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Abstract: Many dimensionality and model reduction techniques rely on estimating dominant
eigenfunctions of associated dynamical operators from data. Important examples include the
Koopman operator and its generator, but also the Schrödinger operator. We propose a kernel-based
method for the approximation of differential operators in reproducing kernel Hilbert spaces and show
how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting
algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore,
we exploit that, under certain conditions, the Schrödinger operator can be transformed into a
Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows
us to apply methods developed for the analysis of high-dimensional stochastic differential equations
to quantum mechanical systems.

Keywords: Koopman generator; Schrödinger operator; reproducing kernel Hilbert space

1. Introduction

The Koopman operator [1–4] plays a central role in the global analysis of complex dynamical
systems. It is, for instance, used to find conformations of molecules and coherent patterns in fluid
flows, but also for prediction, stability analysis, and control [5–10]. Instead of analyzing a given
finite-dimensional, but highly nonlinear system directly, the underlying idea is to compute an
associated infinite-dimensional, but linear operator [4]. By computing an approximation of this
operator from measurement or simulation data, it is possible to extract Koopman eigenvalues,
eigenfunctions, and modes. The most frequently used techniques are based on variants or
generalizations of extended dynamic mode decomposition (EDMD) [11,12]. A reformulation of
EDMD for the generator of the Koopman operator, called gEDMD, was recently proposed in [13].
It was shown that in addition to the previously mentioned applications, the generator contains valuable
information about the governing equations of a system; see also [7,14]. System identification aims at
learning a preferably parsimonious model from data. That is, the learned model should comprise as
few terms as possible and still have predictive power, which is typically accomplished by utilizing
sparse regression techniques. One drawback of gEDMD is that it requires a set of explicitly chosen basis
functions and their first- and—if the system is non-deterministic and non-reversible—second-order
derivatives. Moreover, the size of the resulting matrix eigenvalue problem that needs to be solved to
compute eigenvalues, eigenfunctions, and modes of the generator depends on the size of the dictionary.
The goal of this paper is to derive a kernel-based method to approximate the Koopman generator from
data. A kernel-based variant of EDMD was proposed in [12] and generalized in [15]. We derive a
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kernel-based variant of gEDMD. Employing the well-known kernel trick, a dual eigenvalue problem
whose size depends on the number of snapshots can be constructed. The resulting methods allow
for implicitly infinite-dimensional feature spaces and only require partial derivatives of the kernel
function. This enables us to apply the methods to high-dimensional systems for which conventional
techniques would be prohibitively expensive due to the curse of dimensionality, provided the number
of snapshots is such that the eigenvalue problem can still be solved numerically or can be downsampled
without losing essential information. Since we aim at approximating differential operators, we need
to be able to represent derivatives in reproducing kernel Hilbert spaces. This requires the notion of
derivative reproducing properties. Derivative reproducing kernels [16] were used to approximate
Lyapunov functions for ordinary differential equations in [17] and to approximate center manifolds for
ordinary differential equations in [18]. Reproducing kernel Hilbert spaces with derivative reproducing
properties are related to the native spaces introduced in a different context in [19].

Similar operators are also used for manifold learning and understanding the geometry of
high-dimensional data [20–23]. Methods like diffusion maps construct graph Laplacians with the aid
of diffusion kernels, effectively approximating transition probabilities between data points. In the
infinite data limit and letting the kernel bandwidth go to zero, it has been shown that these methods,
depending on the normalization, essentially compute eigenfunctions of certain differential operators,
e.g., the Laplace–Beltrami operator, the Kolmogorov backward operator, or the Fokker–Planck operator.

Another related differential operator that is of utmost importance in quantum mechanics is the
Schrödinger operator. Solutions of the time-independent Schrödinger equation describe stationary
states and associated energy levels. We will illustrate how kernel-based methods developed for the
Koopman generator can be applied to these related problems. The main contributions of this paper are:

• We show how the derivative reproducing properties of kernels can be used to approximate
differential operators such as the Koopman generator and the Schrödinger operator, as well as
their eigenvalues and eigenfunctions from data. Additionally, we derive a kernel-based method
tailored to reversible dynamics, which does not require estimating drift and diffusion terms,
but only an equilibrated trajectory.

• Furthermore, we exploit the fact that, under certain conditions, the Schrödinger operator can be
turned into a Kolmogorov backward operator (see, e.g., [24]), which allows for the interpretation
of a quantum-mechanical system as a drift-diffusion process and, as a consequence, the application
of methods developed for the analysis of stochastic differential equations or their generators.

• We demonstrate potential applications in molecular dynamics, using the example of a
quadruple-well problem, and quantum mechanics, describing how to apply the proposed methods
directly to the Schrödinger equation or the associated stochastic process. This will be illustrated
with two well-known examples, the quantum harmonic oscillator and the hydrogen atom.

The remainder of the manuscript is structured as follows: We first introduce the necessary tools,
namely the Koopman operator, its generator, and (derivative) reproducing kernel Hilbert spaces in
Section 2. Additionally, relationships with the Schrödinger equation will be explored. The derivation
of the kernel-based formulation of gEDMD will be detailed in Section 3. In Section 4, we will show
how the derived methods can be applied to molecular dynamics and quantum mechanics problems.
Concluding remarks and future work will be discussed in Section 5.

2. Koopman Theory and Reproducing Kernel Hilbert Spaces

We start directly with the non-deterministic setting; the Koopman operator and its generator
for ordinary differential equations can then be regarded as a special case; see also [13] for a detailed
comparison. The notation used below is summarized in Table 1.
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Table 1. Overview of notation.

Xt stochastic process
X state space
k, φ kernel and associated feature map
H reproducing kernel Hilbert space induced by k
Kt Koopman operator with lag time t
L generator of the Koopman operator
H Schrödinger operator
T general differential operator
TH kernel-based differential operator
C00 covariance operator
Â empirical estimate of operator A
G0, G1, G2 (generalizations of) Gram matrices

2.1. The Koopman Operator and Its Generator

In what follows, let X ⊂ Rd be the state space and f : X → R a real-valued observable of the
system. Furthermore, let E[ · ] denote the expected value and Θt the flow map associated with a
dynamical system, i.e., Θt(X0) = Xt. Given a stochastic differential equation of the form:

dXt = b(Xt)dt + σ(Xt)dBt, (1)

where b : Rd → Rd is called the drift term, σ : Rd → Rd×d the diffusion term, and Bt is d-dimensional
Brownian motion, the stochastic Koopman operator is defined by:

(Kt f )(x) = E[ f (Θt(x))].

The infinitesimal generator L of the semigroup of Koopman operators is given by:

L f =
d

∑
i=1

bi
∂ f
∂xi

+
1
2

d

∑
i=1

d

∑
j=1

aij
∂2 f

∂xi ∂xj
(2)

and its adjoint, the generator of the Perron–Frobenius operator, by:

L∗ f = −
d

∑
i=1

∂(bi f )
∂xi

+
1
2

d

∑
i=1

d

∑
j=1

∂2(aij f )
∂xi ∂xj

,

with a = σ σ>. We assume from now on that a is uniformly positive definite on X. The second-order
partial differential equation ∂u

∂t = Lu is also called the Kolmogorov backward equation and ∂u
∂t = L∗u

the Fokker–Planck equation [2].

Remark 1. As in [13], we will often consider systems of the form:

dXt = −∇V(Xt)dt +
√

2β−1 dBt,

where V is a given potential and β the inverse temperature. In this case, the operators can be written as:

L f = −∇V · ∇ f + β−1∆ f and L∗ f = ∇V · ∇ f + ∆V f + β−1∆ f .

2.2. Generator EDMD

A data-driven method for the approximation of the generator of the Koopman operator and
Perron–Frobenius operator called generator extended dynamic mode decomposition (gEDMD) was
derived in [13]. While standard EDMD requires a training dataset {xm }M

m=1 and the corresponding
data points {ym }M

m=1, where ym = Θτ(xm) for a fixed lag time τ, gEDMD assumes that we can evaluate
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or estimate (using, for instance, Kramers–Moyal formulae) {b(xm)}M
m=1 and {σ(xm)}M

m=1. Choosing a
dictionary of basis functions {φn }N

n=1, where φn : Rd → R, and defining φ(x) = [φ1(x), . . . , φN(x)]>,
we compute the matrices ΦX , dΦX ∈ RN×M, with:

ΦX =

φ1(x1) . . . φ1(xM)
...

. . .
...

φN(x1) . . . φN(xM)

 and dΦX =

dφ1(x1) . . . dφ1(xM)
...

. . .
...

dφN(x1) . . . dφN(xM)

 ,

where:

dφn(x) =
d

∑
i=1

bi(x)
∂φn

∂xi
(x) +

1
2

d

∑
i=1

d

∑
j=1

aij(x)
∂2φn

∂xi ∂xj
(x).

The matrix representation of the least-squares approximation of the Koopman generator L is then
given by:

L̂> = dΦXΦ+
X = Â Ĝ+,

with:

Â =
1
M

M

∑
m=1

dφ(xm)φ(xm)
> and Ĝ =

1
M

M

∑
m=1

φ(xm)φ(xm)
>.

It was shown that gEDMD, in the infinite data limit, converges to a Galerkin projection of the
generator onto the space spanned by the basis functions {φn }N

n=1 and that L̂ is an empirical estimate
of the projected generator [13]. Approximations of eigenfunctions of L are then given by:

ϕ`(x) = 〈ξ`, φ(x)〉 ,

where ξ` is an eigenvector of L̂ corresponding to the eigenvalue λ` and 〈·, ·〉 denotes the standard
Euclidean inner product. Analogously, the generator of the Perron–Frobenius operator is given by
(L̂∗)> = Â>Ĝ+. Further details, examples, and different applications including system identification,
coarse graining, and control can also be found in [13].

2.3. Second-Order Differential Operators

Consider the generator L in (2), and assume there is a unique strictly positive invariant density
ρ0, which we can write as ρ0(x) ∝ exp(−F(x)). The function F is called a generalized potential
(with F = βV for the stochastic differential equation in Remark 1). The measure corresponding to
ρ0 is denoted by dµ = ρ0 dx. The negative generator can be decomposed into a symmetric and an
anti-symmetric part as:

−L = −1
2

eF∇ ·
(

e−Fa∇·
)
+ J · ∇ = S +A, (3)

J =
1
2

eF∇ · (e−Fa)− b; (4)

see [24]. The vector field J is called stationary probability flow. In the form of (3), −L is a special case
of an elliptic second-order differential operator on L2

µ, given by:

T = −1
2

eF∇ ·
(

e−Fa∇·
)
+ J · ∇+ W, (5)

for scalar functions F, W, a uniformly positive definite matrix field a, and a vector field J.

Remark 2. Because of the general form of (5), we avoid making too many assumptions about the coefficients of
T or its domain of definition. The goal is to derive numerical algorithms using a minimal set of assumptions.



Entropy 2020, 22, 722 5 of 22

A detailed analysis of the interplay between the domains and properties of the reproducing kernel Hilbert space
(RKHS) will be carried out in future publications.

If F ≡ 0, we obtain generalized Schrödinger operators as another special case, i.e.,

H = −1
2
∇ · (a∇·) + J · ∇+ W, (6)

with W called the potential energy in quantum mechanics. In particular, with the reduced Planck
constant h̄ and the mass m, setting a ≡ h̄2

m I and J ≡ 0 leads to the HamiltonianH = − h̄2

2m ∆ + W of the
time-independent Schrödinger equation in quantum mechanics:

Hψ = Eψ. (7)

We note for later use that, under certain conditions, Schrödinger operators and Koopman
generators are equivalent; see, e.g., ([24] Chapter 4.9). For the sake of completeness, the proof is
shown in Appendix A.

Lemma 1. The ergodic generator −L with unique positive invariant density ρ0 ∝ exp(−F) is unitarily
equivalent to the Schrödinger operatorH in (6) on L2, with J remaining unchanged and W given by:

W = −1
4
∇ · (a∇F) +

1
8
∇F>a∇F +

1
2

J · ∇F.

The function e−
1
2 F is an eigenfunction ofH with eigenvalue zero. Conversely, letH be as in (6), and assume

there is a non-degenerate smallest eigenvalue E0 with strictly positive real eigenfunction ψ0 = exp(−η). Then,
H is unitarily equivalent to a negative ergodic generator −L on L2

µ, where ρ0 ∝ exp(−2η) is the density
associated with µ and ρ0 is invariant for the corresponding SDE. The explicit form of −L is given by:

−L = eη [H− E0] (e−η ·) = −1
2

e2η∇ ·
(

e−2ηa∇·
)
+ J · ∇.

Corollary 1. Applying Lemma 1 to (7), we have:

1
ψ0

(H− E0)(ψ0 f ) = −
(
− h̄2

m
∇η · ∇ f +

h̄2

2m
∆ f

)
= −L f ,

where L is the Koopman generator of a drift-diffusion process (see Remark 1) with potential (up to an
additive constant):

V(x) =
h̄2

m
η(x),

and temperature β−1 = h̄2

2m .

We will exploit this duality below to apply methods developed for the Koopman operator or
generator to the Schrödinger operator. More details on quantum chemistry in general and also the
quantum harmonic oscillator and the hydrogen atom studied in Section 4 can be found, e.g., in [25].

2.4. Reproducing Kernel Hilbert Spaces and Derivative Reproducing Properties

We aim at representing the differential operators introduced above in reproducing kernel
Hilbert spaces.

Definition 1. Let X be a set and H a space of functions f : X → R. Then, H is called an RKHS with inner
product 〈·, ·〉H if a function k : X×X→ R exists such that:
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(i) 〈 f , k(x, ·)〉H = f (x) for all f ∈ H and
(ii) H = span{k(x, ·) | x ∈ X}.

The function k is called a kernel. It was shown that every RKHS has a unique symmetric
positive definite reproducing kernel and that, conversely, every symmetric positive definite kernel
spans a unique RKHS; see [26–28]. Here, we use the terms positive definite and strictly positive
definite, i.e., positive definite means that ∑M

r=1 ∑M
s=1 γrγs k(xr, xs) ≥ 0 for all M ∈ N, γ1, . . . , γM ∈ R,

and x1, . . . , xM ∈ X. Frequently used kernels include the polynomial kernel and the Gaussian kernel,
given by:

k(x, x′) = (c + x>x′)q and k(x, x′) = exp

(
−‖x− x′‖2

2ς2

)
,

respectively. Here, q ∈ N is the degree of the polynomial kernel, c ≥ 0 a parameter, and ς the
bandwidth of the Gaussian kernel. We now introduce the partial derivative reproducing properties of
RKHSs [16]. Let α = (α1, . . . , αd) ∈ Nd

0 be a multi-index and |α| = ∑d
i=1 αi. Furthermore, for a fixed

p ∈ N0, we define the index set Ip = {α ∈ Nd
0 : |α| ≤ p}. Given f : X → R, let Dα denote the partial

derivative (assuming it exists):

Dα f =
∂|α|

∂xα1
1 . . . ∂xαd

d
f .

Thus, the ith entry of the gradient is given by Dei f and the (i, j)th entry of the Hessian by Dei+ej ,
where ei and ej are the ith and jth unit vectors, respectively. When we apply the differential operator
Dα to the kernel k, the multi-index α is assumed to be embedded into N2 d

0 by adding zeros, i.e.,
the derivatives are computed with respect to the first argument of the kernel. Furthermore, when we
write∇k(x, x′), the gradient is computed with respect to x. In what follows, let k(x, ·) = φ(x), where φ

is the canonical feature space mapping.

Theorem 1 ([16]). Given p ∈ N0 and a positive definite kernel k : X × X → R with k ∈ C2 p(X × X),
the following holds:

(i) Dαk(x, ·) ∈ H for any x ∈ X and α ∈ Ip.
(ii) (Dα f )(x) = 〈Dαk(x, ·), f 〉H for any x ∈ X, f ∈ H, and α ∈ Ip.

The second property is called the derivative reproducing property. For p = 0, this reduces to the
standard reproducing property of RKHSs.

Example 1. Let us consider the two aforementioned kernels:

1. For the polynomial kernel, we obtain:

Dei k(x, x′) = q x′i(c + x>x′)q−1 and Dei+ej k(x, x′) = q (q− 1)x′i x′j(c + x>x′)q−2.

Thus, ∇k(x, x′) = q x′ (c + x>x′)q−1 and ∇2 k(x, x′) = q (q− 1)x′ x′>(c + x>x′)q−2.
2. Similarly, for the Gaussian kernel, this results in:

Dei k(x, x′) = − 1
ς2 (xi − x′i)k(x, x′),

Dei+ej k(x, x′) =


[

1
ς4 (xi − x′i)

2 − 1
ς2

]
k(x, x′), i = j,

1
ς4 (xi − x′i)(xj − x′j)k(x, x′), i 6= j,

∇k(x, x′) = − 1
ς2 (x− x′)k(x, x′), and ∇2 k(x, x′) =

[
1
ς4 (x− x′)(x− x′)> − 1

ς2 I
]
k(x, x′).
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For the numerical experiments below, we will mainly use the Gaussian kernel. (To get error
estimates, it might be more convenient to use Wendland functions [19]. We leave the formal analysis
of the methods developed in this paper for future work.)

3. Kernel-Based Representation of Differential Operators

In this section, we introduce the Galerkin projection of the differential operators discussed above
onto the RKHS, including the Koopman generator and Schrödinger operator. We then move on to
show how these projected operators can be estimated from data.

3.1. Galerkin Projection of Operators

Let µ denote a probability measure on the state space X, with density ρ0 ∝ e−F for a generalized
potential F.

Definition 2. We define the covariance operator C00 : H→ H by:

C00 =
∫

φ(x)⊗ φ(x)dµ(x), (8)

and an operator TH : H→ H by:

TH =
∫

φ(x)⊗
[
−1

2

d

∑
i=1

d

∑
j=1

aij(x)Dei+ej φ(x)

]
dµ(x)

+
∫

φ(x)⊗
[

d

∑
i=1

(
Ji(x)− 1

2
eF(x)∇ · (e−F(x)a:,i(x))

)
Dei φ(x)

]
dµ(x)

+
∫

W(x)φ(x)⊗ φ(x)dµ(x).

(9)

If J ≡ 0, we define TH by:

TH =
∫ [1

2

d

∑
i=1

d

∑
j=1

aij(x) (Dei φ(x)⊗ Dej φ(x))

]
+ W(x)φ(x)⊗ φ(x)dµ(x). (10)

The operator C00 is the standard covariance operator CXX; see [29,30]. The operator TH mimics
the action of the bilinear form 〈T f , g〉µ on the RKHS. It plays the same role as the cross-covariance
operator CXY for the Koopman operator in [15]. The form of the symmetric operator for J ≡ 0 is
motivated by the symmetry of T , and that, at least formally:

〈T f , g〉µ =
∫ [1

2
∇ f (x)>a(x)∇g(x)

]
+ W(x) f (x)g(x)dµ(x);

see also [31].

Lemma 2. Assume that H ⊂ D(T ) and that all terms appearing under the integral signs in (8) and (9)
(or (10)) are in L1

µ as bounded operators on H, that is:

∫
|aij(x)|‖Dei+ej φ(x)‖H‖φ(x)‖Hdµ(x) < ∞, (11)∫ (
|Ji(x)|+ 1

2
eF(x)|∇ · (e−F(x)a:,i(x))|

)
‖Dei φ(x)‖H‖φ(x)‖Hdµ(x) < ∞, (12)∫

|W(x)|‖φ(x)‖H‖φ(x)‖Hdµ(x) < ∞, (13)∫
‖φ(x)‖H‖φ(x)‖Hdµ(x) < ∞. (14)
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Then, for all f , g ∈ H,

〈T f , g〉µ = 〈TH f , g〉H , 〈 f , g〉µ = 〈C00 f , g〉H .

The proof can be found in Appendix A. It uses the derivative reproducing properties and the
definition of rank-one operators. Note that:

Dei f (x)g(x) = 〈Dei φ(x), f 〉H 〈φ(x), g〉H
= 〈Dei φ(x)⊗ φ(x), f ⊗ g〉H⊗H
= 〈(φ(x)⊗ Dei φ(x)) f , g〉H .

Lemma 3. Assume that T f ∈ H for all f ∈ H, then TH f = C00T f .

Proof. The proof is similar to the one for the corresponding result for kernel transfer operators; see [15].
With the previous lemma, we obtain:

〈C00T f , g〉H = Eµ[(T f )(x)g(x)]

=
∫
(T f )(x)g(x)dµ(x)

= 〈TH f , g〉H

for arbitrary g ∈ H.

If the assumptions of Lemma 3 are satisfied and the operator C00 is invertible, the RKHS operators
defined above can be used to compute exact eigenfunctions of T . Indeed, if ϕ is a solution of:

THϕ = C00T ϕ = λC00 ϕ,

then multiplying this equation by C−1
00 shows that ϕ is also an eigenfunction for T . A typical approach

to circumvent the potential nonexistence of the inverse of the covariance operator is to consider a
regularized version Tε = (C00 + εI)−1TH for a regularization parameter ε. However, the assumptions
of Lemma 3 are strong and may be hard to verify in practice. However, in any case, Lemma 2 shows
that the operators defined in Definition 2 provide a Galerkin approximation of the full operator in the
RKHS H.

3.2. Empirical Estimates

The next step is to derive empirical estimates of the operators defined above. Given training
data {xm }M

m=1, sampling the probability distribution µ, we define Φ = [φ(x1), . . . , φ(xM)] and dΦ =

[dφ(x1), . . . , dφ(xM)], where:

dφ(xm) = −
1
2

d

∑
i=1

d

∑
j=1

aij(xm)Dei+ej φ(xm)

+
d

∑
i=1

[
Ji(xm)−

1
2

d

∑
j=1

eF(xm) ∂

∂xj
(e−F(xm)aji(xm))

]
Dei φ(xm)

+ W(xm)φ(xm).

If T is the generator of an SDE with invariant measure µ, the data can also be obtained by
integrating the stochastic dynamics with the initial condition drawn from µ. We see that Φ is the
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standard feature map and dΦ contains the action of the differential operator. The empirical estimates
of the operators C00 and TH are then given by the following expressions:

Ĉ00 =
1
M

M

∑
m=1

φ(xm)⊗ φ(xm) =
1
M

ΦΦ>,

T̂H =
1
M

M

∑
m=1

φ(xm)⊗ dφ(xm) =
1
M

ΦdΦ>.

Note that these are still finite-rank operators on the full RKHS H. For the symmetric RKHS
operator TH, we need to define the empirical estimate in a slightly different way. Decompose the
positive definite matrix a(xm) = σ(xm)σ(xm)>. With:

dφl(xm) =
d

∑
i=1

σil(xm)Dei φ(xm) =
[
∇φ(xm)

>σl(xm)
]

,

where σl is the lth column of σ, the empirical RKHS operator becomes:

T̂H =
1

2M

M

∑
m=1

d

∑
l=1

dφl(xm)⊗ dφl(xm) +
1
M

M

∑
m=1

W(xm)φ(xm)⊗ φ(xm).

Remark 3. If the feature space associated with the kernel k is finite-dimensional and known explicitly, i.e.,
φ(x) = [φ1(x), . . . , φN(x)]> and k(x, x′) = 〈φ(x), φ(x′)〉, then for the Koopman generator, we obtain
gEDMD as a special case, with Ĉ00 = Ĝ and T̂H = −Â>. However, the goal is to rewrite gEDMD in such a
way that only kernel evaluations are required since φ can potentially be infinite-dimensional and might only be
defined implicitly.

3.3. Weak Formulation and Numerical Algorithm

With Lemma 2 in mind, we now proceed to the weak formulation of the eigenvalue problem for
the operator T . We then define the quadratic forms:

Q( f , g) = 〈T f , g〉µ , f , g ∈ DQ, S( f , g) = 〈 f , g〉µ , f , g ∈ L2
µ,

QH( f , g) = 〈TH f , g〉H , f , g ∈ H, SH( f , g) = 〈C00 f , g〉H , f , g ∈ H,

Q̂H( f , g) =
〈
T̂H f , g

〉
H

, f , g ∈ H, ŜH( f , g) =
〈
Ĉ00 f , g

〉
H

, f , g ∈ H,

where DQ is the domain of the quadratic form Q. We consider the weak eigenvalue problems:

Q( fn, g) = λnS( fn, g) ∀g ∈ DQ, (15)

QH( f̃n, g) = λ̃nSH( f̃n, g) ∀g ∈ H, (16)

Q̂H( f̂n, g) = λ̂nŜH( f̂n, g) ∀g ∈ H. (17)

We will now rewrite (17) in such a way that only kernel evaluations—in the form of Gram
matrices—are required. The derivation is similar to the kernel transfer operator counterpart in [15],
but we now need to consider derivatives at the training data points instead of the time-lagged variables.
We start by restricting (17) to the finite-dimensional space HM = span{φ(xm)}M

m=1, which we assume
to be M-dimensional. Elements of this space are of the form f = Φ u for some vector u ∈ Rm.
We examine the quadratic forms Q̂H and ŜH on this space.

Lemma 4. A solution of the problem Q̂H( f , g) = λ̂ ŜH( f , g) is given by f = Φ u, where u is a solution of one
of the following generalized eigenvalue problems:
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(i) In the general case, u solves G2 u = λ̂ G0 u, where the entries of the matrices G2 and G0 are given by:[
G2
]

mr = [dφ(xm)] (xr),
[
G0
]

mr = [φ(xm)] (xr).

(ii) Analogously, for the symmetric case, we obtain 1
2 ∑d

l=1 G(l)
1 G(l)

1 u = λ̂ G0 G0 u, where we define:[
G(l)

1

]
mr

= σl(xm)
>∇k(xm, xr)

and σl(xm) is the lth column of the matrix σ(xm).

The proofs are shown in Appendix A. Since [φ(xm)] (xr) = k(xm, xr), G0 is the standard
Gram matrix. The reversible case requires only first-order derivatives of the kernel. Furthermore,
only trajectory data sampled from the invariant distribution µ and estimates of the diffusion term σ

are needed. For typical problems, σ is constant and not position-dependent. As a result, the diffusion
term needs to be estimated only once or might even be known. For molecular dynamics problems,
for instance, it is proportional to the square root of the temperature. The overall approach is
summarized in the following algorithm. Note that it is not a direct kernelization of gEDMD, but an
extension that approximates the Koopman generator as a special case.

Algorithm 1. The final numerical algorithm can be summarized as follows:

1. Choose a kernel k and compute all its required derivatives, either analytically or with the aid of automatic
differentiation.

2. Assemble the Gram matrices G2 and G0 or, if the system is symmetric, G(l)
1 , for l = 1, . . . , d, and G0.

3. Solve the corresponding eigenvalue problem described in Lemma 4 to obtain an eigenvector u.
4. An eigenfunction is then given by ϕ = Φ u.

The two main steps of the algorithm are assembling the Gram matrices and solving the generalized
eigenvalue problem. Since the size of the eigenvalue problem depends on the number of data points,
the cost is cubic in M. This is a drawback of many kernel-based methods. The efficient approximation
of solutions to this eigenvalue problem for large datasets will be considered in future work.

3.4. Analysis

In this section, we provide some preliminary analysis of the methods introduced above. The first
result concerns the convergence of the empirical estimates.

Lemma 5. As M → ∞, the empirical estimates defined in Section 3.2 converge to the corresponding RKHS
operators in Definition 2 with respect to the operator norm for almost all data sequences {xm }M

m=1, if the data
were generated either as i.i.d. samples from µ or by integrating a stochastic dynamics, which is ergodic with
respect to µ.

Proof. The statement follows from ergodicity of the underlying dynamics, the integrability conditions
in Lemma 2, and the Birkhoff individual ergodic theorem for Banach space valued functions [32].

Next, we generalize ([33] Theorem 7) to obtain convergence rates on the empirical estimates for
i.i.d. data:

Lemma 6. Assume that (11– 14) hold. Then:

(i) The operators C00, Ĉ00, TH, and T̂H are Hilbert–Schmidt.
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(ii) Let δ ∈ (0, 1]. Assume the coefficients of the operator T are all globally bounded, and let
supx∈X Dαk(x, x) < ∞ for all |α| ≤ 4 (|α| ≤ 2 in the symmetric case). If the data are drawn
i.i.d. from the distribution µ, then there are constants κ0, κ1 such that with probability at least 1− δ,

‖C00 − Ĉ00‖HS ≤
2κ0
√

2√
M

log1/2 2
δ

, ‖TH − T̂H‖HS ≤
2κ1
√

2√
M

log1/2 2
δ

,

where the ‖·‖HS is the Hilbert–Schmidt norm.

Proof. (i) The empirical estimates are all finite rank and, therefore, Hilbert-Schmidt. For C00 and TH,
this follows from the integrability conditions and the first part of the proof of Lemma 2; see Appendix A.
(ii) For C00, the bound was already proven in [33] with κ0 = supx∈X k(x, x)2. We can employ the same
strategy to obtain the bound for TH. Consider the operator T̂ m

H = φ(xm)⊗dφ(xm)−TH, which satisfies
Eµ[T̂ m

H ] = 0. By global boundedness of the coefficients of T and by:

‖φ(x)⊗ Dαφ(x)‖HS = ‖φ(x)‖H‖Dαφ(x)‖H
= 〈k(x, ·), k(x, ·)〉1/2

H 〈Dαk(x, ·), Dαk(x, ·)〉1/2
H

= k(x, x)1/2D2αk(x, x)1/2,

we can find a κ1 such that ‖φ(x)⊗ dφ(x)‖HS ≤ κ1 for all x ∈ X. We then have ‖T̂ m
H ‖HS ≤ 2κ1, and the

result follows from the concentration bound ([33] Equation (3)).

Finally, we show that solutions of (16) are also eigenvalues of the full operator T if the RKHS is
dense in DQ:

Proposition 1. Let H be dense in DQ with respect to the norm in L2
µ. If ψ̃` ∈ H is an eigenfunction of (16),

it is also an eigenfunction of T with the same eigenvalue.

Proof. Let ψ̃` solve the variational problem (16). The definition of the operators C00, TH implies that
for all φ ∈ H: 〈

T ψ̃`, φ
〉

µ
=
〈
THψ̃`, φ

〉
H = λ̃`

〈
C00ψ̃`, φ

〉
H = λ̃`

〈
ψ̃`, φ

〉
µ

.

By the density of the RKHS, this also holds for all φ ∈ DQ, and consequently, ψ̃` is an eigenfunction
of T .

Note that even if the RKHS is dense, there might be additional eigenfunctions that are not
contained in H and that will not appear as solutions of (16).

4. Applications

The methods described above have important applications in molecular dynamics and quantum
physics, which we will show in an exemplary way, but can in principle be applied to data generated by
arbitrary dynamical systems and also other differential operators. The code and select examples
are available online [34]. Note that this is just a proof-of-concept implementation and that the
methods could be sped up significantly by vectorizing and parallelizing the code and by tailoring the
implementation to specific kernels.

4.1. Molecular Dynamics

Eigenvalues and eigenfunctions of transfer operators associated with molecular dynamics
problems are often used to understand protein folding or binding/unbinding processes and their
implied time scales. Conformations correspond to metastable sets and transitions between different
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conformations to crossing energy barriers. The slowest dynamical processes are encoded in
eigenfunctions whose eigenvalues are close to zero. Large-scale molecular dynamics examples,
analyzed using kernel EDMD, can also be found in [35]. In this paper, we want to focus more
on new applications.

Example 2. Let us consider the simple quadruple-well problem whose potential V is visualized in Figure 1a;
see also [13]. We first generate an equilibrated trajectory so that the training dataset of size M = 5000 is
sampled from the invariant distribution and then apply kernel gEDMD for reversible processes, choosing a
Gaussian kernel with bandwidth ς = 0.5. The operator −L has four dominant eigenvalues λ0 = 0.009,
λ1 = 0.400, λ2 = 1.011, and λ3 = 1.55, followed by a spectral gap. We then apply SEBA (sparse eigenbasis
approximation; see [36]) to cluster the dominant eigenfunctions into four metastable sets. The results are shown
in Figure 1b. As expected, the sets correspond to the wells of the potential. The computation and clustering of
the eigenfunctions took approximately four minutes on a standard laptop (8 cores, 1.80 GHz, 16 GB of RAM).
For comparison, we estimated the generator eigenvalues using a Markov state model. Applying both methods to
20 different trajectories, we computed the average of the eigenvalues and the standard deviation, see Figure 1c.
The results were in excellent agreement. Clearly, the standard deviation increased for higher eigenvalues.

(a) (b) (c)

Figure 1. (a) Quadruple-well potential. The color blue corresponds to small values and yellow to large
values. (b) Clustering into four metastable sets based on sparse eigenbasis approximation (SEBA).
(c) Eigenvalues computed using kernel generator extended dynamic mode decomposition (gEDMD)
and a Markov state model. The bars indicate the estimated standard deviation.

4.2. Quantum Mechanics

The goal now is to apply data-driven methods to simple quantum mechanics problems of the
form (7) withH = − h̄2

2m ∆ + W.

4.2.1. Generator EDMD for the Schrödinger Equation

Let us consider two systems for which the eigenfunctions are well known.

Example 3. For the quantum harmonic oscillator with angular frequency ω, the potential can be written as
W(x) = 1

2 mω2x2. The eigenfunctions ψ` and corresponding energy levels E` of this system can be computed
analytically, and we obtain:

ψ`(x) =
1√
2` `!

(mω

πh̄

)1/4
exp

(
−mω

2h̄
x2
)

H`

(√
mω

h̄
x
)

and E` = h̄ ω
(
`+ 1

2

)
, for ` = 0, 1, 2, . . . . Here, H` denotes the `th physicists’ Hermite polynomial. For the

numerical experiments, we set h̄ = m = ω = 1. Furthermore, the bandwidth of the kernel is set to ς = 1.
Computing the Gram matrices G2 and G0 for 100 uniformly distributed points in [−5, 5] and solving the
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corresponding eigenvalue problem, this results in the eigenfunctions shown in Figure 2. The probability densities
p` are defined by p`(x) = |ψ`(x)|2.

(a) (b)

Figure 2. (a) Numerically computed eigenfunctions ψ` and associated energy levels E` of the
quantum harmonic oscillator. The results are virtually indistinguishable from the analytical results.
(b) Corresponding probability densities p`.

Example 4. As a second example, let us analyze the Schrödinger equation for the hydrogen atom, where W(x) =
− e2

4πε0‖x‖
, with x ∈ R3. Here, e is the electron charge and ε0 the vacuum permittivity. Note that the parameter

m in front of the Laplacian is the reduced mass of the system. As before, we define the physical constants to be
one and use the Gaussian kernel, now with bandwidth ς = 2. We then generate 5000 uniformly distributed test
points in the ball with radius 20 and compute the Gram matrices G2 and G0. Solving the resulting eigenvalue
problem, we obtain the eigenfunctions shown in Figure 3. As expected, there are several repeated eigenvalues
(up to small perturbations due to the randomly sampled test points and numerical errors) for the higher energy states.

(a) (b)

(c) (d)

Figure 3. Numerically computed eigenfunctions of the Schrödinger equation associated with the
hydrogen atom. Only points where the absolute value of the eigenfunction is larger than a given
threshold are plotted. The shapes clearly resemble the well-known hydrogen atom orbitals shown next
to the scatter plots. The eigenfunctions (or rotations thereof) correspond to the following quantum
numbers (n, `, m): (a) (1, 0, 0), (b) (2, 1, 1), (c) (3, 2, 1), and (d) (4, 3, 1).
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4.2.2. SDE Formulation of the Schrödinger Equation

In order to derive gEDMD, we went from the stochastic differential equation to the Kolmogorov
backward equation, which is the generator of the Koopman operator, or the adjoint Fokker–Planck
equation, which is the generator of the Perron–Frobenius operator. Exploiting the resemblance
between these two equations and the Schrödinger equation, we illustrated how data-driven methods
can, in the same way, be used to compute wavefunctions. We now want to go in the opposite direction
and find a stochastic differential equation whose eigenfunctions correspond to the wavefunctions.
Formal similarities between quantum mechanics and the theory of stochastic processes have
been investigated since the beginning of quantum mechanics by Schrödinger and others (see,
for example, [37] and the references therein). The necessary transformations were already introduced
in Section 2.3; we now want to exploit these relationships. Let us consider the two aforementioned
examples again.

Example 5. Using Corollary 1, the quantum harmonic oscillator can be transformed into an
Ornstein–Uhlenbeck process:

dXt = −α Xt dt +
√

2β−1 dBt,

with friction coefficient α = h̄ω and temperature β−1 = h̄2

2m . Since the eigenvalues of the Ornstein–Uhlenbeck
process are λ` = −α` = −h̄ω`, the resulting eigenvalues of the quantum harmonic oscillator are E` =

E0 − λ` = h̄ ω
(
`+ 1

2

)
. Correspondingly, the (unnormalized) eigenfunctions of the Ornstein–Uhlenbeck

process are ϕ`(x) = H̃`(
√

αβ x), where H̃` is the `th probabilists’ Hermite polynomial. Thus,

ψ`(x) = ψ0(x)H̃`

(√
2mω

h̄
x

)
= exp

(
−mω

2h̄
x2
)

H`

(√
mω

h̄
x
)

,

which is consistent with the results obtained above. In the last step, we transformed the probabilists’ Hermite
polynomials into the physicists’ Hermite polynomials.

Example 6. Similarly, for the hydrogen atom, whose ground state is given by:

ψ0(x) =
1√
πa3

0

exp
(
− 1

a0
‖x‖

)
,

where a0 = 4πε0 h̄2

me2 , we obtain V(x) = h̄2

m a0
‖x‖, and thus:

∇V(x) =
h̄2

m a0

x
‖x‖ .

There are now two options to compute the eigenfunctions numerically: we can either directly apply kernel
gEDMD to the Koopman generator or generate time-series data by integrating the stochastic differential equation
and then applying kernel EDMD or simply Ulam’s method. We proceed with the former, but the latter leads
to comparable results (although typically, more data points are required to achieve the same accuracy due to
the stochasticity). We again generate uniformly distributed test points xm in the ball with radius 20, this time
m = 10, 000, and use the Gaussian kernel with bandwidth ς = 2. This results in the same eigenfunctions
as the ones shown in Figure 3. Due to the larger number of test points, even higher energy states can be well
approximated. Two additional eigenfunctions are shown in Figure 4.
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(a) (b)

Figure 4. Eigenfunctions of the Schrödinger equation associated with the hydrogen atom computed by
applying kernel gEDMD to the corresponding Koopman generator. The quantum numbers (n, `, m)

are: (a) (3, 2, 0) and (b) (4, 3, 2).

The examples illustrate that instead of solving partial differential equations, we can also compute
eigenfunctions by approximating the Koopman operator from time-series data. The question under
which conditions a non-degenerate strictly positive ground state exists needs to be addressed separately.
One important theorem can be found in [38]:

Theorem 2. Let L2
loc(X) be the space of locally square-integrable functions and W ∈ L2

loc(X) positive. Suppose
lim|x|→∞ W(X) = ∞, then −∆ + W has a non-degenerate strictly positive ground state.

There are other results concerning the existence of such states; see [38] for details. Furthermore,
diffusion Monte Carlo methods, which simultaneously compute the ground state energy and
wavefunction, rely on similar assumptions [39]. However, in many cases of interest, the ground
state of fermionic systems will have nodes so that these methods are not applicable [39]. The work
presented here aims mainly at linking different operators describing the evolution of dynamical
systems; more detailed relationships—in particular with the aforementioned diffusion Monte Carlo
methods—and practical implications will be studied in future work.

4.3. Manifold Learning

So far, we assumed that the data were generated by a dynamical system. There is, however,
a second scenario without any notion of time, where the Kolmogorov backward equation
and Fokker–Planck equation are used for dimensionality reduction and manifold learning [21];
see also [20,22,23] and the references therein.

Let the data points {xm }M
m=1 be sampled from an arbitrary probability density ρ, then we can

define the associated potential by:
U(x) = − log ρ(x).

It was shown in [21] that, depending on some normalization parameter α, anisotropic diffusion
maps approximate operators of the form:

Lα f = −2(1− α)∇U · ∇ f + ∆ f .

That is, for α = 1
2 , we obtain the standard Kolmogorov backward equation with β = 1. Thus,

the algorithms described above could also potentially be used for manifold learning purposes. We will
illustrate this with a simple example.
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Example 7. We consider the well-known Swiss roll; see, for instance, [23]. The goal is to parametrize the
two-dimensional manifold. We use kernel density estimation, cf. [40], and a Gaussian kernel with bandwidth
ς = 0.22 to learn U(x), i.e.,

U(x) =
1

M(
√

2π ς)d

M

∑
m=1

k(x, xm)

and approximate the backward Kolmogorov operator by applying kernel gEDMD. Here, M = 2000 and d = 2.
The results are shown in Figure 5. The first eigenfunction parametrizes the angular direction, followed by higher
order modes, and only the sixth eigenfunction corresponds to the x3 direction. Considering these eigenfunctions
as new coordinates, we obtain an unfolding of the roll. Note that also diffusion maps do not yield perfect
rectangles in the embedded space due to the non-uniform density of points on the manifold [23].

(a) (b) (c)

Figure 5. Swiss roll colored with respect to the eigenfunctions (a) ϕ0 and (b) ϕ5, which parametrize the
angular and vertical direction, respectively. (c) Resulting two-dimensional embedding.

These results demonstrate that the eigenfunctions of certain differential operators capture
geometrical properties of the data. However, the assumption that a strictly positive density in
the ambient space exists will in general not be satisfied if the data are supported only on a lower
dimensional manifold. This problem was circumvented by using kernel density estimation and a
kernel with global support. Carrying over the definition of the differential operators involved and
of their kernel-based analogues to the manifold case are beyond the scope of this paper and will be
studied in future work. The same applies to the investigation of detailed relationships with diffusion
maps or other manifold learning techniques. Concepts like neighborhood and sparsity will then need
to be carried over to gEDMD to make this method amenable to large datasets. Furthermore, heuristics
to find the optimal bandwidth ς are required since the results often strongly depend on the kernel
hyperparameters.

5. Conclusions

Using the theory of derivative reproducing kernel Hilbert spaces, we derived a kernel-based
formulation of gEDMD for approximating the Koopman generator, which allowed for the computation
of eigenfunctions of potentially high-dimensional stochastic dynamical systems. If the system is
reversible, the generator can be approximated from equilibrated time-series data, without having
to estimate the drift and diffusion terms at the training data points. Furthermore, we showed that
data-driven methods developed for the analysis of stochastic dynamical systems (kernel EDMD)
can be carried over to their generators (kernel gEDMD) and, in turn, to the Schrödinger operator.
Conversely, under certain assumptions on the ground state, the Schrödinger equation can be turned
into a Kolmogorov backward equation corresponding to a drift-diffusion process. These results are
summarized in Figure 6. Similar transformations also exist for the Fokker–Planck operator; see [24].
All derived approaches were illustrated with numerical results ranging from molecular dynamics to
quantum mechanics.
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Koopman operator

Kt f = E[ f (Θt(·))]

Kolmogorov backward operator

L f = −∇V · ∇ f + β−1∆ f

Schrödinger operator

Hψ =
(

W − h̄2

2m ∆
)

ψ

L f = lim
t→0

1
t
(
Kt f − f

)
Kt f = eLt f

Hψ = ρ1/2
0 L(ρ

−1/2
0 ψ)L f = − 1

ψ0
(H− E0) (ψ0 f )

Figure 6. Relationships between the Koopman, Kolmogorov, and Schrödinger operators for a
drift-diffusion process of the form dXt = −∇V(Xt)dt +

√
2β−1 dBt. Here, ρ0 denotes the invariant

density, i.e., L∗ρ0 = 0. In our setting, the transformation of the Schrödinger operator requires a strictly
positive real-valued ground state ψ0.

Although we focused mainly on the Kolmogorov backward equation, the Fokker–Planck equation,
and the Schrödinger equation, these methods can be applied to approximate other differential operators
as well. An interesting open question is whether such algorithms can also be used for manifold learning.
Some preliminary results were presented in Section 4, but a rigorous mathematical justification
would require significant additional research. Analyzing connections with diffusion maps [20] or
generalizations thereof in detail could be a potential direction for future work.

Another interesting avenue for future research could be to improve the efficiency and stability
of the presented algorithms. Exploiting the properties of the given kernels, it might be possible to
speed up computations significantly. The definition of a cutoff radius for the kernel or considering
only a certain number of neighbors of data points, for instance, would—for suitable problems—result
in sparse matrices. Moreover, the results sensitively depend on the hyperparameters such as the
bandwidth of the Gaussian kernel. If the bandwidth is too small, this leads to overfitting and noisy
eigenfunctions. If it is, on the other hand, too large, then the kernel is not able to capture the properties
of the dynamical system accurately anymore. As a result, the Gram matrix G0 has (numerically)
essentially a low rank structure, and we obtain many zero eigenvalues. The question is then how to
compute the smallest nonzero eigenvalues and corresponding eigenvectors efficiently.

Potential solutions for the hyperparameter tuning problem are techniques based on
cross-validation [41] or so-called kernel flows [42]. By defining an optimization problem for the
parameters of the kernel, e.g., based on a variational principle [43], gradient descent methods can help
find suitable parameter values.
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Appendix A. Proofs

Proof of Lemma 1. The unitary transformation isH = −e−
1
2 FL

(
e

1
2 F·
)

. We obtain:

H f = e−
1
2 FS

(
e

1
2 F f
)
+ e−

1
2 F J ·

(
e

1
2 F∇ f +

1
2

e
1
2 F f∇F

)
= e−

1
2 FS

(
e

1
2 F f
)
+ J · ∇ f +

1
2

J · ∇F f ,

which establishes the first-order term inH and the third term in the definition of W. For the symmetric
part, we find that:

e−
1
2 FS

(
e

1
2 F f
)
= −1

2
e

1
2 F∇ · (e−Fa∇(e

1
2 F f ))

= −1
2

e
1
2 F∇ · (e−

1
2 Fa[∇ f +

1
2
∇F f ])

= −1
2
∇ · (a∇ f ) +

1
4
∇F>a∇ f − 1

4
e

1
2 F∇ · (e−

1
2 F f a∇F),

which establishes the second-order term in the definition of H. Expanding the third term above,
we get:

−1
4

e
1
2 F∇ · (e−

1
2 F f a∇F) = −1

4
∇ · (a∇F) f − 1

4
∇ f>a∇F +

1
8
∇F>a∇F f ,

which cancels out the second term of the previous equation and establishes the remaining terms for W.
For the converse direction, we first translate the eigenvalue equation for ψ0 into an equation for η:

0 = (H− E0)ψ0 = −1
2
∇ ·

(
a∇e−η

)
+ J · ∇e−η + (W − E0)e−η

= −1
2
∇ ·

(
−e−ηa∇η

)
− J · ∇ηe−η + (W − E0)e−η

= e−η

[
1
2
∇ · (a∇η)− 1

2
∇η>a∇η − J · ∇η + W − E0

]
,

implying that the term in brackets is also vanishing. Now, we define the negative generator by the
transformation −L = eη [H− E0] (e−η ·). Expanding the action of −L, we find:

−L f = eη

[
−1

2
∇ ·

(
a∇(e−η f )

)
+ J · ∇(e−η f ) + (W − E0)(e−η f )

]
= eη

[
−1

2
∇ ·

(
e−ηa[∇ f −∇η f ]

)
+ e−η J · ∇ f + (W − E0 − J · ∇η)(e−η f )

]
= −1

2
∇ · (a∇ f ) +

1
2
∇η>a∇ f +

1
2
∇ · (a∇η) f +

1
2
∇η>a∇ f − 1

2
∇η>a∇η f+

J · ∇ f + (W − E0 − J · ∇η) f

= −1
2
∇ · (a∇ f ) +∇η>a∇ f + J · ∇ f

= −1
2

e2η∇ ·
(

e−2ηa∇ f
)
+ J · ∇ f .

Proof of Lemma 2. We only show the proof for TH. Similar to the argument in [44], TH is a bounded
linear operator on H because of:∥∥∥∥ ∫ φ(x)⊗

[
−1

2

d

∑
i=1

d

∑
j=1

aij(x)Dei+ej φ(x)

]
dµ(x)
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+
∫

φ(x)⊗
[

d

∑
i=1

(
Ji(x)− 1

2
eF(x)∇ · (e−F(x)a:,i(x))

)
Dei φ(x)

]
dµ(x)

+
∫

W(x)φ(x)⊗ φ(x)dµ(x)
∥∥∥∥

HS

≤ 1
2

d

∑
i=1

d

∑
j=1

∫
|aij(x)|‖Dei+ej φ(x)‖H‖φ(x)‖Hdµ(x)

+
d

∑
i=1

∫ (
|Ji(x)|+ 1

2
eF(x)|∇ · (e−F(x)a:,i(x))|

)
‖Dei φ(x)‖H‖φ(x)‖Hdµ(x)

+
∫
|W(x)|‖φ(x)‖H‖φ(x)‖Hdµ(x)

< ∞.

Using the derivative reproducing property, we obtain:

〈T f , g〉µ =
∫
(T f )(x)g(x)dµ(x)

=
∫ [
−1

2

d

∑
i=1

d

∑
j=1

aij(x)
∂2 f

∂xi∂xj
(x)

]
g(x)dµ(x)

+
∫ [ d

∑
i=1

(
Ji(x)− 1

2
eF(x)∇ · (e−F(x)a:,i(x))

)
∂ f
∂xi

]
g(x)dµ(x)

+
∫

W(x) f (x)g(x)dµ(x)

=
∫ [
−1

2

d

∑
i=1

d

∑
j=1

aij(x)
〈

Dei+ej φ(x), f
〉
H

]
〈φ(x), g〉H dµ(x)

+
∫ [ d

∑
i=1

(
Ji(x)− 1

2
eF(x)∇ · (e−F(x)a:,i(x))

)
〈Dei φ(x), f 〉H

]
〈φ(x), g〉H dµ(x)

+
∫

W(x) 〈φ(x), f 〉H 〈φ(x), g〉H dµ(x)

= −
∫ [1

2

d

∑
i=1

d

∑
j=1

aij(x)
〈

Dei+ej φ(x)⊗ φ(x), f ⊗ g
〉
H⊗H

]
dµ(x)

+
∫ [ d

∑
i=1

(
Ji(x)− 1

2
eF(x)∇ · (e−F(x)a:,i(x))

)
〈Dei φ(x)⊗ φ(x), f ⊗ g〉H⊗H

]
dµ(x)

+
∫

W(x) 〈φ(x)⊗ φ(x), f ⊗ g〉H⊗H dµ(x)

= 〈TH f , g〉H .

The same argument can be used to prove the statement about the symmetric case.

Proof of Lemma 4. Let f = Φ u and g = Φ v. Then:

ŜH( f , g) =

〈[
1
M

M

∑
m=1

φ(xm)⊗ φ(xm)

]
M

∑
r=1

ur φ(xr),
M

∑
s=1

vs φ(xs)

〉
H

=
1
M

M

∑
m=1

M

∑
r=1

M

∑
s=1

ur vs 〈φ(xm), φ(xr)〉H 〈φ(xm), φ(xs)〉H

=
1
M

M

∑
m=1

M

∑
r=1

M

∑
s=1

ur vs k(xm, xr)k(xm, xs)
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=
1
M
〈G0 u, G0 v〉 .

Similarly,

Q̂H( f , g) =

〈[
1
M

M

∑
m=1

φ(xm)⊗ dφ(xm)

]
M

∑
r=1

ur φ(xr),
M

∑
s=1

vs φ(xs)

〉
H

=
1
M

M

∑
m=1

M

∑
r=1

M

∑
s=1

ur vs 〈dφ(xm), φ(xr)〉H 〈φ(xm), φ(xs)〉H

=
1
M
〈G2 u, G0 v〉 .

If the kernel functions at the training points are linearly independent, then G0 is invertible, and it
suffices to compute eigenvectors u of the generalized matrix eigenvalue problem G2 u = λ G0 u. In the
symmetric case, the expression for the quadratic form Q̂H( f , g) changes to:

Q̂H( f , g) =
1

2 M

d

∑
l=1

M

∑
m=1

M

∑
r=1

M

∑
s=1

ur vs

(
σl(xm)

>∇k(xm, xr)
) (

σl(xm)
>∇k(xm, xs)

)
=

1
2 M

d

∑
l=1

〈
G(l)

1 u, G(l)
1 v

〉
.
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