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Abstract: Understanding the underlying mechanisms behind protein allostery and non-additivity of
substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of
mutations, particularly at non-conserved sites. In an effort to model these two biological properties,
we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic
Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the
residue fluctuation response of a functional site when two other positions are perturbed with random
Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two
other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures
the degree of asymmetry between the residue fluctuation response of two sites when one or the
other is perturbed with a random force. Applied to four independent systems, we successfully show
that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution
outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino
acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic
network of interactions where the inclusion of the full network of interactions is critical for accurate
modeling. Consequently, mutations which drive towards a new function may require a fine balance
between functional site asymmetry and strength of dynamic coupling with the functional sites.
These two tools will provide mechanistic insight into both understanding and predicting the outcome
of dual mutations.
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1. Introduction

A growing body of data on the human genome suggest that within the exome (the protein coding
region), one individual may possess 10,000 or more non-synonymous nucleotide variants, many of
which occur at positions which are not evolutionarily conserved [1–3]. Predicting the functional
outcome of mutations at non-conserved sites remains an extremely difficult challenge. In particular,
providing accurate predictions about the impact of these variations is difficult when only considering
single, independent point mutations without accounting for the background of other positions and
their chemical specificity (i.e., context dependence).

One reason why predicting the impact of mutations may fail is that extensive epistasis occurs
during evolution [4–6]. Epistasis is defined as a context-dependent functional outcome, where,
the alternative context could be just one single amino acid difference, or it could be a paralog with 25%
sequence identity. Experimentally, epistasis manifests as a non-additive outcome from two or more
amino acid changes within a protein. The effects can be dramatic. For example, a substitution may
only confer a beneficial effect upon fixation of a second-site, also known as a “permissive” change;
conversely, a neutral substitution might become deleterious in the presence of other “restrictive”
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substitutions [7–9]. Thus, epistasis plays a vital role in shaping trajectories of protein evolution [4–10].
Furthermore, mounting evidence indicates that protein evolution, particularly evolution towards new
function, proceeds not only through mutations at functionally critical sites, but also through sites
which can have a subtle (or, occasionally, substantial) effect on function when mutated without being
immediately identifiable as positions with particular functional or structural importance [11–13].

Epistatic relationships becomes crucial when comparing homologous protein families or protein
domains, which can exhibit significant sequence variation and biochemical properties that may span
orders of magnitude while still maintaining a similar three-dimensional (3-D) fold [14–19]. Thus,
single or dual mutations on homologous proteins yield a wide range of functional outcomes [20–24].
In fact, understanding the mechanics or predicting the results of dual mutations remains a significant
challenge in the presence of systems which experience large epistatic effects, even when accurate
experimental data are available for the single mutant systems [7–10,25].

On the other hand, when protein equilibrium dynamics and each individual position’s contribution
to these dynamics are taken into consideration, we can shed light onto the mechanism of epistatic
relations. This is because proteins sample many different conformations within the native state,
and these conformational dynamics, governed by the strength of the 3-D network of interactions,
underlie protein function. Within this dynamic view, we can simply treat a protein as a biological signal
processor where the 3-D interaction network mediates long-range communication through amino acid
fluctuations nascent to a given protein sequence. Therefore, the knowledge of how mutations may
fine-tune this sequence-function relationship necessitates evaluating the role of each residue position in
establishing a protein’s internal communication network through protein dynamics [26,27]. Particularly,
when two substitutional sites are considered together, the dynamic coupling of these sites results in a
joint effect (i.e., a cooperative response) leading to the modulation of signal processing responsible for
biophysical behavior and, ultimately, may give rise to a non-additive functional outcome.

The non-additive, epistatic interactions therefore can use dynamic features of a protein to modulate
function. These dynamics features are similar to that found in allosteric modulation in which a protein
is able to control catalytic function or regulate on/off states through the binding of a ligand to a site distal
from a catalytic/active site. This distal binding has been shown to modulate catalytic site dynamics,
sometimes without association to distinct conformational states. This type of allostery, which can
impact function by manipulating the normal modes of the protein while retaining the conformation,
is known as dynamic allostery [28,29]. We now understand this form of allosteric regulation to be a
specific, and often more dramatic, emergent property of the unique internal networking between amino
acids within a protein. To this end, allosteric systems reduce the enormous dimensionality associated
with information transfer and communication pathways for these complex, anisotropic networks
by identifying important regulation sites a priori. Therefore, as observed in allosteric regulations,
the long-distance interactions through dynamic coupling between different positions and active sites
can be modulated and re-wired through substitutions, which emerge as epistasis that drives the
evolution of new function. Here, we aim to identify these epistatic relations through the development
of dynamics-based metrics which can measure the strength of long-range dynamic interactions.

The modeling of protein conformational dynamics using force perturbations and elastic networks
has been previously used successfully in attempts to understand the role of long-range interactions
in protein evolution [30–33]. Here we attempt to model these effects through the use of Perturbation
Response Scanning (PRS) and the Elastic Network Model (ENM) to construct a Dynamic Coupling
Index (DCI) where we can capture the dynamic coupling between any given residue pair or set
of residues via a system’s response to random force perturbations. DCI captures the strength of
displacement response of a given position i upon perturbation to a single position (or subset of
positions) j, relative to the average fluctuation response of position i when all of the positions within a
structure are perturbed. Expanding upon the dynamic coupling concept, here we develop a new metric
called EpiScore. EpiScore measures the difference in the residue fluctuation response of an active site
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when two mutational sites are simultaneously perturbed by random forces versus the response when
individual force perturbations are exerted one at a time to the mutational sites.

In order to determine whether EpiScore can identify the degree and strength of epistatic
relationships between position pairs, we first applied our analysis to the deep scanning database of
double mutations between all positions in the IgG-binding domain of protein GB1 [24]. These modern,
high-throughput screens (e.g., deep mutational scans) assay large numbers of mutants (up to 108) [34–37],
but the information is largely qualitative. Therefore, to further test whether our approach can identify
epistatic relations which specifically emerge during the evolution of new function, we applied our
methodology to two different protein systems where the traditional biochemical quantifications of
mutational effects (e.g., kcat, KM, IC50) for a range of substrates are available. These two systems,
P. falciparum DHFR (pfDHFR) and a β-lactamase (TEM-1), naturally confer resistance to drugs and
the trajectories of these resistances as well as their epistatic relationships have been explored [22,23].
Importantly, these two systems are also known to be allosteric proteins.

We first observed that EpiScore can distinguish positive and negative epistasis in dual mutations
when analysis was performed over 1045 single mutants and 509,963 double mutants of GB1. We also
found that the average EpiScore value correlates well with experimental epistatic measures calculated
using pyrimethamine IC50 values of pfDHFR dual mutants and the catalytic turnover rates for
cefotaxime of TEM-1 dual mutants. Furthermore, each pfDHFR amino acid pair exhibits distinct
distributions of EpiScore values showing the importance of how these two positions communicate
with the active site through the anisotropic interaction network.

Interestingly, DCI is usually not symmetric, i.e., the fluctuation response of position i upon exerting
random forces on j is not identical to the response of j when position i is perturbed; we calculate
this asymmetry with DCIasym. We applied our DCIasym analysis to the TEM-1 dual-mutant sites
and found that, indeed, a relationship exists between dynamic coupling asymmetry and EpiScore
when all active sites in the TEM-1 system are considered. Specifically, two of the three dual mutant
positions which exhibited the largest positive epistasis in cefotaxime kcat/KM from the wild-type had
both EpiScore values < 1 (indicating strong non-additivity) with respect to active site S70. Additionally,
these dual mutants also exhibit asymmetry in dynamic coupling based on DCIasym, with consistent
unidirectionality from active sites site to mutation sites in long range communication. We propose
that this communication directionality signature should be readily apparent in known allosteric
systems as mentioned above. Therefore, we applied a similar analysis to a Pin1 protein well-studied
for its dynamic allostery and showed that the DCIasym between the catalytic binding sites and
non-catalytic distal binding sites presents a unique directionality in long distance dynamic coupling,
leading to a cause-and-effect relationship between allosteric sites and active sites also observed in
epistatic interactions.

2. Methods

We previously designed a unique way to capture site-specific coupling between residue pairs or
groups of residues, the Dynamic Coupling Index (DCI). The underlying premise behind DCI is the
importance of a system’s response to a force perturbation, be that protein-solvent, protein-protein,
protein-ion or protein ligand interactions. Additionally, the point mutations here are modeled by the
response of a system to a perturbation at a specific site, a.k.a. a single amino acid.

DCI is a combination of the Elastic Network Model (ENM) and Linear Response Theory (LRT)
where the protein is modeled by representing the amino acids as nodes in a network connected
by Hookean springs (Figure 1). The interaction between two amino acids close in space due to
their 3-dimensional structure is represented by a simple harmonic function. A random Brownian
kick in the form of a unit force perturbation is applied to an individual position which generates a
response propagating through the rest of the structure, causing other positions to respond to this
perturbation through the network of interactions. Using LRT, we can calculate the fluctuation response
∆R (Equation (1)) of each position and create response vector that measures the magnitude and
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direction (x, y and z) of displacement of every residue from its mean. As mentioned above, this (to the
first order) mimics the effects of in vivo interactions of a protein. For example, a ligand binding
event will apply a force to residues in the binding pocket of a receptor protein. In our perturbation
residue scanning (PRS) approach, this is averaged over many unit force directions to simulate an
isotropic perturbation.

[∆R]3N×1 = [H]−1
3N×3N [F]3N×1 (1)
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Figure 1. Elastic network model representation of protein Pin1 (PDB ID 3TCZ [7], ligands removed).
Here, each residue within the structure is represented as a single node at the Cα position, connected
to other nodes via Hookean springs. Using a combination of Perturbation Response Scanning (PRS)
and Linear Response Theory (LRT) [38,39], each residue is perturbed by a Brownian kick applied as an
isotropic external force which then generates a fluctuation response in all other residues within the
network. This figure was rendered in PyMol [40].

H is the Hessian, a 3N× 3N matrix which can be constructed from 3-dimensional atomic coordinate
information where it is composed of the second order derivatives of the harmonic potential energy
with respect to the components of the position vector of length 3N. The Hessian matrix can be extracted
directly from molecular dynamics simulations as the inverse of the covariance matrix. This method
allows one to implicitly capture specific physiochemical properties and more accurate residue-residue
interactions via atomistic force fields and subsequent all-atom simulation data. However, for the
purposes of this paper, we wished to investigate only those relationships which could be derived
solely from inter-atomic distances of single protein structures and thus we used the ENM version of
our approach.

Repeating this process, each position in the structure is perturbed sequentially to generate a
perturbation response matrix A
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AN×N =
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where
∣∣∣∆Rj

∣∣∣
i =

√
〈(∆R)2

〉 is the magnitude of fluctuation response at position i due to the perturbations
at position j. From this perturbation response matrix, we can construct DCI. DCIij, then, represents
the displacement response of position i upon perturbation to a single functionally important position
(or subset of positions) j, relative to the average fluctuation response of position i when all of the
positions within a structure are perturbed.

DCIij =

∑Nfunctional
j

∣∣∣∆Rj
∣∣∣
i/Nfunctional∑N

j=1

∣∣∣∆Rj
∣∣∣
i/N

(3)

As such, DCI can be considered a measure of the dynamic coupling between residue i and
residue(s) j upon perturbation to residue(s) j.

It is often more convenient to represent DCI as a percentile rank,

%DCIij =
m≤i

N
(4)

where m≤i is the number of positions with a DCI value ≤ DCIij for a system of N residues.
One of the most important aspects of DCI is that the entire network of interactions is explicitly

included in subsequent calculations without the need of dimensionality reduction such as Normal
Mode Analysis through principal component analysis. If one considers interactions such as allostery
as an emergent property of an anisotropic interaction network, it is critical to include the interactions
of the entire network to accurately model the effect one residue can have on another.

Here, we present two further extensions of DCI which allow us to uniquely model allosteric
interactions and epistatic effects; EpiScore and DCIasym, respectively. EpiScore can identify or describe
potential non-additivity in substitution behavior between residue pairs. This metric can capture
the differences in a normalized perturbation response to a position k when a force is applied at two
residues i and j simultaneously versus the average additive perturbation response when each residue i,
j, is perturbed individually (Figure 2). EpiScore values < 1 (>1) indicate that the additive perturbations
of positions i and j generates a greater (lesser) response at position k than the effect of a simultaneous
perturbation. This means that, when treated together with a simultaneous perturbation at both sites i
and j, the displacement response of k is lower (higher) as compared to the average effect of individual
perturbations to i and j, one at a time. As EpiScore is a linear scale, the further the value from 1,
the greater the effect described above.

Interestingly, through the use of DCI we can capture asymmetry between different residues within
a protein, as coupling in and of itself is asymmetric within an anisotropic network. That is, each amino
acid has a set of positions to which it is highly coupled, and this anisotropy in connections gives
rise to unique differences in coupling between a given i j pair of amino acids which do not have
direct interactions (Figure 3). DCIasym, then, is simply DCIij (the normalized displacement response of
position j upon a perturbation to position i) − DCIji (Equation (5)). Using DCIasym we can determine
a cause-effect relationship between the i j pair in terms of force/signal propagation between these
two positions.
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Figure 2. Schematic describing the calculation of EpiScore. The numerator is the %Dynamic Coupling
Index (%DCI) value at position k upon a simultaneous perturbation to positions i and j divided by the
average %DCI value at position k when positions i and j are perturbed individually. Thus, an EpiScore
value of 1 indicates a perfect coupling additivity with respect to a given position k in individual versus
simultaneous perturbations of two positions i and j. Figures rendered in PyMol [40] using β-lactamase
(TEM-1) structure 1BTL [41].

DCIasym = DCIi −DCIj (5)

%DCIasym = %DCIi −%DCIj (6)
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Figure 3. Example of asymmetric coupling between residue R68 of the PPIase domain and A31 of
the WW domain in Pin1 (PDB ID 3TCZ [7]). The differences in local contacts give rise to network
inhomogeneities which subsequently result in different %DCI values from R68 to A31 versus A31 to
R68 (left). The subtraction of these two values gives a measure of coupling directionality upon external
perturbations between these two sites (right). These figures were rendered in PyMol [40].

3. Results and Discussion

3.1. Epistasis and EpiScore

To investigate the relationship between internal networking and epistasis, we first apply our
analysis to protein G domain B1 (GB1, PDB ID 2QMT [42]), for which there exists a comprehensive set
of mutational data. Specifically, fitness effects of mutations were determined with high confidence for
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1045 single mutants and 509,963 double mutants, with data available for all 1485 possible position
pairs [24]. In this work, experimental epistasis was calculated as ln(Wab) − ln(Wa) − ln(Wb), where Wab

represents the fitness for the dual mutant and Wa and Wb are the fitness values for the single mutants.
Here we investigate the relationship between the experimental epistasis and EpiScore by comparing the
average EpiScore for each position pair with instances of positive (blue) or negative (red) epistasis using
the skewness of the experimental epistasis distribution over the full mutational space available for a
given pair (Figure 4). Skewness was chosen as it more accurately represented the substitution behavior
than position averages, which would often tend towards zero without capturing the substitution
behavior for a given position pair. EpiScore values were calculated for all position pairs relative to
every other position within the protein and averaged over, generating one average EpiScore value for
each pair. Interestingly, when we obtained the average EpiScore distribution of experimental positive
and negative epistatic pairs we found that EpiScore values above and below one tend to distinctly
divide positive from negative epistasis; positive experimental epistasis was more frequently skewed
towards EpiScore > 1, and likewise negative cases are skewed towards EpiScore < 1.
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Figure 4. Distribution of the average EpiScore for protein GB1 protein pairs separated by positive
and negative experimental epistasis using experimental deep scanning data for every position pair
(excluding position 1). EpiScore values above and below one (dashed line) tend to distinctly divide
cases for which experimental epistasis was more frequently skewed towards the positive (below one)
and negative (above one)).

The full system analysis of GB1 showed the existence of a general trend between epistasis and
EpiScore; particularly, an inverse relationship between EpiScore above or below one and skewness in
experimental epistasis, indicating that positions with EpiScore less than 1 more often work cooperatively
towards beneficial protein function, whereas pairs yielding EpiScore values greater than 1 usually result
in antagonistic interactions which impair function. In an effort to elucidate more specific mechanistic
details or trends underlying epistatic interactions which may exist in other systems, we broaden our
application of EpiScore to other known epistatic proteins with a focus on specific mutation pairs.
As such, we next study DHFR, a protein involved in the development of anti-malarial resistances in
malarial parasites. Anti-malarial drugs commonly target the DHFR, which catalyzes the reduction of
dihydrofolate and is essential to cellular growth and proliferation. Pyrimethamine is one such drug,
used to treat malaria caused by one of the most common malarial parasites, Plasmodium falciparum,
by competitively inhibiting DHFR. While exhibiting a particularly low sequence conservation between
species, most differences in sequence are from flexible loop regions [43], while the secondary structures
between these loops are highly conserved across all species [44]. However, widespread use of
pyrimethamine has resulted in a prevalence of pyrimethamine-resistant P. falciparum DHFR (pfDHFR)
mutants as a result of four key amino acid substitutions at positions N51, C59, S108 and I164 which
have also exhibited significant epistasis between mutation combinations [22] (Figure 5A).
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An EpiScore analysis applied collectively to the behavior of the functionally important FG
loop shows an immediate relationship between epistasis in pyrimethamine IC50 values of the
pairwise mutants and their associated EpiScore values. Figure 5B shows the EpiScore violin plots
(i.e., distributions and kernel density estimates) with respect to FG loop residues 196–206 for each
pfDHFR mutant pair. These violin plots show that EpiScore distribution for different mutation pairs
yields a different distribution for different residue pairs. S108-I164 gives a narrow distribution with a
peak around 1, suggesting that force perturbations simultaneously exerted on these positions yields
the same fluctuation response profile of the FG loop positions as the average of individual fluctuation
responses of the FG loop when the forces are exerted individually at S108 and I164. This distribution
pattern was also observed for positions N51 and C59, although at completely different positions within
the protein. On the other hand, pairing the position I164 with C59 rather than with S108 results in a
completely different EpiScore distribution, with diverse fluctuation responses of FG loop positions.
This suggests that I164 and C59 are highly cooperative, leading to a non-additive behavior when
these two positions are perturbed simultaneously. As I164 and C59 are located at different regions of
the protein (Figure 5A), one can expect to observe a wide range of EpiScore values associated with
this pair. This pattern tends to hold with distally located positions in the N51-S108 and C59-S108
distributions as well. Interestingly however, N51-C59 also exhibits EpiScore values less than 1, despite
the fact that they belong to the same helical region. The distributions suggest that anisotropy in the
network of interactions could modulate a wide range of fluctuation responses via these position pairs,
which result in different functional behavior upon mutation. To determine whether the change in
fluctuation response of the FG loop to simultaneous perturbations at these mutational positions can
capture functional substitution outcomes, we next investigate the relationship between EpiScore and
experimentally measured epistasis using pfDHFR pyrimethamine IC50 values.

Figure 5C presents the average EpiScore values with respect to the FG loop for each pfDHFR
pairwise mutant, in order of increasing pyrimethamine IC50 epistasis. A dashed line at an EpiScore
value of 1.0 has been added to aid in visual inspection. Here, IC50 epistasis is reported as the IC50

ratio of the dual mutant to the IC50 sum of the individual mutants. Any FG loop residue which
was within 10 angstroms of either mutation site per dual mutant was excluded from the averaging
in order to eliminate any strong dynamic coupling effects that arise as a result of direct contact
interactions. The average EpiScore values have a strong, negative correlation (R = −0.77) with IC50

epistasis, where the stronger the positive epistasis, the lower the average EpiScore value. For example,
an EpiScore value of ~0 means the pairwise dynamic coupling to FG loop positions of a dual mutant
pair is negligible as compared to the average individual dynamic coupling; that is, the distal sites
can individually impact position the FG loop residues allosterically. However, when treated together
with a simultaneous perturbation at both sites, the displacement response of the FG loop residues
are significantly lower, and, subsequently, their joint ability to allosterically regulate these FG loop
positions is effectively lost. Due to the interaction network between the two distal positions with the
FG loop, they may antagonistically compensate the amplitude and direction of the response when the
perturbations on these two sites are exerted at the same time. To the reverse, an EpiScore value >> 1
suggests that, simultaneously, two positions may exhibit dynamic coupling to the FG loop enough
such that their pairwise mutational impact fundamentally alters the role the FG loop plays within the
pfDHFR interaction network resulting in loss of function.

At first, this relationship may seem somewhat counterintuitive, as one could reasonably expect that
the higher the EpiScore value (i.e., the stronger the dual position dynamic coupling versus individually
averaged dynamic coupling), the higher the experimental epistasis. However, when complexed with
substrate, the functionally critical M20 loop [45] is stabilized in part through interactions with amino
acids in the FG loop [46]. It is possible that it is more favorable, in terms of pyrimethamine resistance,
to have mutations occur at position pairs that induce a smaller fluctuation response of FG loop when
perturbed simultaneously, (i.e., restricting the dynamics) than the average fluctuation response of
individual perturbations applied one at a time. This is in agreement with previous work which showed
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that point mutations to two of the FG loop amino acids in E.coli resulted in a > 30 fold decrease in the
steady state hydride transfer rate constant as compared to the wild-type [47]. This could additionally
explain the pervasive and persistent nature of these mutations appearing globally in pfDHFR proteins.
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Figure 5. (A) P. falciparum DHFR (pfDHFR) structure (PDB ID 3QGT [48]) with FG loop residues
(196–206) in yellow and mutation sites N51, C59, S108 and I164 colored in red. While not directly
involved in catalytic activity, widespread use of pyrimethamine has resulted in pervasive and persistent
mutations at these sites which confer pyrimethamine resistance. (B) Violin plot (distribution and kernel
density estimate) of EpiScore values and (C) average EpiScore values with respect to FG loop residues
for each pfDHFR dual mutant, in order of increasing pyrimethamine IC50 epistasis. A dashed line at
EpiScore values of 1.0 has been added to aid in visual inspection. In (B) any FG loop residue which
was within 10 angstroms of either mutation site per dual mutant was excluded from the averaging.
The average EpiScore values have a strong, negative correlation (R = −0.77) with IC50 epistasis,
where the stronger the positive epistasis, the lower the average EpiScore value.

Expanding our study to another system important to the concept of antibiotic resistance, we analyze
TEM-1, a protein which possesses antibiotic resistance largely driven by its high evolvability, with over
170 TEM-1 mutants discovered as clinical or hospital isolates [49]. TEM-1 is a well-studied enzyme in
experimental or laboratory-guided evolution, in an effort to both understand the mechanisms associated
with its antibiotic resistance as well as predict possible resistance-conferring mutations [49–52].

Previous work has shown that the majority of the resistance-conferring mutations in TEM-1 are
both distal to (10 Å or further) and highly coupled with the active site residues [53], indicating that
these mutations impact TEM-1 function by allosterically regulating active site behavior. Additionally,
it is now also understood that mutations resulting in the emergence of new enzymatic function
are generally destabilizing which suggests that the evolution of new function requires additional,
stabilizing mutations. As such, a more complete understanding of TEM-1 mutational behavior requires
an investigation into the epistatic interplay of point mutation combinations. Thus, it is an ideal system
for exploration of long-range dynamic communication to understand epistatic relationships in the
emergence of resistance.
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Here we focus on the specific epistatic relationship between four TEM-1 mutation sites (42, 104,
182 and 238) which have exhibited significant non-additive behavior [23]. Treating point mutations as
external perturbative forces to the internal network of a protein, we apply EpiScore analysis to the
main TEM-1 active site, residue S70, using a TEM-1 3-D structure obtained by an energy-minimized
and equilibrated version of PDB ID 1BTL [53] with mutation sites shown as blue spheres in Figure 6A,
along with active site S70 in red and alternative control sites (43, 105, 181 and 237) in yellow. Figure 6B
(left) shows a plot of EpiScore versus experimental epistasis using cefotaxime turnover rates and
exhibits a relationship similar to that found in pfDHFR, with a strong negative correlation of R = −0.71.
We also find that position pairs with EpiScore values > 1.0 (horizontal dashed line), presenting a
stronger pairwise dynamic coupling with position S70 compared to the average of the individual
dynamic coupling, also corresponds to two of the three TEM-1 dual mutants with negative epistatic
turnover rates (separated by vertical dashed line). Position pair 182-238 represents a deviation from
this behavior, and position pair 42-104 is a comparative outlier to the overall correlation. The deviation
of position pair 182-238 may be related to specific catalytic site interactions associated with position 238,
the only position in which mutation resulted in an increase in turnover rate across all eight possible
combinations of TEM-1 background. Interestingly, position 182, present in all position pairs with
the three highest EpiScore values, was also the position in which mutation resulted in a significantly
beneficial effect in the fewest number of possible backgrounds [23]. As a control, we also conducted this
analysis using the alternative sites representing positions immediately adjacent to the four mutation
sites (Figure 6B (right)). These positions result in a significantly worse correlation with cefotaxime
turnover rate epistasis than the mutation positions (R = −0.45 as compared to R = −0.71), showing the
sensitivity in the EpiScore metric to specific positions, regardless of separation distance.
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Figure 6. (A) TEM-1 structure showing mutation positions (blue spheres), alternative control positions
(yellow spheres) and active site S70 (red sphere). ((B) left) EpiScore to active site S70 versus epistasis in
ln of turnover rate of cefotaxime for β-lactamase TEM-1 mutants [23]. Horizontal dashed line divides
EpiScore values above and below 1 while vertical dashed line divides positive and negative epistasis.
EpiScore and epistasis exhibit a strong negative correlation of R =−0.71. EpiScore values > 1 (horizontal
dashed line), indicating to a stronger pairwise dynamic coupling to position S70, also corresponds
to two of the three TEM-1 dual mutants with negative epistatic turnover rates (separated by vertical
dashed line). Position pair 182-238 represents a deviation from this behavior, and position pair 42-104
is a comparative outlier to the overall correlation. ((B) right) EpiScore versus ln of turnover rate using
the alternative control positions. Although these positions are immediately adjacent to the mutation
positions, they generate different EpiScore values resulting in a significantly worse correlation of
R = −0.45.
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3.2. Asymmetry and Epistasis

In TEM-1, mutational sites which confer incremental changes in biophysical activity are neither
locally distributed with respect to one another, nor at important functional sites. Furthermore, they do
not belong to an immediately identifiable allosteric inhibitor site, but they do, however, exhibit unique
pairwise epistatic behavior which indicates that they likely regulate the active sites allosterically.
In an effort to analyze whether the pairs having EpiScore less than 1 and associated with positive
epistasis (a beneficial, cooperative interaction) exhibit long-range communication that is distinct from
the pairs having EpiScore greater than 1 and associated with negative epistasis, we explored the
degree of asymmetry in long-range communication between the mutational positions and the active
site positions using DCIasym. Thus, we calculated DCIasym between each TEM-1 dual-mutant site
and all main active sites for the relevant TEM-1 structure (70, 73, 130, 166, 234, Figure 7), excluding
the outliers 182-238 and 42-104 from Figure 6B. Here, positive %DCIasym values indicate active-
site-dominant dynamic coupling, where mutational sites exhibit higher fluctuation response when the
active site is perturbed. On the other hand, negative %DCIasym values indicate mutation-dominant
dynamic coupling where perturbations at those positions controls the active site fluctuation response.
Interestingly, we observe a relationship that provides some mechanical insight relating the degree of
asymmetry to EpiScore; the dual mutants with EpiScore > 1 to active site S70 and epistasis < 1 had more
instances of mutational-dominant coupling asymmetry, while the reverse was true for two of the three
dual mutants with EpiScore < 1 and epistasis > 1 (position pair 42-104, an outlier in Figure 6B, does not
hold to this pattern). This suggests that the epistatic effects captured through EpiScore to active site
S70 may be compensated via coupling asymmetry to all active sites, with dynamic modification of the
system ultimately including both effects. A position pair that more strongly affects active site S70 via
EpiScore also possesses active site-dominant coupling asymmetry and vice versa. Taken together with
Figure 6B, these data indicate that dual mutants which confer less disruption to important active sites
(indicated by EpiScore < 1) than their averaged individual constituents, and those which are under
active site regulation, (indicated by positive %DCIasym) are those which display the largest degree of
positive epistasis.

Thus, as a test system, TEM-1 highlights the complex relationship between mutational positions,
allosteric relationships, and epistatic interplay. These emergent properties of the anisotropic
residue-residue interaction network within a protein must be accounted for when attempting to
fully understand or predict mutation outcomes.

3.3. Unidirectional Communication through DCIasym Creates Cause-Effect Relationships in Allosteric
Regulations

Using the dynamical picture presented above, the modulation of protein dynamics through
mutations (i.e., the fluctuation response to node perturbations within a network) is similar to the
modulation of dynamics through binding; this is the fundamental principle behind the concept of
dynamic allostery. With the TEM-1 dual mutation positions showing unique coupling asymmetry to the
active sites, it follows that there should be an obvious, unidirectional signature between allosteric sites
and active sites in known allosteric proteins. Here we explore the role dynamic coupling directionality
plays in allosteric regulations using an ideal model system, Pin1. Pin1 is a two-domain protein
containing a catalytic PPIase domain and a distally-located WW domain, connected by a flexible
(and highly disordered) interdomain linker [54–56]. While strictly regulated in both function and
expression within healthy biological tissue [57], the up-regulation and down-regulation of Pin1 is
associated with several forms of cancer and Alzheimer’s disease, respectively [57–61]. Studies have
shown that the activity of the PPIase domain is enhanced when a ligand is bound at the non-catalytic
WW domain [62,63] and communication between these two domains is requisite for proper biological
function [55,64–66].
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Figure 7. %DCIasym distributions to all TEM-1 active sites (70, 73, 130, 166, 234) for each dual mutant
position pair along with three-dimensional (3-D) structural representation of mutation sites (blue) and
active sites (red) excluding the outliers 182-238 and 42-104 from Figure 6B. The first dual mutant (104-182,
top left) has arrows drawn to indicate the coupling asymmetry, where red is active site-dominant and
blue is mutation site-dominant. Both dual mutants with negative epistasis in turnover rate and EpiScore
to position S70 < 1 also had %DCIasym distributions which were, overall, mutation site-dominant and,
conversely, those with positive epistasis in turnover rate and EpiScore to position S70 > 1 exhibited
active site-dominant %DCIasym.

Previous works propose the existence of communication networks between the WW domain
and the PPIase domain, including a unique allosteric pathway which only becomes active when a
substrate is bound to the WW domain [62]. A further computational study indicated that pathways of
communication via force propagation from the PPIase domain to the WW domain changed when a
ligand was WW domain-bound [67].

Applying our asymmetry analysis to binding pocket residues in the catalytic PPIase (%DCIij)
and non-catalytic WW domains (%DCIji) of Pin1 (PDB ID 3TCZ [7], ligands removed), we calculate
“%DCIasym” (%DCIij − %DCIji) the coupling asymmetry between PPIase domain binding positions
(63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) (Figure 8). Hence, negative
values indicate the WW domain position is dominant (blue arrows) whereas positive values indicate
the PPIase domain position is dominant (red arrows). We see that each of the four positions in the WW
domain exhibit unique asymmetric coupling with the PPIase domain positions, even when the WW
domain positions are close to one another. However, with the exception of coupling between position
63 and 31, the behavior of the PPIase domain positions is unique to their catalytic loop grouping
(e.g., {63,68}, {129,130,131}), where each position within a group has the same asymmetry directionality
to a given WW domain position. Overall, however, the full %DCIasym distribution indicates that there
is a clear bias toward unidirectionality from the WW domain to the PPIase domain; the WW domain is
dynamic coupling-dominant over the PPIase domain, with twice as many residue pairs exhibiting
WW-dominant coupling than the reverse (16/24 vs. 8/24, Figure 8C).
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Figure 8. (A) Graphical representation of coupling asymmetry between PPIase domain binding
positions (63, 68, 129, 130, 131, 154) and WW domain binding positions (23, 31, 32, 34) where blue arrows
indicate the WW domain position is dominant and red arrows indicate the PPIase domain position is
dominant. (B) Explicit values of %DCIasym versus position combinations for position 31 in the WW
binding domain where values above and below 0 correspond to PPIase or WW domain dominating,
respectively (a value of 0 corresponds to perfect symmetry). (C) Full distribution of %DCIasym values
for all four WW domain binding positions and all six PPIase domain binding positions where 16 total
residue pairs are dominated by the WW domain whereas only eight pairs are PPIase domain-dominant.

This suggests a cause-and-effect relationship exists between the two domains. Using this
framework, a ligand binding event is modeled as a force perturbation to the binding positions in
each domain. Upon these random force perturbations, we find that, overall, the WW domain is able
to induce a stronger perturbation response in the PPIase domain than the reverse. This is largely
the expected relationship between an allosteric site and a catalytic site; communication between
these sites should predominantly involve information transfer from the allosteric site to the catalytic
site, indicating that %DCIasym can capture communication directionality in allosteric systems from
structural dynamics encoded within a given set of atomic coordinates.

4. Conclusions

In this work we showed how the anisotropic interaction network within a protein captures two
essential emergent properties of protein evolution—epistasis and communication directionality—using
the information stored in structural dynamics alone. Additionally, EpiScore can capture the behavior of
dual-mutation epistatic outcomes with some consistent trends across different protein systems. As seen
in pfDHFR, mutation pairs with a lower pairwise dynamic coupling versus average of individual
couplings (EpiScore < 1) to FG loop positions are favorable, as dual mutations at these positions may
be less likely to disrupt the FG loop’s interaction with the functionally critical M20 loop. A similar
trend was also observed in the EpiScore analysis of TEM-1 dual mutants, where lower EpiScore
to active site S70 was generally associated with higher positive experimental epistasis (R = −0.71)
Further, the system-wide EpiScore analysis of GB1 dual mutants has shown that the position pairs
with average EpiScore values > 1 were associated more frequently with negative epistasis, indicating
that these positions might ultimately be more disruptive to the entire protein when mutated together.
Furthermore, when dynamic coupling asymmetry analysis was applied via %DCIasym to TEM-1,
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we found that EpiScore and epistasis both relate to dynamic coupling asymmetry, where position pairs
which exhibited high EpiScores associated with negative epistasis also exhibited mutation-dominant
coupling asymmetry. This suggests that %DCIasym and EpiScore may both capture factors which
contribute towards the biochemical outcome of dual mutations. If both mutational sites dominate
the dynamics coupling with the active site (i.e., the active site responds more to mutational site
perturbations), then dual mutations on both sites lead to negative epistasis.

As modulation of normal modes and protein dynamics is not only a tool used in evolution but also
a principle exploited via allostery, we used an “ideal” allosteric system, Pin1, and observed the dynamic
coupling asymmetry between a well-identified allosteric domain and an enzymatically active domain
exhibits behavior that, as expected, showed the allosteric WW domain to dominate communication
to the PPIase domain. Overall, these two novel protein dynamics-based metrics provide steps to
mechanistically describe these complicated interactions, and also shed light on the complex anisotropic
interaction network which ultimately gives rise to epistasis and allosteric regulation. They can be
useful to predict mutational outcomes, particularly for those sites distal from the active site that can
modulate function [68].
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