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Abstract: The maximum entropy principle states that the energy distribution will tend toward a state
of maximum entropy under the physical constraints, such as the zero energy at the boundaries and a
fixed total energy content. For the turbulence energy spectra, a distribution function that maximizes
entropy with these physical constraints is a lognormal function due to its asymmetrical descent to
zero energy at the boundary lengths scales. This distribution function agrees quite well with the
experimental data over a wide range of energy and length scales. For turbulent flows, this approach
is effective since the energy and length scales are determined primarily by the Reynolds number.
The total turbulence kinetic energy will set the height of the distribution, while the ratio of length
scales will determine the width. This makes it possible to reconstruct the power spectra using the
Reynolds number as a parameter.

Keywords: maximum entropy principle; information theory

1. Introduction

The maximum entropy principle is very useful, in determining blackbody radiation spectra [1],
energy distribution in particles [2], and in specifying drop size distributions [3], as some examples.
This principle states that the energy distribution of particles will tend toward the state of maximum
entropy under the given constraints of the physical system. Turbulence can be considered as a large
ensemble of energetic eddies having a spectrum of energy and length scales. Due to the large size of
the ensemble, it will come to an equilibrium state of maximum entropy under the constraints of zero
energy at the boundary points, fixed total energy content and viscous dissipation. The total energy and
the range of length scales that exist in the turbulent flow primarily depend on the Reynolds number.
For example, the total turbulence kinetic energy contained in the energy spectrum will be specified
by the initial mean velocity and length scale of the flow, in other words by the Reynolds number.
In order to find some universal laws concerning the turbulence kinetic energy spectrum, some insights
were provided through theoretical analyses [4–6]. In Figure 1, the scaling laws from some of these
analyses are plotted, and compared with lognormal distribution and data. We can see that various
scaling laws are tangent to the lognormal distribution in the wavenumber regions of their applicability.
Notably, in the inertial subrange the Kolmogorov k−5/3 scaling will track the power spectra. We can see
in Figure 1 that due to broadening of the energy spectrum with increasing total energy, or Reynolds
number, there will be an increase in the wavenumber range where k−5/3 scaling will be nearly tangent
to the spectrum. Additionally, the ascending part of the spectra at low wavenumbers (largest eddies) is
tracked by k4-scaling [6], which is tangent to lognormal function at this range. We can see that kn-type
of scaling will be tangent to lognormal at least at some point and range of the wavenumber space.
However, the range of its applicability tends to be limited as tangent lines do not fully express the
curved energy spectrum.
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Figure 1. Lognormal energy spectra and various kn-scaling. The data are from Comte-Bellot and 
Corrsin (circle) [7], Champagne, et al. (square) [8] and Saddoughi and Veeravalli (diamond) [9]. 

Lognormality occurs often in nature, including turbulence. Recently, lognormality in turbulence 
dissipation has been observed in large-scale flows [10]. Intermittency has been modelled as being 
lognormally distributed in space, but with some conceptual and mathematical inconsistencies that 
needed to be addressed [11]. Additionally, Mouri et al. [12] have noted on fluctuations of velocity 
and energy dissipation being lognormal in different flow geometries. However, the maximum 
entropy principle is directly applicable to energy distributions with intuitive and observable 
constraint parameters, in this case leading to lognormal turbulence energy spectra. Some studies were 
onto the use of the maximum entropy method in turbulence, but the applied constraints were too 
complicated and also the aim appears to have been in replicating the k−5/3 scaling [13,14], which is 
hard to achieve in typical maximum-entropy probability distribution functions (inverse exponential).  
If one looks at the data from a quiescent perspective, k-n type of scaling is only partially applicable 
over a small subset of the spectrum, and the overall spectra tend to be parabolic in the logarithmic 
scale.  

In this work, we will validate this lognormality using experimental data over a wide range of 
Reynolds number. Key attributes of the energy spectra, the height and width, depend primarily on 
the Reynolds number, and possibly other easily observable parameters. This opens ways to 
reconstruct the power spectra, as the Reynolds number contains information concerning both the 
energy and the range of length scales that exist in the flow. There are some secondary parameters 
that are used in collapsing the power spectra [9], such as the dissipation and kinematic viscosity, and 
these may be used to fine-tune the lognormal function. However, the primary parameter for both the 
height and width of the lognormal spectra is just the Reynolds number, as will be shown. 

2. The Maximum Entropy Principle 

The maximum entropy principle states that the energy distribution will tend toward a state of 
maximum entropy (Shannon’s entropy) under the physical constraints, such as the zero energy at the 
boundaries and a fixed total energy content. For turbulence, the maximum entropy principle can be 
effective since the energy spectra will take on a distribution that achieves the maximum entropy, as 

Figure 1. Lognormal energy spectra and various kn-scaling. The data are from Comte-Bellot and
Corrsin (circle) [7], Champagne, et al. (square) [8] and Saddoughi and Veeravalli (diamond) [9].

Lognormality occurs often in nature, including turbulence. Recently, lognormality in turbulence
dissipation has been observed in large-scale flows [10]. Intermittency has been modelled as being
lognormally distributed in space, but with some conceptual and mathematical inconsistencies that
needed to be addressed [11]. Additionally, Mouri et al. [12] have noted on fluctuations of velocity
and energy dissipation being lognormal in different flow geometries. However, the maximum
entropy principle is directly applicable to energy distributions with intuitive and observable constraint
parameters, in this case leading to lognormal turbulence energy spectra. Some studies were onto the
use of the maximum entropy method in turbulence, but the applied constraints were too complicated
and also the aim appears to have been in replicating the k−5/3 scaling [13,14], which is hard to achieve
in typical maximum-entropy probability distribution functions (inverse exponential). If one looks at
the data from a quiescent perspective, k−n type of scaling is only partially applicable over a small
subset of the spectrum, and the overall spectra tend to be parabolic in the logarithmic scale.

In this work, we will validate this lognormality using experimental data over a wide range of
Reynolds number. Key attributes of the energy spectra, the height and width, depend primarily on the
Reynolds number, and possibly other easily observable parameters. This opens ways to reconstruct
the power spectra, as the Reynolds number contains information concerning both the energy and the
range of length scales that exist in the flow. There are some secondary parameters that are used in
collapsing the power spectra [9], such as the dissipation and kinematic viscosity, and these may be
used to fine-tune the lognormal function. However, the primary parameter for both the height and
width of the lognormal spectra is just the Reynolds number, as will be shown.

2. The Maximum Entropy Principle

The maximum entropy principle states that the energy distribution will tend toward a state of
maximum entropy (Shannon’s entropy) under the physical constraints, such as the zero energy at
the boundaries and a fixed total energy content. For turbulence, the maximum entropy principle can
be effective since the energy spectra will take on a distribution that achieves the maximum entropy,
as constrained by the boundary conditions: The kinetic energy must be zero at the smallest dissipation
scale (Kolmogorov scale), and also at the largest flow length scale (e.g., dimension of the object in the
flow). The range of length scales, or the ratio of length scales from Kolmogorov (η) to the integral
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scales (le), is known from η = leReλ−3/2 [6], where Reλ is the Reynolds number based on the Taylor
microscale (λ). Another important constraint is the total turbulent kinetic energy, fixed by the initial or
external conditions.

In some cases, the distribution function can be derived algebraically [14]. Using the Lagrange
multiplier method, the distribution function that maximizes the Shannon’s entropy (S = −ElnE) for
turbulence energy can be derived as E(k) = C1

k4 exp
{
−C2u′2 −C3k2u′2

}
, where C1, C2 are constants, to be

determined from the constraints, and k the wavenumber. u’(k) is empirically input as (m-log(k)).
The derivation is shown in the Appendix A. This incidentally resembles the lognormal function, and has
asymmetrical descent to zero energy at the boundary points. An alternate deductive method for arriving
at the lognormal form is to test a sequence of standard distribution function (e.g., Gaussian, exponential,
lognormal, etc.) with the maximum Shannon’s entropy that still obeys the physical constraints [2].
Then, the first simplest distribution that satisfy the constraints is the most likely one [2]. In this process,
uniform, Gaussian and exponential distributions do not satisfy the asymmetric boundary conditions for
turbulence energy spectra, thus pointing to the lognormal as the most likely distribution. Thus, it can be
deduced that the distribution function that satisfies the boundary conditions is the lognormal function
due to its asymmetric decay to zero at the boundary points. Energy spectra are asymmetrical because
the descent toward zero energy occurs due to physical limit of the flow scale at the low wavenumber
extreme, while viscous dissipation causes the approach toward zero at the high wavenumbers. For a
similar reason, the drop size distributions in spray flows take on lognormal shape [15]. As noted
above the width of the distribution can then be deduced from η = leReλ−3/2, while the height of the
distribution is set by the total integrated turbulence kinetic energy, which is proportional to the mean
velocity squared and the length scales of the flow. For example, atmospheric turbulence will have a
very large total integrated energy and also the ratio of largest to the smallest (Kolmogorov) scales will
be very large, both of which depend on the Reynolds number. Lognormal distribution has convenient
parameterization aspects for these length scale effects, as shown later.

3. Results and Discussion

Knowing the total energy and the width of the lognormal distribution allows us to construct the
turbulent kinetic energy spectra over a wide range of Reynolds numbers, as shown in Figure 2. We can
see in Figure 2 that energy spectra across a very wide range of energy and length scales are accurately
reconstructed using the lognormal distribution function (plotted as lines) when compared with data
(symbols). Kolmogorov’s k−5/3 scaling is also plotted (dashed line) for comparison, and we can see that
for large Reynolds numbers this scaling is tangent to the lognormal distribution in the so-called inertial
subrange. This is the region that contains a large portion of the total energy, and thus Kolmogorov
scaling has been useful in prescribing the power spectra [16]. Figures 1 and 2 show that quantitatively
and qualitatively there is a close agreement between the lognormal distribution and observed turbulent
energy spectra over almost the entire length scale range. The observed energy spectra end abruptly
at the low wavenumber limit, corresponding to the length scale of the turbulence-generating object
or process. Since the maximum entropy distribution has no knowledge of this process, it continues
its downward path toward zero. To input the information concerning the turbulence generation,
a truncated lognormal function can be used at the low wavelength limit.

It is also interesting to plot the lognormal power spectra in a semi-logarithmic scale as in Figure 3,
where there appears to be a shift in the spectra toward higher wavenumber; however, this is only due to
nearly 5 orders of energy scales that have been normalized. It is only the wavenumber corresponding
to the maximum energy which shifts toward smaller wavenumber as the Reynolds number increases.
Additionally, the energy spectra tends to broaden relative to the Kolmogorov scale (ηk) when the
Reynolds number increases. Thus, the energy spectra can be specified by the Reynolds number and
energy scale of the turbulent flow. We can again see that the energy content is very small beyond the
inertial subrange toward small length scales (large wavenumbers), which is why k−5/3 type of scaling
is a reasonable approximation for power spectra in the energy-containing inertial range.



Entropy 2020, 22, 669 4 of 11

Entropy 2020, 20, x 4 of 12 

 

beyond the inertial subrange toward small length scales (large wavenumbers), which is why k−5/3 type 
of scaling is a reasonable approximation for power spectra in the energy-containing inertial range.  

 
Figure 2. Lognormal turbulence energy spectra (solid lines) and experimental data. k−5/3 fit is plotted 
as a dashed line. Data (symbols) are for one-dimensional power spectra from the work shown in the 
legend [7,8,17–19]. 

Figure 2. Lognormal turbulence energy spectra (solid lines) and experimental data. k−5/3 fit is plotted
as a dashed line. Data (symbols) are for one-dimensional power spectra from the work shown in the
legend [7,8,17–19].

We can also examine the change in the energy spectra in decaying turbulence. The experimental
data of Comte-Bellot and Corrsin [7] illustrate this process, and the streamwise evolution of the power
spectra is shown in Figure 4. The decay of turbulence energy is easily observable, where both the height
and width of the distribution decreases with decreasing local Reynolds number. Yet, the lognormal
shape of the power spectra is retained during the decay. Thus, lognormal distributions track both the
shape and decaying magnitude of energy spectra. The information concerning the change in the height
and width of the spectra can be used to reconstruct the local energy distributions using the Reynolds
number as the determinant parameter. In Table 1, we show the maximum energy and width of the
spectra (FWHM), both estimated from the data. Note that in Comte-Bellot and Corrsin [7] the data are
given in dimensional units, and we retain the same units in Table 1. The data in Table 1 illustrate the
parametric dependence of power spectra on the Reynolds number. Likewise, we extract the height and
width information of the energy spectra from the data shown in Figure 2, and these are tabulated in
Table 2. The data in Table 2 will be used later for parametric reconstruction of power spectra.
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Figure 4. Temporal decay of energy spectrum. Data are from Comte-Bellot and Corrsin [7], and t*
normalized time, t* = tU/M. Local Reynolds numbers are 71.6 (circle), 65.3 (diamond) and 60.7 (square).

Table 1. Parameters of the energy spectra for data of Comte-Bellot and Corrsin [7].

t* Reλ Emax Etotal k(Emax) [cm−1] FWHM [cm−1]

42 71.6 461.2 774.6 0.058 1.24

98 65.3 212.6 342.8 0.12 0.98

171 60.7 123.9 174.9 0.22 0.84
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Table 2. Parameters of the energy spectra for various data sets.

Reλ Emax/(εν5)1/4 (kη)Emax Reference

37 130 0.0222 Comte-Bellot and Corrsin [7]

72 878 0.00439 Comte-Bellot and Corrsin [7]

308 53,100 0.0002084 Uberoi and Freymuth [17]

600 199,000 0.0000578 Saddoughi and Veeravalli [9]

850 312,900 0.000024 Coantic and Favre [20]

1500 1,446,000 0.0000179 Saddoughi and Veeravalli [9]

The lognormal behavior of turbulence energy spectra is also evident in inhomogeneous flows,
such as channel flows, as shown in Figure 5. Power spectra taken at various points in the channel all
follow lognormal form to a remarkable degree. It appears that, if local equilibrium is achieved at high
Reynolds numbers the state of maximum entropy exists locally and lognormal energy spectra are found
even for inhomogeneous flows. This expands the applicability of current concept to inhomogeneous
flows at sufficiently high Reynolds numbers. In addition, lognormal behavior is prevalent across nearly
the entire range of scales, far beyond the so-called inertial range.
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secondary parameters such as u’2, dissipation, kinematic viscosity, and/or other length scales may 
fine-tune the above functions. However, here we only demonstrate that turbulence energy spectra 

Figure 5. Turbulence energy spectra at various distances from the wall for channel flows, for Rel = 180
(top left), 395 (top right) and 590 (bottom). Lines are the lognormal distribution, compared with DNS
data [21] with symbols (circle, y + = 5; square, y + = 10; diamond, y + = 20; triangle up, y + 30;
triangle down, y + = 180 or 300.

Using the data in Table 2, we can also attempt to find a relationship between the Reynolds
number and parameters that go into the lognormal function, so that we can reconstruct the energy
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spectrum based on the Reynolds number. To specify the height or the energy scale of the spectrum,
a multiplicative factor, A, is used for the normalized lognormal function. The normalized lognormal
function itself has two parameters, logarithmic mean, µ, and variance, σ. As shown in Figures 2–4,
we can see that µ decreases with increasing Reλ, while σ increases. Thus, we find a least-square fit to
the following functions for these parameters using the data in Table 2.

Pre-exponential factor:
A = a1 × Reλ2 + a2 (1)

Logarithmic mean:
µ = b1 × Reλ−3/2 + b2 (2)

Variance:
σ = c1 × Re + c2 (3)

The form of these functions has been deduced from basic knowledge of length scale relationships
to the Reynolds number [6]. There may be better functions for these parameters that reconstruct the
energy spectra accurately at all the Reynolds numbers and physical configurations. Additionally,
secondary parameters such as u′2, dissipation, kinematic viscosity, and/or other length scales may
fine-tune the above functions. However, here we only demonstrate that turbulence energy spectra
are recoverable through the lognormal distribution function by using simple functions for A, µ and σ,
with the Reynolds number as the sole parameter.

An example is shown in Figure 6, where we plot the reconstructed lognormal distributions using
the parameters from Equations (1)–(3), and compare with some data. Note that we prefer to use the
dimensional wavenumber, k, for this exercise. The energy scale is again E′(k) = E(k)/(εν5)1/4.
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parameter in Equations (1)–(3). The data are from Comte-Bellot and Corrsin (circle) [7], Champagne, et al.
(diamond) [8], Saddoughi and Veeravalli (square) [9], and Sanborn and Marshall (triangle) [18].

There have been numerous works on finding the complete energy distributions in turbulence
following the classical Kolmogorov theory [4], and also using the Navier–Stokes equation as the basis
for the energy cascade, e.g., direct interaction approximation (DIA) [5]. A modified realizable version
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of the DIE theory is the so-called EDQNM (eddy-damped quasi-normal Markovian) [22]. EDQNM has
a rather lengthy derivation process, and despite its mathematical sophistication reproduces the k−5/3

scaling in the inertial range extended by a triangular peak. There have also been function fits to estimate
the power spectral form [23]. The current approach is based on the fundamental Second Law in the
form of the maximum entropy principle, and avoids much of the mathematical complexities, to arrive
at quite good agreements with data, as shown above. Figure 7 exhibits the comparison between
the current lognormal form of the energy spectra with more recent data by Kang et al. [24]. We can
see that the current lognormal distribution agrees quite well across a very large set of experimental
data, and appears to have some universal applicability. As noted in the introduction, the lognormal
energy spectra are arrived at either through a deductive process [2] or with a mathematical derivation
(see Appendix A). In hindsight, the lognormal form could have been deduced since the energy spectra
in turbulence is neither random or Gaussian, but asymmetric due to different physics involved at the
low (energy generation) and high (viscous dissipation) wavenumbers and sectionally monotonic (it is
highly improbable to have multiple peaks). Regardless of the route, lognormal distribution appears
to be the natural selection for the energy distribution in turbulence due to asymmetric boundary
conditions at extreme ends of the spectrum. In addition, the spectral parameters have intuitive
dependence on the turbulence Reynolds number and length scales. It may be a good utilitarian
example of the entropy science, toward a high-impact subject, turbulence, as the energy spectra have
important implications in engineering and atmospheric science.
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4. Conclusions

For turbulence energy spectra, a distribution function that maximizes entropy with the physical
constraints is the lognormal function due to its asymmetrical descent to zero energy at the boundary
lengths scales. Additionally, due to the improbability of multiple peaks the energy distribution is
sectionally monotonic. The simplest distribution that satisfies these constraints is the lognormal
distribution. The lognormal spectra are consistent with existing scaling laws such as Kolmogorov’s
k−5/3 in the inertial range and k4 dependence in the large-eddy length scales. This approach makes
it possible to reconstruct the turbulence energy spectra, using primarily the Reynolds number that
determines the width and height of the lognormal distribution. There may be secondary parameters
such as dissipation, kinematic viscosity, and lengths scales that can fine-tune the energy distribution,
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but the fundamental turbulence energy spectra exhibit lognormal behavior that can be prescribed by the
Reynolds number, as stipulated by the known properties of the energy and length scales of turbulence.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A multiplicative constant (Equation (1))
a1, a2 constants for A (Equation (1))
b1, b2 constants for µ (Equation (2))
c1, c2 constants in σ (Equation (3))
C1, C2, C3 constants in the energy spectra equation (Equation (A4))
dV spatial volume
eo total energy at wavenumber k (Equation (A1))
E(k) energy density at wavenumber k
E11, E22 energy density for the longitudinal (11) and lateral (22) components (Figure 7).
E′(k) non-normalized energy density at wavenumber k
E+

uu energy density normalized by the friction velocity
F objective function
FWHM full width at half maximum
k wavenumber
kx wavenumber for the longitudinal spectra
le integral length scale
M length scale
Re Reynolds number
Reλ Reynolds number based on the Taylor microscale
S Shannon’s entropy
t time
t* tU/M normalized time
u′ turbulence fluctuating velocity
U mean velocity
t time interval
δt time interval
ε dissipation
η Kolmogorov scale
µ logarithmic mean in the lognormal distribution
ν kinematic viscosity

Appendix A

The energy distribution that maximizes the Shannon’s entropy under the physical constraints
can be obtained using the Lagrange multiplier method [2,3]. Here, the principal constraint is that the
turbulence conserves energy: the kinetic energy is dissipated by viscosity effect progressively at large
wavenumbers [16].

u′2 + νk2u′2δt = eo = constant (A1)

u′(k) the turbulent fluctuation velocity at a given wavenumber, k, while ν is the kinematic viscosity
and δt some time interval. Equation (A1) states that turbulence energy density (on a unit-volume
basis) integrated over some time interval δt is conserved. The available energy, u′2, is dissipated by the
viscous term involving kinematic viscosity, ν [6], and thus Equation (A1) represents the conservation
of energy in the k-space. The above constraint can be transposed into the energy distribution using the
Lagrange multiplier method [2]. The first step is to write the objective function F so that

F = u′2 + νk2u′2δt− eo (A2)
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The most probable distribution function is found by maximizing logF, following the concept
of Shannon’s entropy, S = FlogF [2]. We can see that S will achieve the maximum, when logF is at
maximum or δ(logF) = 0. Using the Lagrange multiplier method, this leads to a distribution with an
inverse exponential form [2].

E(k)dV = C1exp
{
−C2u′2 −C3k2u′2

}
dV (A3)

C1, C2 and C3 (= C2ν) are so-called Lagrange multipliers, to be determined from other constraints.
For example, C1 is determined by integrating E(k) to equal the total energy content in the distribution.
Converting dV = d(k−3) to dk basis, we obtain the following energy distribution.

E(k) =
C1

k4
exp
{
−C2u′2 −C3k2u′2

}
(A4)

In Equation (A4), constants C1, C2, and C3 are determined from the constraints of the turbulence
energy content, limiting length scales, and viscosity, respectively. C1 is the multiplier to the energy
distribution, so that C1 increases for large turbulence energy content. For example, for large-scale
high-speed flows, such as atmospheric flows, C1 will be a very large number (see Figure 2).
C2 determines the width of the energy spectrum. The limiting length scales are the Kolmogorov
dissipation length scale and the maximum length scale that exists in the flow, so that if either of these
length scales are extended, then the energy spectrum will broaden. C2 is the parameter that reflects
this width or the length scale effect. C3 is the viscous dissipation parameter, and depends strictly on
the kinematic viscosity.

We still need the kinematic scaling for u′(k) in Equation (4). In Kolmogorov theory [6], u′ ~ k−1/3

is obtained in the inertial subrange. However, in the current maximum entropy formalism this
is an unknown element or a lack of a piece of information. The maximum entropy principle
gives the most probable energy distribution under the given physical constraints, but it does not
produce unknown information. Thus, the missing pieces of information need to be supplied from
observational data, and Equation (A4) provides a framework for testing various kinematic scaling
for u′(k). Comparison with observational data can then be used to deduce the empirical form for
u′(k) ~ (µ-log(k)). When this scaling is input in Equation (A4), we obtain a lognormal form in k.
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