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Abstract: The leader–follower structure is widely used in unmanned aerial vehicle formation.
This paper adopts the proportional-integral-derivative (PID) and the linear quadratic regulator
controllers to construct the leader–follower formation. Tuning the PID controllers is generally
empirical; hence, various surrogate models have been introduced to identify more refined parameters
with relatively lower cost. However, the construction of surrogate models faces the problem that
the singular points may affect the accuracy, such that the global surrogate models may be invalid.
Thus, to tune controllers quickly and accurately, the regional surrogate model technique (RSMT),
based on analyzing the regional information entropy, is proposed. The proposed RSMT cooperates
only with the successful samples to mitigate the effect of singular points along with a classifier
screening failed samples. Implementing the RSMT with various kinds of surrogate models, this study
evaluates the Pareto fronts of the original simulation model and the RSMT to compare their
effectiveness. The results show that the RSMT can accurately reconstruct the simulation model.
Compared with the global surrogate models, the RSMT reduces the run time of tuning PID controllers
by one order of magnitude, and it improves the accuracy of surrogate models by dozens of orders
of magnitude.

Keywords: surrogate model; proportional controller; UAV formation; classifier

1. Introduction

The cooperative control of the unmanned aerial vehicle (UAV) formation is a research hotspot
because of its widespread use, such as in forest fire surveillance, field surveillance, and antipoaching
efforts [1,2]. Tuning controllers with efficient optimization methods is of prime importance to
maintaining robust formation. In practice, the classical proportional-integral-derivative (PID) controller
and its variations, such as the proportional controller and the proportional-integral controller,
occupy 90% of industrial control [3]. However, many engineers think that many PID control loops
in practice are not in high performance [3]. It is notable that the PID controller is parameter
sensitive; hence, a more refined optimization method is required. Our study focuses on developing
a high-efficient method to tune PID controllers.

Many researchers attempted to improve the robustness of UAVs through designing controllers.
Some researchers researched the robustness of a single UAV. López-Estrada et al. [4] designed
a robust fault detection and tracking controller system. Guzmán-Rabasa et al. [5] designed the
fault detection and diagnosis system when a UAV was under partial or total actuator fault. The robust
control of UAV formations has also attracted the attention of researchers. To design a robust UAV

Entropy 2020, 22, 527; doi:10.3390/e22050527 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-8906-7786
https://orcid.org/0000-0002-2999-0541
https://orcid.org/0000-0002-2168-5470
http://dx.doi.org/10.3390/e22050527
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/5/527?type=check_update&version=2


Entropy 2020, 22, 527 2 of 20

formation, which was independent of the environment, Viktor et al. [6] proposed an onboard relative
localization method based on ultraviolet light. The robustness of UAVs with specific tasks has also
been studied. Guerrero-Sánchez et al. [7] controlled single UAV with a cable-suspended payload
through a hierarchical scheme with controllers based on energy and the linear matrix inequality.
Tuning controllers plays an important role in keeping robust UAV systems.

To accelerate the process of tuning controllers, surrogate models (SUMOs) have been
introduced because theoretical tuning methods or empirical tuning methods may be cumbersome
or inefficient [8,9]. Regarding a system as a black box, SUMOs mimic relationships between system
inputs and outputs. Hence, SUMOs have good adaptability. There are some common types of SUMOs,
such as Kriging [10], polynomial chaos expansions (PCE) [11], polynomial chaos Kriging (PCK) [12],
the radial basis function neural network (RBFNN) [13], and the generalized regression neural network
(GRNN)[14]. It is worth noting that SUMOs have been widely used to optimize UAVs [15–17].
Researchers have used SUMOs to tune different controllers in different systems successfully, such as
the mixing process [18], the cruise control system [19], and the unmanned underwater vehicle [20].
Among these systems, through offline optimization, various controllers were tuned, including the
fuzzy logic controller [20], the proportional-integral controller [18], and the PID controller [18,19].
Additional SUMO-related techniques have been introduced. Lü [21] performed online optimization on
high-purity distillation processes via the RBFNN. To investigate large, multidimensional input spaces,
Matinnejad et al. [22] reduced the dimensionality of SUMOs, including the linear regression, the
exponential regression, and the polynomial regression. Pan and Das [23] adopted Kriging to optimize
the fractional order PID controller. Guerrero et al. [24] proposed a surrogate-based optimization
workflow. Faruq et al. [25] proposed a Pareto-based surrogate modelling algorithm for optimizing
PID controllers.

The previous works usually construct global SUMOs for control systems. However, the global
SUMOs may not be the best choice for tuning controllers because researchers only concern the
successful part of control systems. The accuracy of global SUMOs may be affected by the failed control
results. For example, in this study, the UAV formation may generate singularity points when the control
fails. Singularity points are fatal to the accuracy of SUMOs. In previous studies, singularity points did
not raise close attention because researchers have prior experience, and successful samples were easy
to be found [18–20,23,25]. The reasons for singularity points occurrence in this work are summarized
as follows: First, the error of closed-loop systems may be reinforced compared to open-loop systems.
Second, the solver in the simulation program may get exceptionally large values when the control
fails. In this study, without prior experience, it is hard to avoid the singularity points before sampling.
Therefore, recklessly tuning controllers using global SUMOs is problematic. A novel SUMO technique
is thus needed to filter singularity points.

The remainder of this paper is presented as follows. Section 2 constructs the UAV formation
simulation model and defines performance measures. In Section 3, the regional surrogate model
technique (RSMT) is proposed based on the regional information entropy. In Section 4, the RSMT is
used by different SUMOs, i.e., Kriging, PCE, PCK, the RBFNN, and the GRNN. Then, the Pareto fronts
of the original simulation model and the RSMT are evaluated to compare their effectiveness.

2. The UAV Formation Model

2.1. The Leader–Follower Structure

Following Xu [26], fixed-wing UAVs form the UAV formation, which adopts the leader–follower
(L–F) architecture: one leader leads the group while followers are controlled to maintain clearance
between followers and the leader. The earth-fixed reference frame is built, and the dynamic models of
UAVs [27] are given by
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ẋL = VL cos φL cos θL

ẏL = VL sin φL cos θL

żL = VL sin θL

ẋF = VF cos φF cos θF

ẏF = VF sin φF cos θF

żF = VF sin θF

, (1)

where the subscripts L and F denote the leader and follower, respectively; x, y, and z denote the
position of UAVs on the x-axis, y-axis, and z-axis; V is the forward velocity; θ is the track angle of
UAVs; ω is the heading angular rate of UAVs, φ̇ = ω. As the angle between the forward direction and
x-axis, the heading angle φ [26] can be given by

sin φ =
Vy√

V2
x + V2

y

, (2)

where Vx and Vy are the components of V on the x-axis and y-axis. Because this paper focuses on
fixed-wing UAVs which usually fly at the same height in a formation [26,28,29], we assume that
UAVs do not change their height, i.e., θL = θF = 0. Because the method of controlling all followers
is identical, and there is no connection between followers, we examine only one follower instead of
multiple followers. Figure 1 shows the geometry of the L-F structure in the x, y plane as follows:

O
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Leader

f
l
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L
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Fx

Fy
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Figure 1. The leader–follower structure [29] in the x, y plane. One leader leads the group while the
follower is controlled to maintain clearance between the follower and the leader.

The position relations between the leader and follower [26] are{
∆ f = (xL − xF) cos φL + (yL − yF) sin φL − fd

∆l = − (xL − xF) sin φL + (yL − yF) cos φL − ld
, (3)

where fd and ld are the desired forward and lateral clearances; ∆ f and ∆l are the clearance errors in
the forward and lateral directions.

The L-F structure aims to keep the desired clearance between the follower and the leader.
The UAV formation is divided into the outer loop and the inner loop, which contain PID controllers
and linear quadratic regulator (LQR) controllers, respectively. The outer loop controls the position
dynamics to maintain the desired formation; the inner loop controls the UAV itself. The outer-loop
controller generates commands into the inner-loop controller. The conceptual structure of the used
UAV formation is shown in Figure 2. The reference generator gives the velocity and attitude of the
leader [29]. Appendix A provides details of the inner-loop-controller design and the system matrices of
a single UAV. Because the LQR controller belongs to optimum control, we only optimize the outer-loop
controller, i.e., the PID controller, which is designed as follows.
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Figure 2. The conceptual block diagram of the leader–follower UAV formation.

2.2. Outer-Loop-Controller Design

It is assumed that f and l are the actual forward and lateral clearances from the leader reference
frame [29]: {

f = (xL − xF) cos φL + (yL − yF) sin φL

l = − (xL − xF) sin φL + (yL − yF) cos φL
. (4)

Differentiate the formula Equation (3) with respect to time, through substituting Equations (1) and (4),
the rates of error change [29] are[

∆ ḟ
∆l̇

]
=

[
VL − lωL

− f ωL

]
+

[
− cos (φF − φL)

− sin (φF − φL)

]
VF. (5)

The outer-loop controllers aim to generate proper commands, which will be tracked by the
inner-loop controllers. We adopt two PID controllers as the outer-loop controllers in the forward and
lateral directions. The two PID controllers are represented as Ml and M f , which are given as follows:

Ml (∆l) = KPl∆l + KIl

∫
∆ldt + KDl

d∆l
dt

, (6)

Mf (∆ f ) = KPf∆ f + KIf

∫
∆ f dt + KDf

d∆ f
dt

, (7)

where subscripts P, I, D represent the proportional gain, integral gain, and derivative gain of PID
controllers, respectively; subscripts f and l represent the forward and lateral directions of UAVs,
respectively. It is assumed that K = {KPl, KIl, KDl, KPf, KIf, KDf}, which are user-defined and the key of
tuning PID controllers. Then, Equation (5) can be written as[

∆ ḟ
∆l̇

]
=

[
VL − lωL

− f ωL

]
+

[
− cos (φF − φL)

− sin (φF − φL)

]
VF =

[
−M f (∆ f )
−Ml (∆l)

]
, (8)

Then, rearranging Equation (8), the following equation is gotten:[
cos (φF − φL)

sin (φF − φL)

]
VF =

[
M f (∆ f ) + VL − lω

Ml (∆l)− f ω

]
. (9)

Let hF1 = M f (∆ f ) + VL − lωL, hF2 = Ml (∆l) − f ωL. The reference commands for the
follower [29] are

Vr
F =

√
h2

F1 + h2
F2, (10)

φr
F =



φL + π/2
φL − π/2

φL + arctan(hF2/hF1)

φL + arctan(hF2/hF1)− π

φL + arctan(hF2/hF1) + π

hF1 = 0, hF2 > 0
hF1 = 0, hF2 < 0

hF1 > 0
hF1 < 0, hF2 ≤ 0
hF2 < 0, hF1 ≥ 0

. (11)
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2.3. Performance Measures of the UAV Formation

The follower’s trajectory generates response curves, whose horizontal axis is the time and whose
vertical axis is the clearance to the leader in two directions. Response curves are evaluated via
three kinds of commonly used measures, as follows:

• Steady-state value (yst): the stable value of the response curve, which is the direct aim of
the controller.

• Overshoot (σ): the maximum peak value of the response curve measured from the desired
response, which is given by [30]

σ% =
ymax − yst

yst
× 100%, (12)

where ymax is the peak value of the response curve beyond yst.
• Accommodation time (ta): the time at which the response curve enters a specific interval around

the desired response and no longer exceed the specific interval.

The lateral and forward motion are mutually independent and controlled by different controllers,
so yst and σ are divided into the lateral steady-state value lst, the forward steady-state value fst,
the lateral overshoot σl, and the forward overshoot σf.

3. The Regional Surrogate Model Technique Based on the Regional Information Entropy

A change of systems, especially for actual physical systems, is usually a gradual process,
which makes the response surface smooth, such as in computational fluid dynamics [31], aerology [32],
and hydrology [33]. Thus, the global SUMO is adopted in most cases. However, in this study, singular
points make the response surface rough, and the global SUMO is no longer effective. There are
two reasons for this phenomenon: First, the UAV formation is a closed-loop system, which may
reinforce errors. Second, the solvers in simulation fail to solve equations, which lead to the generation
of singular points. Without prior experience for determining the selection of parameter space, singular
points are unavoidable, and it is essential to mitigate the effect caused by singular points. Based on the
regional information entropy, the RSMT is proposed as a means of reconstructing the UAV formation.

3.1. Regional Information Entropy Analysis

The SUMO can be viewed as a way to reconstruct the information of systems. Hence, a reasonable
SUMO should fully display useful information and avoid interference from useless information,
which in this study is mainly caused by singular points. Hence, analyzing the regional information
entropy relationship can provide us with a decision basis for screening information. As a way of
measuring the information content, information entropy S [34] is given by

S = −
∫

p (x) ln p (x) dx, (13)

where x is the output of the system and p (x) is the probability distribution function (PDF) of x.
There is a positive correlation between S and information content.

For simplicity, we examine only one input with one output. The space of success (SOS)
is the success interval Isucc, which is the set of successful outputs. Isucc needs to contain all
potential optimal solutions. The space of failure (SOF), i.e., the failed interval Ifail, is the set of failed
outputs, and Isucc ∩ Ifail = ∅. Pfail and Psucc are the probabilities of outputs belonging to Ifail and Isucc

respectively. Because success and failure are complementary events, Psucc + Pfail = 1. Ssucc and Sfail
are the information entropy of Isucc and Ifail, respectively. Containing useful and useless information,
the entropy of the entire system is Ssucc + Sfail, which is the whole information entropy of the global
SUMO, i.e., the global SUMO completely reconstruct the entire system. The information entropy ratio
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of two kinds of information is W, W = Ssucc/Sfail. It is assumed that Isucc and Ifail are both uniform
distributions; then, the PDF of x is given by

p (x) =

{
Psucc/ (b− a) a ≤ x ≤ b

Pfail/ (a− xmin + xmax − b) xmin ≤ x < a or b < x ≤ xmax
, (14)

where a, b are the bounds of Isucc, Isucc ∈ [a, b]; xmin, xmax are the lower limit and upper limit of x,
Ifail ∈ [xmin, a) ∪ (b, xmax]. Sfail and Ssucc are given by

Sfail = −
∫ a

xmin

Pfail
a− xmin + xmax − b

ln
Pfail

a− xmin + xmax − b
dx

−
∫ xmax

b

Pfail
a− xmin + xmax − b

ln
Pfail

a− xmin + xmax − b
dx

= −Pfail ln
Pfail

a− xmin + xmax − b
,

(15)

Ssucc = −
∫ b

a

Psucc

b− a
ln

Psucc

b− a
dx =− Psucc ln

Psucc

b− a
. (16)

It is assumed that a = −5, b = 5, xmin = −1000, and xmax = 1000. According to Equations (15)
and (16), Case 1 in Figure 3 shows the relationship between Pfail and W. If there is no prior experience in
parameter selection, Psucc will be small, which makes Sfail > Ssucc; in other words, useless information
covers up useful information. Hence, the new SUMO technique should prevent useful information
from being concealed by increasing W. In practice, we do not consider the output value and input
parameter of failed results, which is the source of useless information. Hence, ignoring the difference
within failed results is reasonable. Regarding failed results as one event, Sfail and Ssucc can be given by

Sfail = −Pfail ln (Pfail) , (17)

Ssucc = −
∫ b

a
psucc (x) ln psucc (x) dx, (18)

where psucc (x) is the PDF of Isucc, x ∈ Isucc; Psucc =
∫ b

a psucc (x) dx. Assuming that Isucc is the uniform
distribution, psucc (x) and W are given by

psucc(x) =

{
0 x < a or x > b

Psucc/ (b− a) a ≤ x ≤ b
, (19)

W =
Ssucc

Sfail
=
−Psucc ln (Psucc/ (b− a))

−Pfail ln Pfail
=

(1− Pfail) ln ((1− Pfail) / (b− a))
Pfail ln Pfail

. (20)

Case 2 in Figure 3 shows the relationship between Pfail and W. For Case 2 in Figure 3, W is always
larger than 5, which means that the proportion of useless information is reduced, and useful
information constitutes almost the entirety of the information. Ignoring the difference within Ifail
effectively eliminates useless-information interference. Moreover, to verify the results shown Case 1
in Figure 3, Case 3 in Figure 3 shows the same relation when the distribution of x is Student’s
t-distribution. A detailed discussion is provided in Appendix B. The values of a, b, xmin, and xmax

impact W slightly; hence, the changes of these values do not affect the related conclusions.
In conclusion, constructing SUMOs needs to reduce the concealing of useful information. Different

results should be differently treated according to the aim of constructing SUMOs. Based on the analysis
presented above, the RSMT is proposed as a means of tuning PID controllers in the UAV formation.
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Figure 3. The relationship between Pfail and W. Case 1: all samples are used in the SUMO construction.
Isucc and Ifail are both uniform distributions. Case 2: the failed results are viewed as one event, and
Isucc is the uniform distribution. Case 3: Isucc is the uniform distribution and Ifail is the t-distribution.
Filtering useless information is essential for preventing useful information from being submerged.
Ignoring the difference within Ifail effectively eliminates useless-information interference.

3.2. The Regional Surrogate Model Technique

Section 3.1 discusses the relationship between Sfail and Ssucc. To purify information, we propose
the RSMT, which is shown in Algorithm 1 and Figure 4 (the source code can be obtained from
the authors). Class 1 means that the sample belongs to the SOS, and class 0 is contrary to class 1.
Whether the control is successful or failed is determined according to user-defined thresholds.
As discussed in Section 3.1, we ignore the difference within Ifail and focus on Isucc. Instead of the
global SUMO, the RSMT constructs the regional SUMO, which reconstructs the system only in the SOS.
The RSMT can also be viewed as a weighted global SUMO: the weight of training samples belonging
to the SOS is one; the weight of other samples is zero.

Start

Parameter space

SUMO algorithm

Initial sample selection

Samples and their response

Classification Learner

End

SOS

Class samples

SOF

Start

A new parameter

Trained surrogate model

Trained classifier

End

If result=1?True

Flase

The output of 
surrogate model

Figure 4. The regional surrogate model technique. The SUMO is constructed only in the SOS, whose
boundary is found by a classification learner.
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Algorithm 1 The regional surrogate model technique.

Input: the number of initial samples N; the parameter space PS; the criteria of the SOS.
Output: A classifier; a regional SUMO

Definition: the selected training set for the SUMO ST; the training set for classifier CT
1: Make the initial sample selection from the PS and get N samples
2: Put selected samples into the simulation model to get their response
3: for each sample and its response
4: if i-th sample belongs to the SOS
5: add i-th sample and its response into ST;
6: classify i-th sample with class 1;
7: add i-th sample and its class into CT;
8: else
9: classify i-th sample with class 0;

10: add i-th sample and its class into CT.
11: end if
12: end for
13: Train the SUMO by ST
14: Train the classifier by CT

In the RSMT, distinguishing class 0/1 requires user-defined thresholds, which should be more
lenient than control objectives to avoid ignoring potential optimal solutions. After classing samples in
accordance with thresholds, a classifier is trained by samples and their subordinate class to find the
boundary of the SOS, which is difficult to describe analytically. Only samples belonging to the SOS
are selected as the training set of SUMOs. Thus, it is limited to the use of trained SUMOs, whose use
process is shown in Figure 5. When inputting new parameters, the first step is classifying the new
parameters by the trained classifier. If it can lead to successful control, the outputs of the parameters
are predicted by the trained SUMOs. Otherwise, these parameters are abandoned because they do not
belong to potential optimal solutions.

Start
Parameter 

space

Surrogate model algorithm

Initial sample 
selection

Samples and 
their response

Classification Learner

End

Region-of-interest

Class samples

Region-of-interestless

Start
New 

parameters

Trained SUMO

Trained classifier EndIf result=1? Flase

The outputs 
of SUMO

True

Figure 5. The use of trained SUMOs obtained by the RSMT. Inputs are judged by the classifier, and
only the inputs belonging to the SOS are predicted by the trained SUMO. If the result of classifier
equals to 1, it means that the new parameters belong to the SOS.

Instead of optimizing parameters of SUMOs, the RSMT focuses on selecting a more reasonable
training set for constructing SUMOs in a specific region. In this paper, the classifier adopts a decision
tree, which performs well in binary classification and is given in Algorithm 2, following [35]. In a sense,
the global SUMO is the combination of multiple regional SUMOs, whose marginal values are the same.
If the response surface is rough, it is difficult to mimic the dramatically changed response surface
using only one SUMO. Because the RSMT constructs the regional SUMO in the SOS whose outputs are
limited, the selected response surface will be smooth, as a result of which the regional SUMO has high
accuracy without missing the potential optimal solution.
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Algorithm 2 Generating decision tree.

Input: D: the training set; C: the attribute set.
Output: A decision tree

Function TreeGenerate (D, C)
1: Create a node N
2: if tuples in D belong to only one class C then
3: label N as a leaf node with class C; return
4: end if
5: if C is empty OR the samples of D are of the same class then
6: set label N as the leaf node with the most common class in D; return
7: end if
8: Find the best splitting criterion c∗ from C
9: for each c∗ do

10: add a branch below N, corresponding to c∗ = cv
∗

11: Dv is the subset of D with c∗ = cv
∗

12: if Dv is empty then
13: label the branch node as the leaf node with the most common class in D; return
14: else
15: set TreeGenerate (Dv, C\ {c∗}) as the branch node
16: end if
17: end for

4. Simulation and Results

4.1. Evaluation Results for SUMOs Based on the RSMT

In this study, we attempt to substitute the SUMO for the UAV formation in Section 2.
As parameters to be optimized, inputs are K = {KPl, KIl, KDl, KPf, KIf, KDf}. With no correlation between
them, the six intervals of K form the entire parameter space. Outputs are five performance measures,
i.e., lst, fst, σl, σf, and ta. The trained SUMO is evaluated using the root mean squared error (RMSE) [36],
which is given by

RMSE =

√
1
nt

nt

∑
i=1

(yi − ŷi)
2, (21)

where nt is the number of test points; ŷi and yi are the estimated value and exact value of the ith test
point, respectively.

At first, the initial sample selection adopts Latin hypercube sampling. Table 1 shows the evolution
results regarding whether or not SUMOs are constructed through the RSMT, and Appendix C provides
a brief introduction to the applied SUMOs, including Kriging, PCE, PCK, the RBFNN, and the GRNN.
If the RSMT is not adopted, global SUMOs are constructed. In the simulation, the initial positions of
the leader and the follower are (200 m, 200 m) and (0, 400 m), which are the same as [29]. Control
objectives are fd = 100 m and ld = −100 m, which are also the same as [29]. Optimization aims to
find the optimal PID controllers that can maintain the formation with low lst, fst, σl, σf, and ta under
constraints that |∆ f | < 3% | fd| = 3 m and |∆l| < 3% |ld| = 3 m. Minimizing σl and σf aims to reduce
the risk of UAVs collisions, which are important in the UAV formation [37]. In this work, the thresholds
for the SOS are ± fd and ±ld, which mean that the regional SUMO will be constructed in the region
|∆ f | < 100 m and |∆l| < 100 m.

In Table 1, the corresponding values of each SUMO are the RMSE of fst. “Time” is the total run
time of constructing all SUMOs. It is assumed that the intervals of six inputs are the same. In Table 1,
the intervals of K are the intervals of six inputs, i.e., KPl, KIl, KDl, KPf, KIf, and KDf. For an interval
of K, the first row shows results for regional SUMOs through the RSMT, and the second row shows
results for global SUMOs. Regional SUMOs generate from our proposed method, i.e., the RSMT.
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Meanwhile, global SUMOs are the traditional way to construct SUMOs, i.e., adopting all samples to
construct SUMOs. Because the second row of each K constructs the global SUMO without the classifier,
the result of “Classification accuracy” is “null”. The calculation condition is MATLAB 2019a, Intel (R)
Xeon (R) W-2145 CPU @ 3.70GHz, 32GB Memory, Windows 10.

Table 1. Comparison of regional and global SUMOs for fst.

K a Classification

Accuracy (%) b
Time (s) c Kriging d PCE d PCK d GRNN d RBFNN d

[0, 0.1]
85 350.7 8.3 12.3 7.7 21.0 14.9

null 437.6 1.62× 106 1.41× 106 1.37× 106 1.26× 106 1.63× 107

[0, 0.2]
85 317.9 11.4 16.2 16.3 20.8 26.6

null 289.6 8.20× 1014 1.35× 1014 2.08× 1014 8.11× 1013 1.90× 1015

[0, 0.3]
84.6 318.3 8.6 9.2 8.9 14.2 29.4

null 567.7 9.41× 1025 2.71× 1025 3.23× 1026 1.97× 1025 5.27× 1026

[0, 0.4]
81.8 307.4 7.4 9.4 8.1 11.5 16.5

null 322.5 3.76× 1037 3.32× 1036 6.40× 1037 4.43× 1036 1.40× 1038

[0, 0.5]
79 111.5 7.7 8.6 7.4 12.2 12.3

null 312.3 4.63× 1051 7.20× 1050 4.44× 1050 5.53× 1050 1.99× 1052

[0, 0.6]
80.2 88.5 7.4 8.7 8.5 12.1 11.4

null 356.4 8.21× 1059 3.94× 1059 3.94× 1059 4.68× 1059 1.09× 1061

a Two PID controllers have six inputs which share the same interval, and inputs are K = {KPl, KIl, KDl, KPf, KIf, KDf}.
For a value of K, the first and second rows show results for regional SUMOs and global SUMOs,
respectively. b Because the second row of each K constructs the global SUMO without the classifier, the result of
“Classification accuracy” is “null”. c “Time” is the total run time for constructing all SUMOs. d Values of SUMOs
represent the RMSE of fst for trained SUMOs. The RSMT can significantly reduce errors and save computation time.

According to Table 1, trained regional SUMOs are significantly better than trained global SUMOs.
This phenomenon is in accord with the information relationship in Section 3.1. Adopting the same
calculation method in Section 3.1, Table 2 shows the information entropy ratio W of corresponding K
in Table 1. Because the sample size is limited, we use the frequency approximation as the probability.
W1 is the information entropy ratio with the RSMT and is corresponding to the first row of each K in
Table 1. W1 is large with the RSMT, which reserves useful information and avoids useless-information
interference. At the same time, W2 is the information entropy ratio without the RSMT and is
corresponding to the second row of each K in Table 1. W2 is relatively small and will decrease
with the decrease of Psucc. It means that useful information will be covered by useless information
with the decrease of Psucc. Moreover, W1 is always larger than W2. W1/W2 increases quickly with the
expansion of K. W1/W2 shows the change of the information entropy ratio with the RSMT or not.
The RSMT effectively increases the proportion of useful information. Figure 6 shows the relationship
between W1/W2 and the effects of the RSMT, which is represented by orders of magnitude change of
Kriging’s RMSE. The increase of W1/W2 brings the better effect of the RSMT, especially when W1/W2

is relatively small. The RSMT increases the proportion of useful information entropy, which leads to
accurate regional SUMOs.

Regarding the computational cost, according to Table 1, training regional SUMOs is more
time-saving with the expansion of K because the number of successful parameters will be fewer
when the whole parameter space is larger. There are five different types of SUMOs, and the RSMT
performs well in each of them, which shows that the RSMT has good generalization ability and is
essential to various SUMOs.
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In conclusion, the RSMT successfully filters singular points and maintains the high accuracy and
low computational cost of regional SUMOs. In the next subsection, the optimal parameters of PID
controllers are found through the RSMT.

Table 2. The information entropy ratio W in actual computation.

K fst,max fst,min Pfail Psucc W1
a W2

b W1/W2

[0, 0.1] 3.14× 102 −6.81× 108 0.41 0.59 9.36 0.39 24.06

[0, 0.2] 1.18× 1012 −5.35× 1016 0.44 0.56 9.13 0.19 47.66

[0, 0.3] 3.26× 1023 −1.35× 1028 0.45 0.55 9.04 0.11 81.68

[0, 0.4] 1.26× 1025 −1.62× 1039 0.51 0.49 8.59 0.06 134.23

[0, 0.5] 1.76× 1026 −3.46× 1053 0.59 0.41 8.15 0.03 234.94

[0, 0.6] 4.03× 1036 −1.68× 1062 0.76 0.24 7.74 0.01 533.58

a W1 is the information entropy ratio with the RSMT and is corresponding to the first row of each K in Table 1.
b W2 is the information entropy ratio without the RSMT and is corresponding to the second row of each K in
Table 1. W1/W2 increases quickly with the expansion of K. Without the RSMT, useless information will cover
up useful information. The RSMT effectively increases the proportion of useful information.
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Figure 6. The relationship between W1/W2 and the effects of the RSMT. W1/W2 shows the change of
the information entropy ratio with the RSMT or not. Effects of the RSMT are represented by orders of
magnitude change of Kriging’s RMSE in Table 1. The increase of W1/W2 brings the better effect of the
RSMT, especially when W1/W2 is limited.

4.2. Tuning PID Controllers Through the RSMT

We try to tune two PID controllers whose six inputs all belong to [0, 0.3]. In the simulation, white
noise is added to the lateral and forward positions of the leader, and the noise energy of white noise
is 1× 10−2. As mentioned above, class 1 indicates that corresponding samples belong to the SOS,
and the meaning of class 0 is reversed: class 0 indicates that corresponding samples belong to the SOF.
The global Sobol sensitivity analysis is adopted to analyze the relationships between inputs and class
0/1, whose results are shown in Figure 7. According to Figure 7, KPl and KIl are the most important
inputs. Figure 8 shows prediction results of trained classifier in the KPl, KIl plane. In Figure 8, blue
symbols mean that the corresponding sample belongs to class 0, i.e., the SOF, and red symbols mean
that the corresponding sample belongs to class 1, i.e., the SOS. “Correct” and “Incorrect” are the
correctness of the classifier’s prediction. The classification accuracy of the trained decision tree is 84.0%.
Figure 9 shows the receiver operating characteristic (ROC) curve of the trained classifier. The area
under the ROC curve equals 0.88. The false positive rate is 14%, and the true positive rate is 84%.
Hence, the trained classifier is accurate and reliable.



Entropy 2020, 22, 527 12 of 20

0.58
0.63

0.19 0.15 0.15
0.08

0.0

0.2

0.4

0.6

0.8

To
ta

l S
ob

ol
' i

nd
ic

es

Inputs
  KPl               KIl                 KDl              KPf               KIf                KDf

Figure 7. Total Sobol’ indices. KPl and KIl are the most important inputs which effect classification
results of inputs.
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Figure 8. The prediction results of trained classifier in the KPl, KIl plane. Blue symbols mean that the
corresponding sample belongs to class 0, and red symbols mean that the corresponding sample belongs
to class 1. Class 1 indicates that corresponding samples belongs to the SOS, and the meaning of class 0
is reversed. The classification accuracy of the trained classifier is 84%.
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Figure 9. The receiver operating characteristic (ROC) curve of the trained classifier. The area under
curve equals to 0.88. The false positive rate is 14% and the true positive rate is 84%. The trained
classifier is accurate and reliable.

Table 3 presents the RMSEs of five performance measures by trained regional SUMOs through
the RSMT. During the MATLAB/SIMULINK simulation, the solver is ode1 (Euler), and fixed-step size
is 1× 10−3, so ta is represented by the step number. Kriging, PCE, and PCK perform better than the
RBFNN and GRNN. Adopting Kriging to tune PID controllers, the MATLAB function “paretosearch”
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and “gamultiobj” are used to find Pareto fronts. The run times of the simulation model and regional
Kriging are denoted by “Simulation model time” and “Regional Kriging time”, respectively, in Table 4.
The process of optimization is greatly accelerated. The cost of searching by Kriging is substantially
lower than that of searching by the simulation model.

Table 3. The accuracy of regional SUMOs through the RSMT in K ∈ [0, 0.3].

σf
a σl

a fst
a lst

a ta
a

Kriging 5.41 19.82 16.80 26.59 1.63× 104

PCE 5.65 21.52 17.28 32.23 2.11× 104

PCK 5.84 17.77 19.51 31.25 1.73× 104

GRNN 15.15 65.43 15.74 28.88 3.26× 104

RBFNN 18.84 37.34 37.33 155.45 6.36× 104

a σf, σl, fst, lst and ta denote the RMSE of them getting from Kriging, PCE, PCK, the RBFNN, and the GRNN,
respectively. Every SUMO is accurate, but Kriging, PCE, and PCK perform better than the RBFNN and GRNN.

Table 4. Run time comparison of optimization by the actual model and by Kriging.

Function Name Gamultiobj Paretosearch

Number of solutions 70 60
Regional Kriging time (s) 8.62× 103 7.03× 102

Simulation model time (s) 1.59× 105 3.44× 104

Regional Kriging effectively shortens optimization time.

We examine solutions of “paretosearch” which meets the constraint conditions of optimization
mentioned in Section 4.1, i.e.,

∣∣∆ f st
∣∣ < 3m and |∆lst| < 3m. Selected Pareto solutions are evaluated

using the technique for order of preference by similarity to ideal solution (TOPSIS) [38]. The solutions
of Kriging are also entered into the simulation model to obtain results for evaluation. Then, simulation
results from different sources are evaluated by TOPSIS. Table 5 shows the Pareto solutions of different
sources. According to Table 5, the scores of the two sources are similar to each other. It means that
optimal solutions of regional Kriging are also able to be optimal solutions of the simulation model.
Adopting the solution with highest score, i.e., [0.300, 0.0001, 0.300, 0.291, 0.164, 0.145], Figure 10 shows
the trajectories of UAVs formation when the heading angle of the leader φL changes according to the
sine function. When the heading angle of the leader UAV changes, the follower UAV can timely adjust
to maintain the formation.

Table 5. The TOPSIS score of selected Pareto solutions.

KPl KIl KDl KPf KIf KDf Score (10−1) Source a

0.300 0.0001 0.300 0.291 0.164 0.145 2.295 regional Kriging
0.191 0.0001 0.300 0.290 0.0001 0.300 2.286 regional Kriging
0.211 0.042 0.173 0.089 0.136 0.286 1.324 simulation model
0.019 0.0001 0.131 0.122 0.0009 0.131 1.286 simulation model
0.300 0.132 0.263 0.254 0.0009 0.263 1.121 simulation model
0.299 0.014 0.070 0.117 0.300 0.145 0.898 regional Kriging
0.299 0.014 0.300 0.117 0.300 0.145 0.789 regional Kriging

a Regional Kriging: regional Kriging gets the solution; simulation model: the simulation model gets the
solution. The Pareto solutions of regional Kriging are reliable, and regional Kriging successfully replaces the
simulation model.
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Figure 10. Trajectories of UAVs formation. The heading angle of the leader φL changes
according to the sine function. PID controllers adopt the solution with the highest score.
i.e., K = [0.300, 0.0001, 0.300, 0.291, 0.164, 0.145]

With the RSMT, regional Kriging accurately replaces the simulation model to find optimal
solutions. Abandoning useless information does not affect searching optimal parameters. The RSMT
can accelerate the optimization process with high accuracy and low computational time simultaneously.

5. Conclusion and Discussion

To accelerate the process of tuning PID controllers, this work proposes the RSMT based on
analyzing the regional information entropy relationship. The RSMT discards redundant information to
construct the regional SUMO. A classifier is introduced to define the boundary of the regional SUMO.
According to calculation results, the RSMT significantly improves the accuracy of SUMOs and reduces
computational expense. The results verify the theoretical analysis of the regional information entropy
relationship. To corroborate the reliability of the RSMT, the Pareto fronts are searched by regional
SUMOs and the simulation model, respectively. It is found that different Pareto fronts are similar to
each other. The RSMT reduces the run time of parameter optimization by one order of magnitude,
and it gets reliable optimization results.

The RSMT can tune PID controllers with high efficiency and accuracy, and be available for
various types of SUMOs. In the process of tuning PID controllers, the RSMT significantly reduces the
singular-point interference, improves the accuracy of SUMOs, and reduces computational expense.
Not only limited optimization of the UAV formation, but the RSMT can also be extended for tuning PID
controllers in various systems because SUMOs only concern inputs and outputs of systems. In future
research, we prone to solve the application problem of the RSMT in high-dimensional situations,
which may be solved by combining sequential sampling and dimensionality reduction technology.

Author Contributions: conceptualization, B.W. and Y.L.; data curation, B.W. and Y.L.; formal analysis, B.W., X.D.,
and L.Y.; funding acquisition, X.D., and L.Y.; investigation: B.W., D.X., and L.Y.; methodology, B.W., X.D., and
L.Y.; project administration, B.W., X.D., and L.Y.; resources, B.W., X.D., and L.Y.; software, B.W., X.D., and L.Y.;
supervision, X.D. and J.C.; validation, J.C.; visualization, B.W., D.J., andL.Y.; writing–original draft, B.W., X.D.,
and L.Y.; writing–review & editing, Y.L., D.J., and J.C.; All authors have read and agreed to the published version
of the manuscript.

Funding: This study was supported by the National Numerical Wind Tunnel Project (NNW2019ZT7-B23) and the
National Natural Science Foundation of China (No. 11771450).

Acknowledgments: The authors are grateful to Mingze Qi, Peng Li and Qing Xu for their help with this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2020, 22, 527 15 of 20

Abbreciations

GRNN generalized regression neural network
L-F leader–follower
LQR linear quadratic regulator
SUMO surrogate model
PCE polynomial chaos expansions
PCK polynomial chaos Kriging
PDF probability distribution function
TOPSIS technique for order of preference by similarity to ideal solution
PID proportional-integral-derivative
RMSE root mean squared error
SOF space of failure
SOS space of success
RSMT regional surrogate model technique
RBFNN radial basis function neural network
UAV unmanned aerial vehicle

Appendix A. The Design of Single UAV

Appendix A.1. Inner-Loop Controller Design

Following [39,40], the inner-loop controller is designed as follows. The linearized model of UAV is{ .
x = Ax + Bu

y = Cx
, (A1)

where x is the state vector and x = [V, η, τ, ε, β, p, r, ζ]T represent forward velocity, attack angle, pitch
rate, pitch angle, side-slip angle, roll rate, yaw rate, and yaw angle, respectively. y is the output vector,
y = [V, ζ − β]T ; u is the control input vector, u = [δe, δT , δa, δr]T , which represent the deflections of
elevator, throttle, aileron, and rudder, respectively. A, B, and C are the system matrix, the input matrix,
and the output matrix, respectively.

The aim of inner-loop control is minimizing the difference between the UAV state and commands.
The difference is represented by the cost function J [39], which is given by

J =
1
2

∫ ∞

0
(xTQx + uT Ru)dx, (A2)

where Q, R are the weighting matrices. u is the output feedback, u = Dy, where D is the feedback gain

matrix. The UAV state equation can be written as
�
x = (A + BDC)x. D is obtained by D = R−1BT P,

where R is user-defined and P is obtained by solving the algebraic Riccati equation [40]:

AT P + PA− PBR−1BT P + Q = 0. (A3)

In this paper, R is defined as a planar unit matrix.

Appendix A.2. The System Matrices of a Single UAV

According to [26], the fixed-wing UAV model is given as follows:

Af =


−0.334 −2.9770 0 −9.81
−0.0016 −4.1330 0.9800 0
0.0077 −140.20 −4.435 0

0 0 1.0000 0

 , Al =


−0.7320 0.0143 −0.9960 −0.0706
−893.00 −9.0590 2.0440 0
101.673 0.0186 −1.2830 0

0 0 1.0000 0

 , (A4)
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Bf =


−1.0750 0.2453
0.3470 −4.1330
−140.22 0

0 0

 , Bl =


0 0.2440

328.653 −308.498
47.528 102.891

0 0

 , (A5)

A =

[
Af 0
0 Al

]
, B =

[
Bf 0
0 Bl

]
, (A6)

C =

[
1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1

]
. (A7)

Appendix B. Regional Information Entropy Relationship in the Case of the t-Distribution

Because ISuss accounts for only a small part of the simulation output, it is assumed that there is
a t-distribution in Ifail and uniform distribution in Isucc. The PDF of the t-distribution [41] is given by

pt(x) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2
) (1 +

x2

ν

)− ν+1
2

x ∈ (−∞,+∞) , (A8)

where Γ(·) is the gamma function and ν is the number of degrees of freedom. The entropy of the
t-distribution [41] is

St =
ν + 1

2

[
ψ

(
1 + ν

2

)
− ψ

(ν

2

)]
+ ln

[√
νBeta

(
ν

2
,

1
2

)]
, (A9)

where Beta(·) is the beta function and ψ(·) is the digamma function. Figure A1 shows the relationship
between ν and St. When ν is larger than 40, St tends to be stable.
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Figure A1. The relationship between ν and St for the t-distribution. When ν is larger than 40, St tends
to be stable.

For ease of presentation, it is assumed that x > 0. The PDF of x is given by

p(x) =

 Psucc/(b− a) 0 ≤ x ≤ b
PfailΓ( ν+1

2 )√
νπΓ( ν

2 )

(
1 + x2

ν

)− ν+1
2 b < x ≤ xmax

. (A10)

Ssucc and Sfail are given by

Ssucc = −Psucc ln
Psucc

b
, (A11)
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Sfail = −
∫ xmax

b
Pfail p (x) ln(Pfail p (x))dx

= −Pfail

(∫ xmax

b
p (x) ln Pfaildx +

∫ xmax

b
p (x) ln p (x)dx

)
= −Pfail (Pfail ln Pfail + St) .

(A12)

Setting b = 5, xmax = 1000, and ν = 50, the relationship between W and Pfail is given by Case 3 in
Figure 3. The relationship is similar to that in Case 1. With the rise of Pfail, W quickly decreases and
the useful information is concealed. The type of distribution does not change the information entropy
relationship between different intervals.

Appendix C. Brief Introduction to Kriging, PCE, PCK, the RBFNN, and the GRNN

Appendix C provides a brief introduction to Kriging, PCE, PCK, the RBFNN, and the GRNN.
Kriging, PCE, and PCK are calculated using the UQlab toolbox[42]. g is the input vector, g ∈ RM×1;
M is the output variable.

Appendix C.1. Kriging

Kriging (also known as Gaussian process modelling) performs well in the local system,
which is given by [42]

M (g) = βT f (g) + σ2Z (g, h) . (A13)

The first term βT f (g) is the average of the Gaussian process, where f (g) denotes arbitrary functions,
and their corresponding coefficients are β. σ2 is the variance of the Gaussian process; Z (g, h) is the
Gaussian process where h is the underlying probability space.

Appendix C.2. PCE

G ∈ RM is a random vector with independent components, and the PCE [42] of M(G) is given by

M(G) = ∑
α∈NM

zαΨα(G), (A14)

where Ψα(G) is multivariate polynomials orthonormal; α ∈ NM is a multi-index identifying the
components of Ψα; and zα ∈ R is the corresponding coefficients of Ψα. The truncated PCE, which is
given by [42], is adopted in practice.

M(G) ≈MPC(G) = ∑
α∈A

zαΨα(G), (A15)

whereA ⊂ NM is the set of selected multi-indices of multivariate polynomials. PCE is computationally
superior to traditional methods in most cases, such as Monte-Carlo-based methods.

Appendix C.3. PCK

Because PCE and Kriging perform well in the global and local system, respectively, PCK is
proposed as a combination of universal Kriging and PCE. PCK [42] is given by

M(g) ≈MPCK(g) = ∑
α∈A

zαΨα(G) + σ2Z(g, h). (A16)

The first term is the trend of PCK; the second term is the same as Kriging. PCK is more efficient
than PCE and Kriging.
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Appendix C.4. The RBFNN

The RBFNN overcomes the local minimum problem and has a good nonlinear fitting ability [43].
There are an input layer, a hidden layer, and an output layer in the RBFNN. If there is only one output,
the RBFNN [43] can be given as

M(g, w) =
S1

∑
k=1

w1kBF (‖g − ck‖2) , (A17)

where ck ∈ RM×1 is the RBF centers in the input layer. BF(·) is the basis function that exists in the
hidden layer. ‖ · ‖2 denotes the Euclidean norm between g and ck; S1 is the number of neurons
(and centers). w1k devotes the weights of the output in the output layer.

Appendix C.5. The GRNN

As a one-pass algorithm, the GRNN contains four layers: an input layer, a pattern layer,
a summation layer, and an output layer. The training set is {(gi,Mi)|i = 1, · · · , N}. f (g,M) is
the joint PDF of g andM. The conditional mean ofM on g [44] is

E[M|g] =
∫ ∞
−∞M f (g,M)dM∫ ∞
−∞ f (g,M)dM

. (A18)

The estimated joint PDF can be written as [44]

f̂ (g,M) =
1

N(2π)(M+1)/2σM+1
×

N

∑
i=1

exp

[
− (g − gi) (g − gi)

T

2σ2

]
exp

[
− (M−Mi)

2

2q2

]
, (A19)

where q is a user-defined smoothness parameter. Combining Equations (A18) and (A19), the conditional
mean ofM, which is thought to be equal toM, can be given by [44]

M = E[M|g] =
∑N

i=1Mi exp
[
− (g−gi)(g−gi)

T

2σ2

]
∑N

i=1 exp
[
− (g−gi)(g−gi)

T

2σ2

] . (A20)

As a kind of RBFNN, the GRNN has a better approximation capability and learning rate than
the traditional RBFNN. Moreover, the GRNN performs well in dealing with small samples and
unstable data.
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