2.B.2 of [10]) and the finite-dimensional version
of Birkhoff’s theorem [19] (see also Theorem 2.A.2 of [10]) that there exists an induced probability
distribution PW satisfying PU � PX , i.e., Equation (168) holds, as in (153)–(158). This completes the
proof of Lemma 7. �

Remark 18. Lemma 7 can restrict the feasible region of the supremum in (7) from a countably infinite alphabet
X to a finite alphabetZ in the sense of (171). Specifically, ifY is finite, it suffices to vary at most |Z| � L · |Y|
probability masses {PX |Y�y(x)}x∈Z for each y ∈ Y. Lemma 7 is useful not only to prove Theorem 3 but also to
prove Proposition 9 of Section 8.1 (see Appendix D for the proof).

As with (129), for a subsetZ ⊂ X, we define

R(Q, L, ε,Y,Z) B


(X, Y)

�����������
X is X-valued,
Y isY-valued,
P(L)e (X | Y ‖ Z) ≤ ε,
PX � Q,
PX |Y�y(x) � Q(x) ∀(x, y) ∈ (X \Z) ×Y


, (188)
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provided thatY is finite. It is clear that (188) coincides with (129) ifZ � X, i.e., it holds that

R(Q, L, ε,Y,X) � R(Q, L, ε,Y). (189)

Note from Lemma 7 that for each system (Q, L, ε,Y) satisfying (29), there exists a subsetZ ⊂ X such
that |Z| � L · |Y| and R(Q, L, ε,Y,Z) is nonempty, provided thatY is finite.

Another important idea of proving Theorem 3 is to apply Lemma 2 for this collection of r.v.’s.
The correction R(Q, L, ε,Y,Z) does not, however, have balanced conditional distributions of (126) in
general, as with (129). Fortunately, similar to Lemma 3, the following lemma can avoid this issue by
blowing-up the collection R(Q, L, ε,Y,Z) via the finite-dimensional version of Birkhoff’s theorem [19].

Lemma 8. Suppose that Z ⊂ X is finite and R(Q, L, ε,Y,Z) is nonempty. If |Z| ≤ |Y|! < ∞, then the
collection R(Q, L, ε,Y,Z) has balanced conditional distributions.

Proof of Lemma 8. Lemma 8 can be proven in a similar fashion to the proof of Lemma 3. As this proof
is slightly long as with Lemma 3, we only give a sketch of the proof as follows.

As |Ψ(Z)| � |Z|!, we may assume without loss of generality that Y � Ψ(Z). For the sake of
brevity, we write

R̃ � R(Q, L, ε,Y,Z) (190)

in this proof. For a pair (X, Y) ∈ R̃, construct another X ×Y-valued r.v. (U, V), as in (135), so that
PU |V�y(x) � Q(x) for every (x, y) ∈ (X \Z) ×Y. By such a construction of (135), the condition stated
in (126) is obviously satisfied. In the same way as (138), we can verify that

P(L)e (U | V ‖ Z) � P(L)e (X | Y ‖ Z). (191)

Moreover, employing the finite-dimensional version of Birkhoff’s theorem [19] (also known as the
Birkhoff–von Neumann decomposition) instead of Lemma 4, we can also find an induced probability
distribution PV of V so that PU � Q in the same way as (139). Therefore, for any (X, Y) ∈ R̃, one can
find (U, V) ∈ R̃ satisfying (126). This completes the proof of Lemma 8. �

LetZ ⊂ X be a subset. Consider a bĳection β : {1, 2, . . . , |Z|} → Z satisfying Q(β(i)) ≥ Q(β( j))
whenever i < j, i.e., it plays a role of a decreasing rearrangement of Q onZ. Thereforeforth, suppose
that (Q, L, ε,Y,Z) satisfies

1−
∑
x∈Z

Q(x) ≤ ε ≤ 1−
L∑

x�1
Q(β(x)). (192)

Define the extremal distribution of type-3 by the following X-marginal:

Ptype-3(x) � P(Q,L,ε,Y,Z)
type-3 (x) B


V3(J3) if x ∈ Z and J3 ≤ β−1

1 (x) ≤ L,
W3(K3) if x ∈ Z and L < β−1

1 (x) ≤ K3,
Q(x) otherwise,

(193)

where the weightV3( j) is defined by

V3( j) �V(Q,L,ε,Y,Z)
3 ( j) B

(1− ε) −∑ j−1
x�1 Q(β1(x))

L − j + 1 (194)
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for each integer 1 ≤ j ≤ L, the weightW3(k) is defined by

W3(k) �W(Q,L,ε,Y,Z)
3 (k) B


−1 if k � L,∑k

x�1 Q(β1(x)) − (1− ε)
k − L

if k > L
(195)

for each integer L ≤ k ≤ L · |Y|, the integer J3 is chosen so that

J3 � J3(Q, L, ε,Y,Z) B min{1 ≤ j ≤ L | Q(β1( j)) ≤ V3( j)}, (196)

and the integer K3 is chosen so that

K3 � K3(Q, L, ε,Y,Z) B max{L ≤ k ≤ L · |Y| | W3(k) ≤ PX(β1(k))}. (197)

Remark 19. The extremal distribution of type-3 can be specialized to both extremal distribution of type-2 defined
in (44) and Ho–Verdú’s truncated distribution defined in Equation (17) of [21], respectively.

The following lemma shows a relation between the type-2 and the type-3.

Lemma 9. Suppose that |Z| � L · |Y|. Then, it holds that

P(Q,L,ε,Y)
type-2 ≺ P(Q,L,ε,Y,Z)

type-3 . (198)

Proof of Lemma 9. We readily see that

Ptype-2 � Ptype-3, (199)

provided thatZ � {1, 2, . . . , L · |Y|} and Q � Q↓, because β : {1, 2, . . . , |Z|} → Z used in (193) is the
identity mapping in this case. Actually, we may assume without loss of generality that Q � Q↓.

Although

Ptype-2 � P↓type-2 (200)

does not hold in general, we can see from the definition of Ptype-2 stated in (44) that

Ptype-2(x) � P↓type-2(x) (201)

for each x � 1, 2, . . . , L. Therefore, as

Ptype-2(x) � Q(x) ≤ Ptype-3(x) (202)

for each x � 1, 2, . . . , J − 1, it follows that

k∑
x�1

P↓type-2(x) ≤
k∑

x�1
P↓type-3(x) (203)

for each k � 1, 2, . . . , J − 1. By the definitions (31), (33), (194), and (196), it can be verified that

J ≥ J3, (204)
V(J) ≤ V3(J3). (205)
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Thus, as

P↓type-2(x) �V(J) (206)

for each x � J, J + 1, . . . , L, it follows that

P↓type-3(x) ≥ V3(J3) (207)

for each x � J, J + 1, . . . , L; which implies that (203) also holds for each k � J, J + 1, . . . , L. Therefore,
we observe that Ptype-3 majorizes Ptype-2 over the subset {1, 2, . . . , L} ⊂ X.

We prove the rest of the majorization relation by contradiction. Namely, assume that

l∑
x�1

P↓type-2(x) >
l∑

x�1
P↓type-3(x) (208)

for some integer l ≥ L + 1. By the definitions stated in (32), (45), (195), and (197), it can be verified that

K2 ≤ K3, (209)
W(K2) ≥ W3(K3). (210)

Thus, as

Ptype-2(x) �W(K2) ≤ Q(x) (for x � L + 1, L + 2, . . . , K2), (211)
Ptype-3(x) �W3(K3) ≤ Q(x) (for x � β1(L + 1), β1(L + 2), . . . , β1(K3)), (212)

it follows that

Ptype-2(x) ≥ Ptype-3(x) (213)

for every x � l, l + 1, . . . , which implies together with the hypothesis (208) that

∞∑
x�l

P↓type-2(x) >
∞∑

x�l

P↓type-3(x). (214)

This, however, contradicts to the definition of probability distributions, i.e., the sum of probability
masses is strictly larger than one. This completes the proof of Lemma 9. �

Similar to (164), we now define

P(L)e (X ‖ Z) B min
D∈(ZL )

P{X ∈ D}. (215)

As with Proposition 8, we can verify that

P(L)e (X ‖ Z) � 1− min
D∈(ZL )

∑
x∈D

PX(x) � 1−
L∑

x�1
PX(β(x)). (216)

Therefore, the restriction stated in (192) comes from the same observation as (29) (see Propositions 3
and 8). In view of (216), we write P(L)e (Q ‖ Z) � P(L)e (X ‖ Z) if PX � Q. As in Lemma 5, the following
lemma holds.

Lemma 10. Suppose that an X-marginal R satisfies that (i) R majorizes Q, (ii) P(L)e (R ‖ Z) ≤ ε, and (iii)
R(k) � Q(k) for each k ∈ X \Z. Then, it holds that R majorizes Ptype-3 as well.
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Proof of Lemma 10. Since

R(x) � Ptype-3(x) � Q(x) (217)

for every x ∈ X \Z, it suffices to verify the majorization relation overZ. Denote by β1 : {1, 2, . . . , L ·
|Y|} → Z and β2 : {1, 2, . . . , L · |Y|} → Z two bĳection satisfying R(β1(i)) ≥ R(β1( j)) and β2(i) ≤ β2( j),
respectively, whenever i < j. In other words, two bĳections β1 and β2 play roles of decreasing
rearrangements of R and P3, respectively, onZ. That is, we shall prove that

k∑
x�1

Ptype-3(β2(x)) ≤
k∑

x�1
R(β1(x)) (218)

for every k � 1, 2, . . . , |Z|.
As R majorizes Q, it follows from (193) that (218) holds for each k � 1, 2, . . . , J3 − 1. Moreover, we

readily see from (193) that

L∑
x�1

Ptype-3(β2(x)) � 1− ε. (219)

Therefore, it follows from Lemma 6 and the hypothesis P(L)e (R ‖ Z) ≤ ε that (218) holds for each
k � J3, J3 + 1, . . . , L. Similarly, since (218) holds with equality if k � |Z|, it also follows from Lemma 6
that (218) holds for each k � L + 1, L + 2, . . . |Z|. Therefore, we observe that R majorizes Ptype-3. This
completes the proof of Lemma 10. �

Finally, we can prove Theorem 3 by using the above lemmas.

Proof of Theorem 3. For the sake of brevity, we define

R1 B R(Q, L, ε,Y), (220)

R2 B
⋃

Z⊂X:|Z|�L·|Y|
R(Q, L, ε,Y,Z), (221)

R3 B
⋃

Z⊂X:|Z|�L·|Y|
R(Q, L, ε,Y ∪Ψ(Z),Z), (222)

P4 B

R ∈ P(X)

������
∃Z ⊂ X s.t. |Z| � L · |Y|,

P(L)e (R ‖ Z) ≤ ε,
R(x) � Q(x) for x ∈ X \Z

 . (223)

Then, we have

Hφ(Q, L, ε,Y) (a)� sup
(X,Y)∈R1

Hφ(X | Y)

(b)
� sup
(X,Y)∈R2

Hφ(X | Y)

(c)
≤ sup
(X,Y)∈R3

Hφ(X | Y)

(d)
� sup

(X,Y)∈R3 :
(X, Y) is connected uniform-dispersively

Hφ(X | Y)

(e)
≤ sup

R∈P4

φ(R)
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(f)
≤ sup
Z⊂X:|Z|�L·|Y|

φ(Ptype-3)

(g)
≤ φ(Ptype-2), (224)

where

• (a) follows from the definition of R(Q, L, ε,Y) stated in (129),
• (b) follows from Lemma 7 and the definition of R(Q, L, ε,Y,Z) stated in (188),
• (c) follows from the inclusion relation

R(Q, L, ε,Y,Z) ⊂ R(Q, L, ε,Y ∪Ψ(Z),Z), (225)

• (d) follows from Lemmas 2 and 8,
• (e) follows from Lemma 1,
• (f) follows from Lemma 10, and
• (g) follows from Proposition 1 and Lemma 9.

Inequalities (224) are indeed the Fano-type inequality stated in (47) of Theorem 3.
Finally, supposing that |Y| ≥ (K2 − J)2 + 1, we shall construct a jointly distributed pair (X, Y)

satisfying

Hφ(X | Y) � φ(Ptype-2), (226)

P(L)e (X | Y) � ε, (227)

PX(x) � Q↓(x) (for x ∈ X). (228)

Similar to (153) and (154), we see that

k∑
x�J

Q↓(x) ≤
k∑

x�J

Ptype-2(x) for J ≤ k ≤ K2, (229)

and

K2∑
x�J

Q↓(x) �
K2∑

x�J

Ptype-2(x). (230)

This is a majorization relation between two (K2 − J + 1)-dimensional real vectors; and thus, it follows
from the Hardy–Littlewood–Pólya theorem ([15] Theorem 8) (see also [10], Theorem 2.B.2) that there
exists a (K2 − J + 1) × (K2 − J + 1) doubly stochastic matrix M � {mi, j}K2

i, j�J satisfying

Q↓(i) �
K2∑
j�J

mi, j Ptype-2( j) (231)

for each J ≤ i ≤ K2. Moreover, it follows from Marcus–Ree’s or Farahat–Mirsky’s refinement of the
finite-dimensional version of Birkhoff’s theorem derived in [75] or Theorem 3 of [76], respectively (see
also Theorem 2.F.2 of [10]), that there exists a pair of a probability vector λ � (λy)y∈Y and a collection
{{π(y)i, j }

K2
i, j�J}y∈Y of (K2 − J + 1) × (K2 − J + 1) permutation matrices such that

mi, j �
∑
y∈Y

λy π
(y)
i, j (232)
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for every J ≤ i, j ≤ K2. Using them, construct a pair (X, Y) via the following distributions,

PX |Y�y(x) �
{

Ptype-2(x) if 1 ≤ x < J or K2 < x < ∞,
Ptype-2(ψ̃y(x)) if J ≤ x ≤ K2,

(233)

PY(y) � λy , (234)

where ψ̃y is defined as in (159). Similar to Section 6.1, we now observe that (226)–(228) hold. This
implies together with (224) that the constructed pair (X, Y) achieves the supremum in (7). Furthermore,
since Ptype-2 and Q↓ differ at most

(K2−J+1
L−J+1

)
probability masses, it follows that the collection {PX |Y�y}y∈Y

consists of at most
(K2−J+1

L−J+1
)
distinct distributions. Namely, the condition that |Y| ≥

(K2−J+1
L−J+1

)
is also

sufficient to construct a jointly distributed pair (X, Y) satisfying (226)–(228). This completes the proof
of Theorem 3. �

Remark 20. Step (b) in (224) is a key of proving Theorem 3; it is the reduction step from infinite to
finite-dimensional settings via Lemma 7 (see also Remark 18). Note that this proof technique is not applicable
whenY is infinite, while the proof of Theorem 1 works well for infiniteY.

6.4. Proof of Theorem 4

It is known that every discrete probability distribution on {1, . . . , M} majorizes the uniform
distribution on {1, . . . , M}. Thus, since

P(M,L,ε)
type-0 � P(UnifM ,L,ε)

type-1 (235)

with the uniform distribution UnifM on {1, . . . , M}, it follows from Lemma 5 that

P(M,L,ε)
type-0 ≺ P(Q,L,ε)

type-1 (236)

if supp(Q) ⊂ {1, . . . , M}. Therefore, it follows from Proposition 1 and Theorems 1 and 2 that

Hφ(M, L, ε,Y) ≤ φ(Ptype-0). (237)

Finally, it is easy to see that

Hφ(X | Y) � φ(Ptype-0), (238)

P(L)e (X | Y) � ε, (239)

provided that

PX |Y(x) � Ptype-0(x) (a.s.) (240)

for every 1 ≤ x ≤ M. This implies the existence of a pair (X, Y) achieving the maximum in (50); and
therefore, the equality (237) holds. This completes the proof of Theorem 4.

7. Proofs of Asymptotic Behaviors on Equivocations

In this section, we prove Theorems 5–7.

7.1. Proof of Theorem 5

Defining the variational distance between two X-marginals P and Q by

d(P, Q) B 1
2

∑
x∈X

��P(x) −Q(x)
��, (241)
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we now introduce the following lemma, which is useful to prove Theorem 5.

Lemma 11 ([77], Theorem 3). Let Q be an X-marginal, and 0 ≤ δ ≤ 1−Q↓(1) a real number. Then, it holds
that

min
R∈P(X):d(Q,R)≤δ

H(R) � H(S(Q,δ)), (242)

where the X-marginal S(Q,δ) is defined by

S(Q,δ)(x) B



Q↓(x)+ δ if x � 1,

Q↓(x) if 1 < x < B,
∞∑

k�B

Q↓(k) − δ if x � B,

0 if x > B,

(243)

and the integer B is chosen so that

B B sup
{

b ≥ 1
���� ∞∑

k�b

Q↓(k) ≥ δ
}

. (244)

For the sake of brevity, in this proof, we write

εn B P(Ln )
e (Xn | Yn), (245)

Pn B P↓Xn
, (246)

P1,n B P(Pn ,Ln ,εn )
type-1 (247)

for each n ≥ 1. Suppose that εn � o(1) as n →∞. By Corollary 1, instead of (99), it suffices to verify
that ��H(P1,n) − log Ln

��+ � o
(
H(Xn)

)
. (248)

As supp(P1,n) � {1, . . . , Ln} if εn � 0, we may assume without loss of generality that 0 < εn < 1.
Define two X-marginals Q(1)n and Q(2)n by

Q(1)n (x) �


P1,n(x)
1− εn

if 1 ≤ x ≤ Ln ,

0 if x ≥ Ln + 1,
(249)

Q(2)n (x) �


0 if 1 ≤ x ≤ Ln ,
P1,n(x)
εn

if x ≥ Ln + 1
(250)

for each n ≥ 1. As Q(1)n majorizes the uniform distribution on {1, 2, . . . , Ln}, it is clear from the
Schur-concavity property of the Shannon entropy that

H(Q(1)n ) ≤ log Ln . (251)

Thus, since

P1,n � (1− εn)Q(1)n + εn Q(2)n , (252)
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it follows by strong additivity of the Shannon entropy (cf. Property (1.2.6) of [78]) that

H(P1,n) � h2(εn)+ (1− εn)H(Q(1)n )+ εn H(Q(2)n )

≤ h2(εn)+ (1− εn) log Ln + εn H(Q(2)n ). (253)

Thus, since h2(εn) � o(1), it suffices to verify the asymptotic behavior of the third term in the right-hand
side of (253), i.e., whether

εn H(Q(2)n ) � o
(
H(Xn)

)
(254)

holds or not.
Consider the X-marginal Q(3)n given by

Q(3)n (x) �
Pn(x) − εn Q(2)n (x)

1− εn
(255)

for each n ≥ 1. As

Pn � εn Q(2)n + (1− εn)Q(3)n , (256)

it follows by the concavity of the Shannon entropy that

H(Xn) ≥ εn H(Q(2)n )+ (1− εn)H(Q(3)n ) (257)

for each n ≥ 1. A direct calculations shows

d(Pn , Q(3)n ) �
1
2

∞∑
x�1

���Pn(x) −Q(3)n (x)
���

�
1
2

∞∑
x�1

����Pn(x) −
Pn(x) − εn Q(3)n (x)

1− εn

����
�

1
2

εn

1− εn

∞∑
x�1

���Pn(x) −Q(2)n (x)
���

�
εn

1− εn
d(Pn , Q(2)n )

≤ εn

1− εn

C δn (258)

for each n ≥ 1, where note that εn � o(1) implies δn � o(1) as well. Thus, it follows from Lemma 11 that

H(Q(3)n ) ≥ H(S(Pn ,δn ))

(a)
� (Pn(1)+ δn) log 1

Pn(1)+ δn
+

Bn−1∑
x�2

Pn(x) log 1
Pn(x)

−
( ∞∑

k�Bn

Pn(k) − δn

)
log

( ∞∑
k�Bn

Pn(k) − δn

)
(b)
≥

Bn∑
x�1

Pn(x) log 1
Pn(x)

− 2 γn

(c)
�

∑
x∈B(n)

PXn (x) log 1
PXn (x)

− 2 γn



Entropy 2020, 22, 288 45 of 59

(d)
≥

∑
x∈A(n)ε ∩B(n)

PXn (x) log 1
PXn (x)

− 2 γn

(e)
≥

∑
x∈A(n)ε ∩B(n)

PXn (x) (1− ε)H(Xn) − 2 γn

� P{Xn ∈ A(n)ε ∩B(n)} (1− ε)H(Xn) − 2 γn (259)

for every ε > 0 and each n ≥ 1, where

• (a) follows by the definition

Bn B sup
{

b ≥ 1
���� ∞∑

k�b

Pn(k) ≥ δn

}
(260)

for each n ≥ 1,
• (b) follows by the continuity of the map u 7→ −u log u and the fact that δn � o(1) as n →∞, i.e.,

there exists a sequence {γn}∞n�1 of positive reals satisfying γn � o(1) as n →∞ and����Pn(1) log 1
Pn(1)

− (Pn(1)+ δn) log 1
Pn(1)+ δn

���� ≤ γn , (261)�����Pn(Bn) log 1
Pn(Bn)

+

( ∞∑
k�Bn

Pn(k) − δn

)
log

( ∞∑
k�Bn

Pn(k) − δn

)����� ≤ γn (262)

for each n ≥ 1,
• (c) follows by constructing the subset B(n) ⊂ X so that

|B(n) | � min
B⊂X:

P{Xn∈B}≥1−δn

|B| (263)

for each n ≥ 1,
• (d) follows by defining the typical setA(n)ε ⊂ X so that

A(n)ε B
{

x ∈ X
���� log 1

PXn (x)
≤ (1− ε)H(Xn)

}
(264)

with some ε > 0 for each n ≥ 1, and
• (e) follows by the definition ofA(n)ε .

As {Xn}∞n�1 satisfies the AEP and

P{Xn ∈ B(n)} ≥ 1− δn , (265)
lim

n→∞
δn � 0, (266)

it is clear that

lim
n→∞

P{Xn < A(n)ε ∩B(n)} � 0 (267)

(see, e.g., Problem 3.11 of [2]). Thus, since ε > 0 can be arbitrarily small and εn � o(1) as n → ∞, it
follows from (259) that there exists a sequence {λn}∞n�1 of positive real numbers satisfying λn � o(1) as
n →∞ and

(1− εn)H(Q(3)n ) ≥ (1− λn)H(Xn) −
2 γn

1− εn
(268)
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for each n ≥ 1. Combining (257) and (268), we observe that

λn H(Xn)+
2 γn

1− εn
≥ εn H(Q(2)n ) (269)

for each n ≥ 1. Therefore, Equation (254) is indeed valid, which proves (248) together with (253). This
completes the proof of Theorem 5.

Remark 21. The construction of Q(3)n defined in (255) is a special case of the splitting technique; it was used
to derive limit theorems of Markov processes by Nummelin [26] and Athreya–Ney [27]. This technique has many
applications in information theory [21,28–32] and to the Markov chain Monte Carlo (MCMC) algorithm [79].

7.2. Proof of Theorem 6

Condition (b) is a direct consequence of Theorem 5; and we shall verify Conditions (a), (c), and (d)
in the proof. For the sake of brevity, in the proof, we write

εn B P(Ln )
e (Xn | Yn), (270)

Pn B P↓Xn
, (271)

P B P↓X , (272)

P1,n B P(Pn ,Ln ,εn )
type-1 (273)

for each n ≥ 1. By Corollary 4, instead on (113), it suffices to verify that

lim
n→∞

���Hα(P1,n) − log Ln

���+ � 0 (274)

under any one of Conditions (a), (b), and (c). Similar to the proof of Theorem 5, we may assume
without loss of generality that 0 < εn < 1.

Firstly, we shall verify Condition (a). Let Qn be an X-marginal given by

Qn(x) �


1− εn

Ln
if 1 ≤ x ≤ Ln ,

Ptype5,n(x) if x ≥ Ln + 1
(275)

for each n ≥ 1. As P1,n majorizes Qn , it follows by the Schur-concavity property of the Rényi entropy
that

Hα(P1,n) ≤ Hα(Qn)

�
1

1− α log
(
(1− εn)α L1−α

n +

∞∑
x�Ln

P1,n(x)α
)

≤ 1
1− α log

(
(1− εn)α L1−α

n

)
� log Ln +

α
1− α log(1− εn), (276)

where the second inequality follows by the hypothesis that α > 1, i.e., by Condition (a). These
inequalities immediately ensure (274) under Condition (a).

Second, we shall verify Condition (d) of Theorem 6. As X and {Xn}n are discrete r.v.’s, note that
the convergence in distribution Xn

d→ X is equivalent to Pn(x) → P(x) as n →∞ for each x ∈ X, i.e.,
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the pointwise convergence Pn → P as n →∞. It is well-known that the Rényi entropy α 7→ Hα(P) is
nonincreasing for α ≥ 0; hence, it suffices to verify (274) with α � 1, i.e.,

lim
n→∞

���H(P1,n) − log Ln

���+ � 0. (277)

We now define twoX-marginals Q(1)n and Q(2)n in the same ways as (249) and (250), respectively, for each
n ≥ 1. By (253), it suffices to verify whether the third term in the right-hand side of (253) approaches
to zero, i.e.,

lim
n→∞

εn H(Q(2)n ) � 0. (278)

This can be verified in a similar fashion to the proof of Lemma 3 of [21] as follows: Consider the
X-marginal Q(3)n defined in (255) for each n ≥ 1. Since Q(2)n (1) � 0 and εn Q(2)n (x) ≤ εn for each x ≥ 2,
we observe that

lim
n→∞

εn Q(2)n (x) � 0 (279)

for every x ≥ 1; therefore,

lim
n→∞

Q(3)n (x) � lim
n→∞

P↓Xn
(x) (280)

for every x ≥ 1. Therefore, since Pn converges pointwise to P as n →∞, we see that Q(3)n also converges
pointwise to P↓X as εn vanishes. Therefore, by the lower semicontinuity property of the Shannon
entropy, we observe that

lim inf
n→∞

H(Q(3)n ) ≥ H(X), (281)

and we then have

H(X) � lim
n→∞

H(Xn)
(a)
≥ lim sup

n→∞

(
εn H(Q(2)n )+ (1− εn)H(Q(3)n )

)
≥ lim sup

n→∞

(
εn H(Q(2)n )

)
+ lim inf

n→∞

(
(1− εn)H(Q(3)n )

)
� lim sup

n→∞

(
εn H(Q(2)n )

)
+ lim inf

n→∞
H(Q(3)n )

≥ lim sup
n→∞

(
εn H(Q(2)n )

)
+ H(X), (282)

where (a) follows from (257). Thus, it follows from (282), the hypothesis H(X) < ∞, and the
nonnegativity of the Shannon entropy that (278) is valid, which proves (277) together with (253).

Finally, we shall verify Condition (c) of Theorem 6. Define the X-marginal Q̃(2)n by

Q̃(2)n (x) �


0 if 1 ≤ x ≤ Ln ,
P̃1,n(x)
εn

if x ≥ Ln + 1,
(283)
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for each n ≥ 1, where P̃1,n � P(P,Ln ,εn )
type-1 . Note that the difference between Q(2)n and Q̃(2)n is the difference

between Pn and P. It can be verified by the same way as (282) that

lim
n→∞

(
εn H(Q̃(2)n )

)
� 0. (284)

It follows by the same manner as Lemma 1 of [21] that if Pn majorizes P, then Q(2)n majorizes Q̃(2)n

as well. Therefore, it follows from the Schur-concavity property of the Shannon entropy that if Pn

majorizes P for sufficiently large n, then

H(Q(2)n ) ≤ H(Q̃(2)n ) (285)

for sufficiently large n. Combining (284) and (285), Equation (278) also holds under Condition (c). This
completes the proof of Theorem 6.

7.3. Proof of Theorem 7

To prove Theorem 7, we now give the following lemma.

Lemma 12. If H(Q) < ∞, then the map ε 7→ H(P(Q,L,ε)
type-1 ) is concave in the interval (29) with |Y| � ∞.

Proof of Lemma 12. It is well-known that for a fixed PX , the conditional Shannon entropy H(X | Y) is
concave in PY |X (cf. [2], Theorem 2.7.4). Defining the distortion measure d : X ×

(X
L

)
→ {0, 1} by

d(x, x̂) �
{

1 if x < x̂,
0 if x ∈ x̂,

(286)

the average probability of list decoding error is equal to the average distortion, i.e.,

P{X < f (Y)} � E[d(X, f (Y))] (287)

for any list decoder f : Y →
(X

L

)
. Therefore, by following Theorem 1, the concavity property of

Lemma 12 can be proved by the same argument as the proof of the convexity of the rate-distortion
function (cf. Lemma 10.4.1 of [2]). �

For the sake of brevity, we write

P � PX , (288)
Pn � PXn , (289)

εn � P(Ln )
e (Xn | Yn), (290)

P1,n � P(Pn ,Ln ,εn )
type-1 , (291)

P̄1,n � P(Pn ,L̄n ,εn )
type-1 (292)

in this proof. Define

L̄ B lim sup
n→∞

Ln . (293)

If L̄ � ∞, then (115) is a trivial inequality. Therefore, it suffices to consider the case where L̄ < ∞.
It is clear that there exists an integer n0 ≥ 1 such that Ln ≤ L̄ for every n ≥ n0. Then, we

can verify that P1,n majorizes P̄1,n for every n ≥ n0 as follows. Let Jn and J3 be given by (33) with
(Q, L, ε) � (Pn , Ln , εn) and (Q, L, ε) � (Pn , L̄, εn), respectively. Similarly, let Kn and K3 be given by (34)
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with (Q, L, ε) � (Pn , Ln , εn) and (Q, L, ε) � (Pn , L̄, εn), respectively. As Ln ≤ L̄ implie that Jn ≤ J3 and
Kn ≤ K3, it can be seen from (30) that

P1,n(x) � P̄1,n(x) for 1 ≤ x < Jn or x ≥ K3, (294)
P1,n(x) ≥ P̄1,n(x) for Jn ≤ x ≤ Ln or L̄ < x ≤ K3, (295)
P1,n(x) ≤ P̄1,n(x) for Ln < x ≤ L̄. (296)

Therefore, noting that

Ln∑
x�1

P1,n(x) �
L̄∑

x�1
P̄1,n(x) � 1− εn , (297)

we obtain the majorization relation P1,n � P̄1,n for every n ≥ n0.
By hypothesis, there exists an integer n1 ≥ 1 such that Pn majorizes P for every n ≥ n1. Letting

n2 � max{n0, n1}, we observe that

1
n

H(Xn | Yn) ≤ 1
n

n∑
i�1

H(Xi | Yi)

≤ 1
n

n2−1∑
i�1

H(Xi | Yi)+
1
n

n∑
j�n2

H(Xi | Yi)

(a)
≤ n2 − 1

n

(
max

1≤i<n2
H(Xi)

)
+

1
n

n∑
j�n2

H
(
P̄1, j

)
(b)
≤ n2 − 1

n

(
max

1≤i<n2
H(Xi)

)
+

1
n

n∑
j�n2

H
(
P
(P,L̄,ε j )
type-1

)
(c)
≤ n2 − 1

n

(
max

1≤i<n2
H(Xi)

)
+

n − n2 + 1
n

H
(
P(P,L̄,ε̄n )

type-1

)
(298)

for every n ≥ n2, where

• (a) follows by Corollary 4 and P1,n � P̄1,n ,
• (b) follows by Condition (b) of Theorem 6 and the same manner as ([21], Lemma 1), and
• (c) follows by Lemma 12 together with the following definition

ε̄n B
1

n − n2 + 1

n∑
j�n2

ε j �
1

n − n2 + 1

n∑
j�n2

P
(L j )
e (X j | Yj). (299)

Note that the Schur-concavity property of the Shannon entropy is used in both (b) and (c) of (298). As

lim
n→∞

P(L)e,sym.(Xn | Yn) � 0 ⇐⇒ lim
n→∞

ε̄n � 0, (300)

it follows from (274) that there exists an integer n3 ≥ 1 such that

H
(
P(P,L̄,ε̄n )

type-1

)
≤ log L̄ (301)

for every n ≥ n3. Therefore, it follows from (298) that

1
n

H(Xn | Yn) ≤ n2 − 1
n

(
max

1≤i<n2
H(Xi)

)
+

n − n2 + 1
n

log L̄ (302)
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for every n ≥ max{n2, n3}. Therefore, letting n →∞ in (302), we have (115). This completes the proof
of Theorem 7.

8. Concluding Remarks

8.1. Impossibility of Establishing Fano-Type Inequality

In Section 3, we explored the principal maximization problemHφ(Q, L, ε,Y) defined in (7) without
any explicit form of φ under the three postulates: φ is symmetric, concave, and lower semicontinuous.
If ε > 0 and we impose another postulate on φ, then we can also avoid the (degenerate) case in which
φ(Q) � ∞. The following proposition shows this fact.

Proposition 9. Let 11 : [0, 1] → [0,∞) be a function satisfying 11(0) � 0, and 12 : [0,∞] → [0,∞] a function
satisfying 12(u) � ∞ only if u � ∞. Suppose that ε > 0 and φ : P(X) → [0,∞] is of the form

φ(Q) � 12

( ∑
x∈X

11
(
Q(x)

) )
. (303)

Then, it holds that

Hφ(Q, L, ε,Y) < ∞ ⇐⇒ φ(Q) < ∞. (304)

Proof of Proposition 9. See Appendix D. �

As seen in Section 4, the conditional Shannon and Rényi entropies can be expressed by Hφ(X | Y);
and then φ must satisfy (303). Proposition 9 shows that we cannot establish an effective Fano-type
inequality based on the conditional information measure Hφ(X | Y) subject to our original postulates in
Section 2.1, provided that (i) φ satisfies the additional postulate of (303), (ii) ε > 0, and (iii) φ(Q) � ∞.
This generalizes a pathological example given in Example 2.49 of [4], which states issues of the interplay
between conditional information measures and error probabilities over countably infinite alphabets X;
see Section 1.2.1.

8.2. Postulational Characterization of Conditional Information Measures

Our Fano-type inequalities were stated in terms of the general conditional information Hφ(X | Y)
defined in Section 2.1. As shown in Section 4, the quantity Hφ(X | Y) can be specialized to Shannon’s
and Rényi’s information measures. Moreover, the quantity Hφ(X | Y) can be further specialized to the
following quantities:

1. If φ � ‖ · ‖1/2, then Hφ(X | Y) coincides with the (unnormalized) Bhattacharyya parameter (cf.
Definition 17 of [80] and Section 4.2.1 of [81]) defined by

B(X | Y) B E

[ ∑
x,x′∈X

√
PX |Y(x)PX |Y(x′)

]
. (305)

Note that the Bhattacharyya parameter is often defined so that Z(X | Y) B (B(X | Y) − 1)/(M − 1)
to normalize as 0 ≤ Z(X | Y) ≤ 1, provided that X is {0, 1, . . . , M − 1}-valued. When X takes
values in a finite alphabet with a certain algebraic structure, the Bhattacharyya parameter B(X | Y)
is useful in analyzing the speed of polarization for non-binary polar codes (cf. [80,81]). Note that
B(X | Y) is a monotone function of Arimoto’s conditional Rényi entropy (64) of order α � 1/2.
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2. If φ � 1− ‖ · ‖22 , then Hφ(X | Y) coincides with the conditional quadratic entropy [82] defined by

Ho(X | Y) B E
[ ∑

x∈X
PX |Y(x)

(
1− PX |Y(x)

)]
, (306)

which is used in the analysis of stochastic decoding (see, e.g., [83]). Note that Ho(X | Y) is a
monotone function of Hayashi’s conditional Rényi entropy (69) of order α � 2.

3. If X is {1, 2, . . . , M}-valued, then one can define the following (variational distance-like)
conditional quantity:

K(X | Y) B E
[

1
2(M − 1)

M∑
x�1

M∑
x′�1

���PX |Y(x) − PX |Y(x′)
���] . (307)

Note that 0 ≤ K(X | Y) ≤ 1. This quantity K(X | Y)was introduced by Shuval–Tal [84] to analyze
the speed of polarization of non-binary polar codes for sources with memory. When we define
the function d̄ : P({1, 2, . . . , M}) → [0, 1] by

d̄(P) B 1
2(M − 1)

M∑
x�1

M∑
x′�1

���P(x) − P(x′)
���, (308)

it holds that K(X | Y) � Hd̄(X | Y). Clearly, the function d̄ is symmetric, convex, and continuous.

On the other hand, the quantity Hφ(X | Y) has the following properties that are appealing in
information theory:

1. As φ is concave, lower bounded, and lower semicontinuous, it follows from Jensen’s inequality
for an extended real-valued function on a closed, convex, and bounded subset of a Banach space
([14], Proposition A-2) that

Hφ(X | Y) ≤ φ(PX). (309)

This bound is analogous to the property that conditioning reduces entropy (cf. [2], Theorem 2.6.5).
2. It is easy to check that for any (deterministic) mapping 1 : X → A withA ⊂ X, the conditional

distribution P1(X)|Y majorizes PX |Y a.s. Thus, it follows from Proposition 1 that for any mapping
1 : X → A,

Hφ(1(X) | Y) ≤ Hφ(X | Y), (310)

which is a counterpart of the data processing inequality (cf. Equations (26)–(28) of [72]).
3. As shown in Section 3, the quantity Hφ(X | Y) also satisfies appropriate generalizations of Fano’s

inequality.

Therefore, similar to the family of f -divergences [85,86], the quantity Hφ(X | Y) is a generalization
of various information-theoretic conditional quantities that also admit certain desirable properties. In
addition, we can establish Fano-type inequalities based on Hφ(X | Y); this characterization provides
insights on how to measure conditional information axiomatically.

8.3. When Does Vanishing Error Probabilities Imply Vanishing Equivocations?

In the list decoding setting, the rate of a block code with codeword length n, message size Mn , and
list size Ln can be defined as (1/n) log(Mn/Ln) (cf. [87]). Motivated by this, we established asymptotic
behaviors of this quantity in Theorems 5 and 6. We would like to emphasize that Example 2 shows that
Ahlswede–Gács–Körner’s proof technique described in Chapter 5 of [42] (see also Section 3.6.2 of [43])
works for an i.i.d. source on a countably infinite alphabet, provided that the alphabets {Yn}∞n�1 are finite.



Entropy 2020, 22, 288 52 of 59

Theorem 5 states that the asymptotic growth of H(Xn | Yn) − log Ln is strictly slower than H(Xn),
provided that the general source X � {Xn}∞n�1 satisfies the AEP and the error probabilities vanish (i.e.,
P(Ln )

e (Xn | Yn) � o(1) as n → ∞). This is a novel characterization of the AEP via Fano’s inequality.
An instance of this characterization using the Poisson source (cf. Example 4 of [25]) was provided in
Example 3.

8.4. Future Works

1. While there are various studies of the reverse Fano inequalities [22,23,49–52], this study has
focused only on the forward Fano inequality. Generalizing the reverse Fano inequality in the same
spirit as was done in this study would be of interest.

2. Important technical tools used in our analysis include the finite- and infinite-dimensional versions
of Birkhoff’s theorem; they were employed to satisfy the constraint that PX � Q. As a similar
constraint is imposed in many information-theoretic problems, e.g., coupling problems (cf.
[7,88,89]), finding further applications of the infinite-dimensional version of Birkhoff’s theorems
would refine technical tools, and potentially results, when we are dealing with communication
systems on countably infinite alphabets.

3. We have described a novel connection between the AEP and Fano’s inequality in Theorem 5; its
role in the classifications of sources and channels and its applications to other coding problems
are of interest.
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Appendix A. Proof of Proposition 2

The proposition is quite obvious; it is similar to ([90], Equation (1)). Here, we prove it to make this
paper self-contained. For a given list decoder f : Y →

(X
L

)
with list size 1 ≤ L < ∞, it follows that

P{X < f (Y)} � E[E[1{X< f (Y)} | Y]]

� E


∑
x< f (Y)

PX |Y(x)


(a)
≥ E

[ ∞∑
x�L+1

P↓X |Y(x)
]
, (A1)

where the equality of (a) can be achieved by an optimal list decoder f ∗ satisfying that X < f ∗(Y) only if
PX |Y(X) � P↓X |Y(k) for some k ≥ L + 1. This completes the proof of Proposition 2.

Appendix B. Proof of Proposition 3

The second inequality in (27) is indeed a direct consequence of Proposition 2 and (123). The
sharpness of the second bound can be easily verified by setting that X and Y are statistically independent.
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We next prove the first inequality in (27). When Y is infinite, the first inequality is an obvious
one P(L)e (X | Y) ≥ 0, and its equality holds by setting X ⊂ Y and X � Y a.s. Therefore, it suffices to
consider the case whereY is finite. Assume without loss of generality that

Y � {0, 1, . . . , N − 1} (A2)

for some positive integer N. By the definition of cardinality, there exists a subsetZ ⊂ X satisfying
(i) |Z| � LN and (ii) for each x ∈ {1, 2, . . . , L} and y ∈ {0, 1, . . . , N − 1}, there exists an element z ∈ Z
satisfying PX |Y�y(z) � P↓X |Y�y(x). Then,

Pe(X | Y)
(a)
� 1−

∑
y∈Y

PY(y)
L∑

x�1
P↓X |Y�y(x)

(b)
≥ 1−

∑
y∈Y

PY(y)
∑
x∈Z

PX |Y�y(x)

� 1−
∑
x∈Z

PX(x)

(c)
≥ 1−

LN∑
x�1

Q↓(x), (A3)

where

• (a) follows from Proposition 2,
• (b) follows from by the construction ofZ, and
• (c) follows from the facts that |Z| � LN and PX � Q.

This is indeed the first inequality in (27). Finally, the sharpness of the first inequality can be verified by
the X ×Y-valued r.v. (U, V) determined by

PU |V�v(u) �


ω2(Q, L, ε)
ω1(Q, v, L) Q↓(u) if vL < u ≤ (1 + v) L,

Q↓(u) if LN < u < ∞,
0 otherwise,

(A4)

PV (v) �
ω1(Q, v, L)
ω2(Q, L, ε) , (A5)

where ω1(Q, v, L) and ω2(Q, L, ε) are defined by

ω1(Q, v, L) B
(1+v)L∑

u�1+vL

Q↓(u), (A6)

ω2(Q, L, ε) B
LN−1∑
v�0

ω1(Q, v, L). (A7)

A direct calculation shows that PU � Q↓ and

P(L)e (U | V) � 1−
LN∑
x�1

Q↓(x), (A8)

which implies the sharpness of the first inequality. This completes the proof of Proposition 3.
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Appendix C. Proof of Proposition 4

Equations (36), (37), and (39)–(42) directly follow from the definitions stated in (30)–(34).
Equation (38) follows from (28) and (37).

Finally, we shall verify that Ptype-1 majorizes Q; in other words, we prove that

k∑
x�1

Ptype-1(x) ≥
k∑

x�1
Q↓(x) (A9)

for every k ≥ 1. Equation (39) implies that (A9) holds with equality for every 1 ≤ k < J. Moreover,
it follows from (33) and (39) that (A9) holds for every J ≤ k ≤ L. On the other hand, Equation (42)
implies that

∞∑
x�k

Ptype-1(x) �
∞∑

x�k

Q↓(x) (A10)

for every k > K1. Combining (41), (A9) with k � L, and (A10), we observe that (A9) holds for every
k > L. Therefore, we have that Ptype-1 majorizes Q, as desired.

Appendix D. Proof of Proposition 9

The “if” part⇐ of Proposition 9 is quite obvious from Jensen’s inequality even if φ : P(X) → [0,∞]
is not of the form (303). Therefore, it suffices to prove the “only if” part⇒. In other words, we shall
prove the following contraposition

φ(Q) � ∞ �⇒ sup
(X,Y):P(L)e (X |Y)≤ε,PX�Q

Hφ(X | Y) � ∞. (A11)

In the following, we show (A11) by employing Lemma 7 of Section 6.3.
Since 12(u) � ∞ only if u � ∞, it is immediate from (303) that

φ(Q) � ∞ �⇒
∑
x∈X

11
(
Q(x)

)
� ∞, (A12)

where note that φ(Q) � ∞ implies that 12(∞) � ∞ as well. Moreover, since 11(0) � 0, we get∑
x∈X

11
(
Q(x)

)
� ∞ �⇒ | supp(Q)| � ∞. (A13)

Due to (29), we can find a finite subset S ⊂ Y satisfying

1−
L·|S|∑
x�1

Q↓(x) ≤ ε (A14)

by taking a finite but sufficiently large cardinality |S| < ∞. This implies that the new system (Q, L, ε,S)
still satisfies (29); thus, it follows from Proposition 3 that there exists an X × S-valued r.v. (X, Y)
satisfying P(L)e (X | Y) ≤ ε and PX � Q. Therefore, the feasible region

R2 � R(Q, L, ε,S) (A15)

defined in (129) is nonempty by this choice of S. As S ⊂ Y, it is clear that R2 ⊂ R1, where

R1 � R(Q, L, ε,Y). (A16)
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By Lemma 7, one can findZ ⊂ X so that |Z| � L · |Y| and

R3 � R(Q, L, ε,S,Z) (A17)

defined in (188) is nonempty as well. Moreover, since P(L)e (X | Y) ≤ P(L)e (X | Y ‖ Z), if follows that
R3 ⊂ R2. Then, we have

Hφ(Q, L, ε,Y) (a)� sup
(X,Y)∈R1

Hφ(X | Y)

(b)
≥ sup
(X,Y)∈R3

Hφ(X | Y)

(c)
≥ inf

R∈P(X):
∀x∈X\Z,R(x)�Q(x)

12

( ∑
x∈X

11
(
R(x)

))
(d)
� ∞, (A18)

where

• (a) follows by the definition of R1 stated in (129),
• (b) follows by the inclusions

∅ , R3 ⊂ R2 ⊂ R1, (A19)

• (c) follows from the fact that (X, Y) ∈ R3 implies that

PX |Y�y(x) � Q(x) (A20)

for x ∈ X \Z and y ∈ S, and
• (d) follows from the facts that

| supp(Q) \Z| � ∞, (A21)
11(u) ≥ 0 (for 0 ≤ u ≤ 1), (A22)
12(∞) � ∞. (A23)

Inequalities (A18) imply (A11), completing the proof of Proposition 9.

Appendix E. Proof of Lemma 6

This lemma is quite trivial, but we prove it to make the paper self-contained. Actually, this can be
directly proved by contradiction. Suppose that (140) and (141) hold, but (142) does not hold. Then,
there must exist an l ∈ {k, k + 1, . . . , n − 1} satisfying

l∑
i�1

pi <
l∑

i�1
qi . (A24)

As q j is constant for each j � k, k + 1, . . . , n, it follows from (140) and (A24) that p j < q j for every
j � l, l + 1, . . . , n. Then, we observe that

n∑
i�1

pi <
n∑

i�1
qi , (A25)

which contradicts to the hypothesis of (141), and therefore Lemma 6 must hold.
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