The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Random Networks
2.2. Ising Model
2.3. Summary Statistics
2.4. Phi
3. Results
4. Discussion
4.1. Phase Transitions IIT
4.2. Evolution Complexity
4.3. Utility of Criticality
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
N | ||
---|---|---|
5 | 0.001 | 4 |
25 | 1 | 20 |
100 | 10 | 100 |
250 | 20 | 200 |
References
- Crutchfield, J.P. Between order and chaos. Nat. Phys. 2012, 8, 17–24. [Google Scholar] [CrossRef]
- Beggs, J.M.; Plenz, D. Neuronal Avalanches in Neocortical Circuits. J. Neurosci. 2003, 23, 11167–11177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expert, P.; Lambiotte, R.; Chialvo, D.R.; Christensen, K.; Jensen, H.J.; Sharp, D.J.; Turkheimer, F. Self-similar correlation function in brain resting-state functional magnetic resonance imaging. J. R. Soc. Interface 2011, 8, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliazucchi, E.; Balenzuela, P.; Fraiman, D.; Chialvo, D.R. Criticality in large-scale brain fmri dynamics unveiled by a novel point process analysis. Front. Physiol. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brochini, L.; De Andrade Costa, A.; Abadi, M.; Roque, A.C.; Stolfi, J.; Kinouchi, O. Phase transitions and self-organized criticality in networks of stochastic spiking neurons. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timme, N.M.; Marshall, N.J.; Bennett, N.; Ripp, M.; Lautzenhiser, E.; Beggs, J.M. Criticality Maximizes Complexity in Neural Tissue. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Moretti, P.; Muñoz, M.A. Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef]
- Hesse, J.; Gross, T. Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 2014, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- De Arcangelis, L.; Herrmann, H.J. Learning as a phenomenon occurring in a critical state. Proc. Natl. Acad. Sci. USA 2010, 107, 3977–3981. [Google Scholar] [CrossRef] [Green Version]
- Beggs, J.M. The criticality hypothesis: How local cortical networks might optimize information processing. Philos. Trans. R. Soc. A 2008, 366, 329–343. [Google Scholar] [CrossRef]
- Bak, P.; Chen, K. Self-organized criticality. Sci. Am. 1991, 264, 46–53. [Google Scholar] [CrossRef]
- Fraiman, D.; Balenzuela, P.; Foss, J.; Chialvo, D.R. Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 2009, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deco, G.; Senden, M.; Jirsa, V. How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci. 2012, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haimovici, A.; Tagliazucchi, E.; Balenzuela, P.; Chialvo, D.R. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 2013, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinazzo, D.; Pellicoro, M.; Wu, G.; Angelini, L.; Cortés, J.M.; Stramaglia, S. Information transfer and criticality in the ising model on the human connectome. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Sethna, J.P.; Dahmen, K.A.; Myers, C.R. Crackling noise. Nature 2001, 410, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shew, W.L.; Plenz, D. The functional benefits of criticality in the cortex. Neuroscientist 2013, 19, 88–100. [Google Scholar] [CrossRef]
- Mora, T.; Bialek, W. Are Biological Systems Poised at Criticality? J. Stat. Phys. 2011, 144, 268–302. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, J.; Grilli, J.; Suweis, S.; Muñoz, M.A.; Banavar, J.R.; Maritan, A. Information-based fitness and the emergence of criticality in living systems. Proc. Natl. Acad. Sci. USA 2014, 111, 10095–10100. [Google Scholar] [CrossRef] [Green Version]
- Goldenfeld, N.; Woese, C. Life is Physics: Evolution as a Collective Phenomenon Far From Equilibrium. Annu. Rev. Condens. Matter Phys. 2011, 2, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Oizumi, M.; Albantakis, L.; Tononi, G. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Comput. Biol. 2014, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarasso, S.; Boly, M.; Napolitani, M.; Gosseries, O.; Charland-Verville, V.; Casarotto, S.; Rosanova, M.; Casali, A.G.; Brichant, J.F.; Boveroux, P.; et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 2015, 25, 3099–3105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegmark, M. Improved Measures of Integrated Information. PLoS Comput. Biol. 2016, 12. [Google Scholar] [CrossRef] [PubMed]
- Sevenius Nilsen, A.; Juel, B.E.; Marshall, W. Evaluating Approximations and Heuristic Measures of Integrated Information. Entropy 2019, 21, 525. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, M. Scaling Behaviour and Critical Phase Transitions in Integrated Information Theory. Entropy 2019, 21, 1198. [Google Scholar] [CrossRef] [Green Version]
- Hyoungkyu, K.; UnCheol, L. Criticality as a Determinant of Integrated Information Φ in Human Brain Networks. Entropy 2019, 21, 981. [Google Scholar] [CrossRef] [Green Version]
- Zanoci, C.; Dehghani, N.; Tegmark, M. Ensemble inhibition and excitation in the human cortex: An Ising-model analysis with uncertainties. Phys. Rev. E 2019, 99. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117–149. [Google Scholar] [CrossRef]
- Chialvo, D.R. Critical brain networks. Physica A 2004, 340, 756–765. [Google Scholar] [CrossRef] [Green Version]
- Chialvo, D.R. Emergent complex neural dynamics. Nat. Phys. 2010. [Google Scholar] [CrossRef] [Green Version]
- Abeyasinghe, P.M.; De Paula, D.R.; Khajehabdollahi, S.; Valluri, S.R.; Owen, A.M.; Soddu, A. Role of Dimensionality in Predicting the Spontaneous Behavior of the Brain Using the Classical Ising Model and the Ising Model Implemented on a Structural Connectome. Brain Connect. 2018, 8, 444–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balleza, E.; Alvarez-Buylla, E.R.; Chaos, A.; Kauffman, S.; Shmulevich, I.; Aldana, M. Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms. PLoS ONE 2008, 3, e2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux, T.; Marchesi, M. Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 1999, 397, 498–500. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Stanley, H.E. Scaling behaviour in the dynamics of an economic index. Nature 1995, 376, 46–49. [Google Scholar] [CrossRef]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; Shen, E.; Silvestri, E.; et al. Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 2014, 113. [Google Scholar] [CrossRef]
- Chaté, H.; Muñoz, M.A.; Attanasi, A.; Cavagna, A.; Castello, L.D.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; et al. Insect Swarms Go Critical. Phys. Rev. Lett. 2014, 7. [Google Scholar] [CrossRef] [Green Version]
- Mayner, W.G.P.; Marshall, W.; Albantakis, L.; Findlay, G.; Marchman, R.; Tononi, G. PyPhi: A toolbox for integrated information theory. PLoS Comput. Biol. 2018, 14, e1006343. [Google Scholar] [CrossRef]
- Landau, D.P.; Binder, K.; Landau, D.P.; Binder, K. Monte Carlo simulations at the periphery of physics and beyond. In A Guide to Monte Carlo Simulations in Statistical Physics; Cambridge University Press: New York, NY, USA, 2014; pp. 13–22. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Har-Shemesh, O.; Quax, R.; Hoekstra, A.G.; Sloot, P.M. Information geometric analysis of phase transitions in complex patterns: The case of the Gray-Scott reaction-diffusion model. J. Stat. Mech. Theory Exp. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Severino, F.P.U.; Ban, J.; Song, Q.; Tang, M.; Bianconi, G.; Cheng, G.; Torre, V. The role of dimensionality in neuronal network dynamics. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Morowitz, H. The Emergence of Everything: How the World Became Complex; Number November 2003; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Smith, E.; Morowitz, H.J. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere; Cambridge University Press: Cambridge, UK, 2016; pp. 1–677. [Google Scholar] [CrossRef]
- Wilson, K.G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 1975, 47, 773. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Watts, D.J. Renormalization group analysis of the small-world network model. Phys. Lett. A 1999, 263, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Rozenfeld, H.D.; Song, C.; Makse, H.A. Small-world to fractal transition in complex networks: A renormalization group approach. Phys. Rev. Lett. 2010, 104. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S. Renormalization Group on Complex Networks. Available online: https://web.mit.edu/8.334/www/grades/projects/projects14/SaurabhGandhi.pdf (accessed on 12 March 2020).
- Swendsen, R.H. Monte carlo renormalization group. Phys. Rev. Lett. 1979, 42, 859–861. [Google Scholar] [CrossRef]
- Pawley, G.S.; Swendsen, R.H.; Wallace, D.J.; Wilson, K.G. Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model. Phys. Rev. B 1984, 29, 4030–4040. [Google Scholar] [CrossRef]
- Joshi, N.J.; Tononi, G.; Koch, C. The Minimal Complexity of Adapting Agents Increases with Fitness. PLoS Comput. Biol. 2013, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edlund, J.A.; Chaumont, N.; Hintze, A.; Koch, C.; Tononi, G.; Adami, C. Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 2011, 7. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, J.; Hepp, K.; Weidenmciller, H.A. Lecture Notes in Physics. 1979. Available online: https://link.springer.com/content/pdf/bfm%3A978-3-540-37509-8%2F1.pdf (accessed on 12 March 2020).
- Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Hansel, D.; Mato, G.; Meunier, C. Phase dynamics for weakly coupled hodgkin-huxley neurons. EPL 1993, 23, 367. [Google Scholar] [CrossRef]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137–185. [Google Scholar] [CrossRef] [Green Version]
- Cumin, D.; Unsworth, C.P. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 2007, 226, 181–196. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiel, N.J.M.; Khajehabdollahi, S.; Abeyasinghe, P.M.; Riganello, F.; Nichols, E.S.; Owen, A.M.; Soddu, A. The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality. Entropy 2020, 22, 339. https://doi.org/10.3390/e22030339
Popiel NJM, Khajehabdollahi S, Abeyasinghe PM, Riganello F, Nichols ES, Owen AM, Soddu A. The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality. Entropy. 2020; 22(3):339. https://doi.org/10.3390/e22030339
Chicago/Turabian StylePopiel, Nicholas J.M., Sina Khajehabdollahi, Pubuditha M. Abeyasinghe, Francesco Riganello, Emily S. Nichols, Adrian M. Owen, and Andrea Soddu. 2020. "The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality" Entropy 22, no. 3: 339. https://doi.org/10.3390/e22030339
APA StylePopiel, N. J. M., Khajehabdollahi, S., Abeyasinghe, P. M., Riganello, F., Nichols, E. S., Owen, A. M., & Soddu, A. (2020). The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality. Entropy, 22(3), 339. https://doi.org/10.3390/e22030339