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Abstract: Mobile personalized learning can be achieved by the identification of students’ learning
styles; however, this happens with the completion of large questionnaires. This task has been reported
as tedious and time-consuming, causing random selection of the questionnaires’ choices, and thus,
erroneous adaptation to students” needs, endangering knowledge acquisition. Moreover, mobile
environments render the selection of questionnaires’ choices impractical due to confined mobile user
interfaces. In view of the above, this paper presents Learnglish, a fully developed mobile language
learning system incorporating automatic identification of students’ learning styles according to
the Felder-Silverman model (FSLSM) using ensemble classification. In particular, three classifiers,
namely SVM, NB and KNN, are combined based on the majority voting rule. The major innovation
of this task, apart from the ensemble classification and the mobile learning environment, is that
Learnglish takes as input a minimum number of personal (i.e., age and gender) and cognitive
characteristics (i.e., prior academic performance categorized using fuzzy weights), and solely four
questions pertaining to the FSLSM dimensions, to identify the learning style. Furthermore, Learnglish
incorporates adapted instructional routines to create an individualized learning environment based
on students’ learning preferences as determined by their style. Learnglish was fully evaluated with
very encouraging results.

Keywords: adaptive instructional routines; automatic detection of learning style; ensemble learning;
fuzzy weights; mobile learning

1. Introduction

During the last years, the rapid development of the internet and communications technology
has provoked remarkable changes to many aspects of people’s everyday life. Especially in the field
of education, people of all ages use technology to support their learning and knowledge acquisition
through e-learning systems [1]. As such, the ever-increasing need for digital education, overcoming
the barriers posed by place and time, has led to mobile learning (m-learning), which is learning across
multiple contexts using personal electronic devices. To this direction, mobile technology provided
all indispensable tools to support m-learning either in the context of formal or informal education.
When m-learning is used for the tutoring of foreign language, typically called as second language,
a new research area is born, named mobile-assisted language learning (MALL). MALL involves the
support of students’ language learning with the increased use of mobile technologies and handheld
devices. However, digital learning software and specifically MALL applications are oriented to a
heterogeneous group of learners having different knowledge background, preferences, needs and
interests [2]. Therefore, the emerging challenge is to develop learning technology systems that will be
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enriched with intelligent techniques in order to offer dynamic adaptation to students’ personal traits
(such as knowledge, needs and preferences) and create a personalized learning experience.

A solution to this challenge is the employment of personalization techniques [3]. Personalization
techniques are responsible to identify the students’ needs and preferences and respond to them by
building an individualized environment. They also assist the learning technology systems respond to
students’ personal needs by adapting the learning material to them in a dynamic way [4]. As such,
students can receive specific domain knowledge to be taught, being adapted to their model and
helping them decreasing the learning time. Furthermore, personalization techniques serve for the
detection and utilization of students’ learning styles [5]. The idea of individualized learning styles
influences education aiming to account for differences in individuals’ learning. Learning styles detection
underlines the fact that all people can be classified according to their “style” of learning, since people
differ in how they learn.

In view of the above, this paper seeks to answer three research questions:

(1) Can the learning style be identified automatically using only a minimum number of student
characteristics? (RQ1)

(2) Can m-learning environments be adjusted properly to students’ needs and preferences providing
individualized tutoring? (RQ?2)

(3) Do mobile applications provide a more flexible, attractive and effective learning environment
against web ones? (RQ3)

To this end, this paper presents an ensemble method for improving the automatic identification of
students’ learning styles according to the Felder Silverman learning style model (FSLSM). This ensemble
learning algorithm consists of three well-known classifiers, namely support vector machine (SVM),
naive Bayes (NB) and K-nearest neighbors (KNN), combined by the majority voting technique. FSLSM
was chosen since it is a learning style model which is tailored to technology-aided instruction and
provides a more detailed description of its dimensions in comparison to other learning styles, and thus,
it is considered as one of the most effective models [6]. FSLSM distinguishes four dimensions for
learning styles, namely perception, input, processing and understanding. The input of ensemble
method is the minimum required, i.e., only three student characteristics based on personal and cognitive
attributes; namely age, gender, prior academic performance, and only four questions pertaining to the
FSLSM dimensions. In particular, the prior academic performance is determined using fuzzy weights,
since there is a degree of uncertainty for the category to which a grade belongs; for instance, a grade
of 75 % can be characterized as partially good and partially very good. The output of the automatic
identification of students’ learning styles is the dimensions to which each learner belongs without
having to answer all the questions in the FSLSM questionnaire, which is a tedious and time-consuming
task. Then, based on the automatic identification of students’ learning styles, instructional routines are
involved in order to provide a more personalized learning experience based on their learning needs
and preferences.

As a testbed for our research, we developed a mobile application, called Learnglish, for the
tutoring of English as a foreign language oriented to Elementary school students which incorporates
the aforementioned module. It is further accentuated that in mobile environments, it is even more
difficult for students to answer an online questionnaire in order to find out their learning style due
to the limited ability for selection and reading. Thus, automation can be seen as the only option for
identifying the learning styles in such environments. Learnglish offers personalization and adaptation
to students regarding their learning style and preferences, creating a learning environment which
determines what a student is taught, how s/he is taught and if s/he is supported by peers in group
activities. Learnglish was used by elementary school students and was fully evaluated with positive
and encouraging results.

The remainder of this paper is organized as follows: In Section 2, an overview of the related
scientific literature is presented. In Section 3, an in-depth analysis of the ensemble automatic learning
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style identification of learning styles using ensemble classification and the adapted instructional routines
is presented. In Section 4, the evaluation results are discussed. Finally, in Section 5, the conclusions are
drawn and the future steps are described.

2. Related Work

Research interest has been placed on the automatic detection of students’ learning styles as a means
to create a student-centered learning experience. Towards this direction, researchers have used several
methods. For example, a review paper [7] points out that Bayesian network and rule-based algorithms
have been used for the automatic detection of the learning styles and that the detection of learning
styles could enhance the adaptive learning content delivery. Another review article [8], authors state
that most researchers use the students’ personality traits in adaptive learning environments as an input
to the learning style identification techniques. Also, in [9], the authors employed a tree augmented
naive Bayes network with greater detection accuracy in comparison to the Bayesian network. Another
research effort [10] suggests the employment of neural networks and fuzzy logic techniques for the
learning style detection; as reported by the authors, this resulted in the upgrading of the effectiveness
of e-learning and knowledge-management systems. Fuzzy logic has been used in [11] as a means to
automatically detect learning styles, taking as input solely learner’s navigational accesses data with
promising results for the efficiency and effectiveness of the entire learning process. As reported by
other studies [12,13], the learners’ skills and their prior knowledge are the key characteristics that have
been used towards the automatic detection of learning styles; both research efforts focused on mapping
students’ skills in terms of knowledge of facts and meaning and integration of and application of
knowledge being closely related to learning style. In [14], the authors present an automatic approach
for detecting students’ learning style based on web usage mining; specifically, the students’ log
files were classified using clustering algorithms with a view to detect their learning style. In [15],
the authors explored four computational intelligence techniques (artificial neural network, ant colony
optimization, genetic algorithm, and particle swarm optimization) to improve the accuracy of learning
style detection by employing the FSLSM and the students’ behavior. In [16], the authors presented an
inference engine incorporating a neural network and using certain observed parameters of learners’
behaviors to infer the learning style. In [17], the authors investigated the employment of the students’
behavior in a decision tree classifier for the detection of their learning style. Finally, in [18], the authors
proposed a model based on an artificial neural network to improve the accuracy of automatic learning
styles identification.

Summarizing, it needs to be noted that in all the aforementioned studies, a desktop user interface
is used and researchers use intelligent techniques (mainly Bayesian neural networks, rule-based
algorithms and fuzzy logic) to identify learning styles (Table 1). Furthermore, they use multiple
and numerous characteristics as predictors of learning styles, such as students’ interaction styles
(e.g., performance, time spent in assignments, etc.), sequencing actions, preference in assessment
units, gender, prior education, culture and ethnicity, background knowledge level, level of intelligence
(IQ classification), cognitive characteristics (such as learning capabilities), learning goals and motivation
level. However, after a thorough investigation in the related scientific literature, we came up with the
result that for the automatic identification of the learning style, the research efforts have not employed
yet ensemble classifiers taking as input only a minimum number of students’ personal and cognitive
characteristics, such as their age and gender and prior academic performance. There is scope for a lot
of research and improvement.
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Table 1. Related work.

Study Reference Characteristics Technology Learning Style

Learning behavior (visiting the

forum, sending and receiving Tree augmented naive

[71 e—ma11f watching Vl'dEOS, Bayesian network FSLSM
carrying out exercises,
communicating etc.)
9] Learners’ interactions (content, ~ Neural networks and fuzzy Honey and
forum, chat, etc.) logic Mumford model
[9] Learners’ navigational data Fuzzy logic Behavioral patterns
, .- . . Mental processing
[10] Learners’ cognitive skills Fuzzy logic modeling
Prior Knowledge (knowledge of
[11] fa}ct, knowledge of meaning, Rule-based association VARK
integration of knowledge,
application of knowledge)
[12] Web usage Custer analysis FSLSM
Artificial neural network,
, . Genetic algorithm,
[15] Learners’ behavior Ant colony system, Particle FSLSM
swarm optimization
[16] Learners’ behavior Artificial neural network Gardner’s theory
[17] Learners” actions Decision trees FSLSM
[18] Learners’ behavior Artificial neural network FSLSM

3. Automatic Identification of Learning Styles and Instructional Routines

In the related scientific literature, there are several learning style models, providing different
classification of learners, according to their preferences in the educational process. However, in this
work, the Felder Silverman learning style model (FSLSM) [19] was chosen, given that it comprises of
styles of a learner being presented in depth in comparison to other models distinguishing learners
in fewer styles [6]. Furthermore, another reason of this selection lies in the fact that FSLSM focuses
on learning inclinations; this accentuates the possibility that even though a learner demonstrates a
high preference in a specific style, s/he can occasionally act, showing a learning behavior of a different
learning style [6]. More specifically, according to FSLSM, learning styles classification is not strict;
for example, if a student is visual, preferring images, s/he can sometimes want to see text during the
educational process.

FSLSM is a model of learning styles namely of the manner according to which a student learns in
a more successful way. It is based on individual characteristics and preferences and is often used in
e-learning. Indeed, individual learning styles are significant to be examined for effective knowledge
acquisition because different students learn in different ways. FSLSM distinguishes and classifies
learners in four dimensions, which include values being associated with a binary division of learning
styles and denoting the pace of the educational process.

As mentioned above, FSLSM has four dimensions and each dimension specifies two contrary
learning styles as follows:

e Input: This dimension identifies how students prefer to receive external information or how to be
presented external stimuli. The learning styles of the input dimension are:

O  Visual: A visual learner prefers to see pictures, graphs, charts, diagrams and any kind of
information that is easily perceived simply by looking at it. Visual learners can better recall
such kind of information.
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O Verbal: A verbal learner prefers to listen to discussions and explanations, thriving when
a mix of hearing and speaking is involved. As such, they tend to remember better what
they hear.

e  Processing: This dimension determines how students prefer to process information as well as how
this information is transformed to knowledge. The learning styles of Processing dimension are:

O  Active: An active learner prefers activities which demand active participation or
experimentation. As such, active learners are keen on collaborating with peers or being part
of a group.

O Reflective: A reflective learner prefers working alone. They avoid collaborative activities or
group exercises since they tend to think a lot about information being delivered to them.

e  Perception: This dimension identifies the type of information a student prefers to perceive.
The learning styles of the Perception dimension are:

O  Sensing: A sensing learner prefers activities like problem-solving, experimenting, and
generally they are practical focusing on facts and procedures. Such learners are good
memorizers and careful but slow while learning.

O  Intuitive: An intuitive learner prefers dealing with theories and meanings. They are keen on
tackling with new ideas, innovative tasks, and working with symbols. Such learners can be
quick in complicated issues but they are careless.

e Understanding: This dimension describes the way with which learners prefer to organize
and progress towards understanding information. The learning styles of the Understanding
dimension are:

O Sequential: A sequential learner prefers a logically ordered progression when dealing with
problem solving. A linear learning progress and learning in small incremental steps can
help them work with new concepts only if they have understood it, even partially.

O Global: A global learner prefers to have a holistic view of the new information and
to take large steps forward. Global learners present an instinctive pace in learning
and have difficulty in conceiving fragmentary information and explaining results in
knowledge acquisition.

In [20], an index of learning styles is presented; it constitutes a questionnaire with 44 questions,
being divided in the four dimensions (11 questions in each dimension). The students” learning
preferences are identified by the answers in each question, which has two mutually exclusive values.

However, in the related scientific literature [9,21-27], a lack of students” motivation to use a
questionnaire in order to determine their learning preferences is observed due to the following reasons.
Firstly, students consider that filling out the questionnaire is a boring task requiring an additional load
of work. Also, even if students provide their answers to the questionnaire, they can be arbitrarily
chosen. Moreover, the wording and formulation of the questionnaire may confuse and affect students,
causing a selection of answers which are regarded as more suitable and possible. Furthermore, learning
styles can change over time; hence, the results of a static questionnaire can be seen as obsolete as a
learner progresses. On the other hand, automatic mechanisms for learning styles detection can be
more accurate and error-free [25].

In view of the above, Learnglish employs a module for the automatic identification of the learning
styles (AILS), based on FSLSM, using only a few attributes. AILS uses ensemble classification analysis,
and specifically the SVM, NB and KNN classifiers combined by majority voting rule, in order to classify
students into the proper learning style. Firstly, the ensemble learning algorithm is trained based on a
set of data, and afterwards, the class of the instance is predicted considering the highest number of
votes it takes among the base classifiers.
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Towards identifying the students’ learning style, Learnglish takes as input specific students’
characteristics which are the following;:

e  Age: The age is a very important characteristic that can affect the learning styles of the students as
reported in [28-33]. For example, students of younger ages have a stronger preference for visualized
objects than older students. On the other hand, older learners prefer focusing on details and
experience competitive activities as well as listening and reading activities. Also, younger students
prefer collaborating with peers, creating lists of objects and generally direct communication. It is
inferred that learning styles can be altered as a person gets older. As such, Learnglish considers the
learning style as a dynamic characteristic that can change when several students’ characteristics,
like age, are modified. The age is asked to be provided at the first interaction of the learner
with Learnglish. This characteristic can take values for four age categories, namely prepubescent
(6-12 years old), younger (13-18 years old), average (19-45 years old) and older learners (more
than 46 years old).

e  Gender: The gender is also a very significant characteristic that can influence the identification
of learning styles, as reported in [28-31,33]. According to the aforementioned studies, tailored
teaching strategies, based on learning styles, can be offered to female and male learners. Knowledge
acquisition and skill refinement can be enhanced by the identification of student’s learning style,
as altered by their gender. For example, male learners prefer auditory and reading in contrast to
female learners who prefer more composition activities. The gender is asked to be provided at the
first interaction of the learner with Learnglish. This characteristic can take two values: female
and male.

e  Prior academic performance: Prior academic performance constitutes an important factor for
the identification of learning styles, as reported in [30,33]. There is a connection between the
learning style and preferred teaching strategies with the students’ prior academic performance.
For example, learners with a high knowledge level prefer more complex knowledge delivery
activities, such as diagrams or mathematical equations, whereas learners with a lower knowledge
level prefer examples and images. The prior academic performance is computed at the first
interaction of the learner with Learnglish, when s/he asked to answer in preliminary questions
pertaining to the English language domain knowledge. The determination of the prior academic
performance of students is not a simple procedure; on the contrary, it is a process full of uncertainty.
For example, if the student’s academic performance is 70/100, it cannot be simply characterized
neither as good nor as advanced. Both characterizations can be considered with a degree of
accuracy. Fuzzy logic can be used as the key for this situation. For our case, the academic
performance was depicted by the use of three fuzzy weights, which are: Beginner (B), Intermediate
(I), Advanced (A). Their membership functions (x is the score of the student) are as shown in
Figure 1:

The above membership functions determine the values of the three fuzzy sets (ug, p, Ha) whichin
turn depict the prior academic performance of each student (Figure 1). These values can span from 0 to
1. In more detail, when the value is equal to 1, then it means that the student has complete knowledge
for the domain being taught. As such, the sum of the partition value of each fuzzy set representing
the academic performance for a domain concept each time is equal to 1. Hence, the equation up(x) +
ur(x) + pa(x) = 1 stands. The aforementioned fuzzy sets, as well as the thresholds of their membership
functions, have been specified by 16 experts of different domains: 10 of them are computer science
experts serving as faculty members in computer science departments in public universities, while
6 of them are pedagogical experts, serving as faculty members in education departments in public
universities as well. All these experts have great experience (more than 10 years) in teaching approaches,
adaptive instruction to students’ academic needs and learning design and assessment. More specifically,
they were asked to determine the different levels of a student’s progress and performance descriptively,
as well as the intervals of a student’s degree of success, typifying each of these knowledge levels.
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Figure 1. Fuzzy weights of students’ prior academic performance.

e  Four questions pertaining to the FSLSM dimensions: Towards a successful identification of
students’ learning styles, a group of four questions have been delivered to students to answer
them before their first interaction with Learnglish. Each one of these questions represents one
of the four dimensions of FSLSM, namely Understanding, Perception, Input and Processing.
The four questions are the most representative of each dimension and their selection is based
on [6]. The four questions being related to the FSLSM dimensions are as follows:

O  “When I study a new topic, I prefer (a) to learn the domain being taught in clear steps and
remain focused. (b) have a general picture of the links/relationships between that topic and
related topics.” This question is related to the Understanding dimension.

O "I prefer lessons that accentuate (a) specific material (data or facts). (b) theoretical and
conceptual material (theories, concepts).” This question is related to the Perception dimension.

O  “When I am given data and information, I prefer to (a) concentrate on the figures, charts
and graphs gingerly. (b) put my attention to oral information or written text, tabulating the
results.” This question is related to the Input dimension.

O  “I prefer to learn (a) in a study group. (b) alone.” This question is related to the
Processing dimension.

3.1. Ensemble Learning for Improving Automatic Learning Style Identification

The classification of students takes place using ensemble learning (Figure 2). In particular, the
Voting Ensemble algorithm was chosen using three base classifiers, namely SVM, NB and KNN,
which are trained and valuated in parallel and afterwards, their individual predictions are combined
according to the majority voting rule. Thus, the final output is given by the following equation:

Pye(s;) = argmax (Psya(si), Pxb(si), Pran (51)) 1)
where 5; is the input data of student i, and Psya;, Png, Pxnn are the predictions of the base classifiers,
while Py is the final prediction of voting ensemble algorithm. The argmax function is the majority
voting rule used, which returns the class with the largest predicted probability.
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Figure 2. Automatic learning style identification.

These base models were selected based on the testing of a set of five classifiers including Multilayer
Perceptron (MLP), SVM, NB, KNN and Decision Tree (C5) on a sample of the whole dataset. After
combinations of the algorithms, the chosen algorithms were reported to have a higher performance in
terms of execution time and accuracy.

The voting ensemble algorithm was run using the default settings for the base classifiers. Especially
for KNN, the k parameter took the value 7, emerged from the formula k = yn/2 -1 =+/3062 -1 =7,
where n is the number of the sample (n = 306 students) [34]. The whole process explaining the operation
of the ensemble algorithm used in Learnglish can be shown by the following pseudocode:

Table 2 presents an example of operation for the automatic identification of learning styles using
the ensemble algorithm. In this example, 306 students have taken place and have provided the
information to Learnglish (so that their vector is created). Then, the ensemble algorithm is asked to
classify a new student, named Nadia. Towards this direction, the ensemble algorithm searches for the
class that will receive the highest number of votes. Running the algorithm for the new student, we take
as a result that classifiers 1 and 2 give as result the class 0 (meaning “Global-Intuitive-Visual-Active”)
while classifier 3 gives as result the class 1 (meaning “Global-Intuitive-Verbal-Active”), as shown in the
following formula:

Pye(s;) = argmax (Psyw(s;), Png(5:), Prnn (5i)) = argmax (0, 0, 1) = 0 @

Therefore, the learning style that is assigned to Nadia is the following: Global-Intuitive-
Visual-Active.
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Algorithms 1 Input: SC: Struct {Age, Gender, PAP, A1, A2, A3, A4, LS}

//Node of student characteristics
T[]: SC //Data in Training set
BST][]: SC // Bootstrap sample of T

BC[]: Classifier //Array of base classifiers

t: SC //instance, in the form of vector, for classification
Output: C* {GIVeA | GIVeR | GIViA | GIViR | GSnVeA | GSnVeR | GSnViA | GSnViR |
SqlVeA | SqIVeR | SqIViA | SqIViR | SgSnVeA | SqSnVeR | SqSnViA | SqSnViR}
//Class in which t will be classified

C[]: C*//Class in which t will be classified by each base classifier
Start_Algorithm
BC = {SVM, NB, KNN}
For i =0 to BC.length -1 do
BST = Bootstrap(T) //generate a bootstrap sample from T

BC[i].Train(BST) //train the base classifier from the bootstrap sample
C[i] = BC[i].Predict(t) //predict the class for the instance t
End For

C* = argmax (C.Values())
End_Algorithm

Table 2. Example of operation.

Prior Answers to
Students Age Gender Academic ﬂ.le FSL.SM ,  Result for Identifying Learning Style
Performance Dlmen?wns
Questions
George 12 Male I a-a-b-a Sequential-Sensing-Verbal-Active
Nick 11 Male I a-a-a-b Sequential-Sensing-Visual-Reflective
Maria 12 Female B a-a-a-a Sequential-Sensing-Visual-Active
Helen 11 Female I b-b-a-a Global-Intuitive-Visual-Active
John 11 Male 1 b-a-b-b Global-Sensing-Verbal-Reflective
Sophia 11 Female A b-b-a-a Global-Intuitive-Visual-Active
Elias 11 Male B a-b-a-b Sequential-Intuitive-Visual-Reflective
Stella 12 Female I b-b-a-a Global-Intuitive-Visual-Active
Peter 12 Male B b-a-b-a Global-Sensing-Verbal-Active
Natalie 12 Female I b-b-b-a Global-Intuitive-Verbal-Active
Nadia 12 Female I b-b-b-a ?

3.2. Instructional Routines of Learnglish for Developing an Individualized Learning Environment

After the learning style is automatically identified, Learnglish uses a corresponding instructional
routine in order to personalize the educational experience to students based on their learning style.
Based on FSLSM, each student is assigned one dimension from the four categories (Understanding,
Perception, Processing and Input), and thus, a different routine is used for each one of the 2" =16
learning style options (n = the values of the four dimensions and the formula 2" comes from the
mathematical combinatorics). Table 3 illustrates the instructional routines that are developed so that
Learnglish can adapt its content to the students confronting the specific needs and preferences of
them. For each one of the 16 learning style classifications, an aggregated routine is delivered based
on each one of the four dimensions. For example, if a student is global, intuitive, verbal and active,
the following adapted routine is delivered: The learning material is open and students are given advice
to move from chapter to chapter based on their learning needs and the exercises involve evaluation of
holistic thinking. The learning material includes a lot of theoretical concepts without factual examples.
The learning material includes written text and a possibility of listening to the theory by a speaking
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agent. Learnglish proposes study groups where students can talk about the learning material and also
it creates student groups who are given a group assignment to solve it with peers.

Table 3. Adapted instructional routines for each FSLSM dimension.

FSL.SM Learnglish Instructional Routines
Options
. The learning material is delivered in logical and incremental steps and the assignments are
Sequential .
separated in steps to be solved.
The learning material is open and students are given advice to move from chapter to chapter
Global . . 2 . N
based on their learning needs and the exercises involve evaluation of holistic thinking.
Sensing The learning material includes real life examples, facts and data.
Intuitive The learning material includes a lot of theoretical concepts without factual examples.
Verbal The learning material includes written text and a possibility of listening to the theory by a
speaking agent.
Visual The learning material includes charts, diagrams, figures, pictures and tables.
Reflective Learnglish proposes a topic for each learner to think on it alone and provide an answer.
Active Learnglish proposes study groups where students can talk about the learning material and

also it creates student groups who are given a group assignment to solve it with peers.

4. Evaluation Results and Discussion

This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

The evaluation process is essential for the life cycle of software to ensure the accomplishment
of system’s goals, analyze its effectiveness, and identify areas for improvement. To this direction,
a multi-dimensional evaluation is conducted, including the following:

e Evaluation of the proposed ensemble learning algorithm for the automatic identification of
learning style using confusion matrix, answering RQ1.

e  Evaluation of the quality and functionalities of the developed mobile system (Learnglish) using
the multidisciplinary framework by [35], answering RQ?2.

e Comparison of the presented mobile application (Learnglish) with a corresponding web one
applying statistical hypothesis tests (t-test), answering RQ3.

Regarding the evaluation of the proposed voting ensemble algorithm, a questionnaire including
the students’ age and gender, the four questions corresponding to FSLSM dimensions and the complete
Index of Learning Styles questionnaire (based on FSLSM) with the 44 questions is delivered to
306 students of fifth and sixth grade classes of three elementary schools (consisting of two classes per
grade with around 25 students each one). Moreover, students gave the preliminary test used in our
developed mobile system in order their prior academic performance to be computed. The scores of this
test were processed using fuzzy weights in order the student knowledge level to be defined efficiently.
All the above are required for training the algorithm properly and evaluating its performance. Therefore,
the students’ characteristics (age, gender, prior academic performance) and the answers of the four
questions are used as input to our algorithm to identify their learning style, whereas the result of the
complete Index of Learning Styles questionnaire [20] determines the correct student learning style.
Our approach led to achieving 94.44% accuracy, 0.945 precision and 0.944 recall, whereas the simple
classifiers reached lower performance. In particular, SVM achieved 89.54% accuracy, 0.898 precision
and 0.895 recall, NB had 88.24% accuracy, 0.886 precision and 0.882 recall, and KNN reached 84.97%
accuracy, 0.863 precision and 0.850 recall. Tables 4 and 5 illustrate the voting ensemble algorithm
results in comparison with the simple classifiers regarding the different metrics, whereas Figure 3
depicts the confusion matrix of the ensemble learning. The results of voting ensemble algorithm
evaluation were very encouraging, showing that the proposed algorithm outperforms the simple
classifiers, and furthermore in relation to the attributes used for the learning style classification identifies
efficiently the students’ learning style with the less student effort in terms of data entry (RQ1).
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Table 4. Summary of classifiers” performance evaluation.

SVM NB KNN VE
i 274 270 260 289
Correctly Classified Instances o9 2/ (88.24%) (84.97%) (94.44%)
Incorrectly Classified 32 36 46 17
Instances (10.46%) (11.76%) (15.03%) (5.56%)
Kappa statistic 0.8867 0.8724 0.8368 0.9399
Mean absolute error 0.0364 0.041 0.0278 0.0069
Root mean squared error 0.1136 0.1195 0.1123 0.0833
Relative absolute error 31.46% 35.42% 24.02% 5.998%
Root relative squared error 47.22% 49.66% 46.69% 34.64%
Total Number of Instances 306 306 306 306

Table 5. Detailed analysis of classifiers accuracy metrics (weighted avg.).

Alg. TP Rate FP Rate  Precision Recall F-Measure MCC  ROCArea PRC Area

SVM 0.895 0.009 0.898 0.895 0.891 0.886 0.988 0.934
NB 0.882 0.011 0.886 0.882 0.878 0.872 0.988 0.932
KNN 0.850 0.014 0.863 0.850 0.839 0.835 0.996 0.950
VE 0.944 0.005 0.945 0.944 0.943 0.940 0.970 0.896
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Figure 3. Confusion matrix for ensemble learning algorithm.

Evaluating the developed mobile application, 56 students from a public elementary school
participated. The students were from two different classes of the same school (28 students per class).
Also, the students were of the same grade (sixth grade of elementary school). The first class (Class A)
evaluated Learnglish through smartphones with which all students were provided for the sake of the
experiment. The second class (Class B) evaluated the educational system through its conventional
web interface that functions through personal computers. This segmentation was very significant in
order to measure the mobile platforms effectiveness against the conventional way of tutoring through
computers and on the other hand to measure the degree of personalization to students” needs and
preferences. Consequently, both classes had given the right equipment (such as hardware) and then
they received a detailed demonstration of the utilization of both educational platforms. Each class
used the corresponding application for a month and thus they had plenty of time to spend interacting
with the systems. After the completion of their interaction (Class A with mobile devices and Class B
with personal computers), all students were given questionnaires to complete with guidance from the
evaluators and also their four teachers. It needs to be noted that school teachers also provided very
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valuable help in the whole evaluation study since they also participated both in the presentation of
the ITS to the students and also provided assistance to their students while they interacted with the
educational platform. Moreover, it was observed that students became familiar easily and very quickly
with the educational software, its features and its functionalities. Their interest was undiminished
during the whole period of their interaction with the educational application.

Regarding the quality and functionality of our mobile system used by Class A, a multidisciplinary
framework, presented by [35], was applied. This framework was further examined and evaluated
in [36,37] in order to attest its quality. The framework is comprised of the following metrics:

e  Usability: Usability is one important factor of the overall acceptability of the system. It comprises
of aspects pertaining to the user interface, such as easy and efficient in use, easy to remember,
having few errors and being pleasing.

e Pedagogical usability: Pedagogical usability involves the pedagogical affordances of the system,
namely the support for development of learning skills, learning and tutoring process and
organization. More specifically, it concerns the pedagogical design of the learning technology
system and focuses on the tools, content, interface and tasks supporting learning and tutoring
process. Pedagogical objectives, including learning objectives, are measured in this dimension as
an important factor of the organization of the teaching process, the development of the learners’
skills, the development of the quality of teaching and the testing methods of learners.

e  Accessibility: This metric concerns the design of the accessibility using established guidelines and
checklists to evaluate the accessibility of web-pages.

e Informational Quality: This metric concerns the high quality of the informational content in
terms of accuracy, authority, objectivity, currency and coverage. This metric also includes the
presentation of information and content from a teaching perspective.

The evaluation study was held with the use of self-supplemented scale questionnaires with closed
questions delivered to the students. Based on the aforementioned evaluation framework, 43 questions,
related to the framework’s metrics, have been delivered to students and are as follows:

e  Eleven questions regarding the Usability metric

e FEighteen questions regarding the Pedagogical Usability metric
e  Eight questions regarding the Accessibility metric

e  Six questions regarding the Informational Quality metric.

Table 6 summarizes the questions that were delivered to students. For the questions, the evaluators
used a scale from 1-10, where 1 is the lowest grade and 10 is the highest grade. The validity and
reliability of the questionnaire have been explored by its creators [35-37].

Analyzing the evaluation results illustrated in Figure 4, the RQ2 is answered confirming the
pedagogical affordance of adaptivity and functionality of the developed mobile system. In particular,
it should be accentuated that user interface is reported to be easy and efficient during the students’
interaction with it. The user interface is involved in the metric of system’s usability. Indeed, a user
interface is crucial for a tutoring system since it integrates three types of information that are needed
in carrying out a dialogue: knowledge about patterns of interpretation (to understand a speaker)
and action (to generate utterances) within dialogues; domain knowledge needed for communicating
content; and knowledge needed for communicating intent. Furthermore, an important dimension
of the metric of accessibility is the accessibility of multimedia. Based on the results, multimedia is
reported to be very easily accessible in our system. This is very important considering that the system
uses mobile technology and students can have access to multimedia using smartphones. Students,
also, reported that the teaching strategy is well-organized. As this constitutes a dimension of the
Pedagogical usability metric, it is really noteworthy that our system can have a positive impact on
learning. The automatic identification of the students’ learning style along with the domain knowledge
adaptation have been seen as potentially valuable tools by the learners who reported that they assisted
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them successfully advance their knowledge level. Finally, the presentation of the information, as a
dimension of the Information Quality metric, is related to the quantity and degree of information
that a student receives. This dimension is found to be highly graded; this was expected since the
domain knowledge is delivered to each student based on his/her learning needs and preferences while
all other kind of information is delivered to students based on their importance and relevance (e.g.,
statistics, etc.).

Table 6. Questionnaire [36].

Metrics N Questions
1 Rate the user interface in terms of easiness and efficiency.
2 Rate the support for navigations.
Usability 3 Rate the support for online reading.
4 Rate the use of multimedia elements.
5 Rate the visual design.
6 Rate the accessibility of multimedia.
- 7 Rate the accessibility of dynamic web pages.
Accessibility 8 Rate the accessibility of frames, tables, links, etc.
9 Rate the device-independent access.
10 Rate the support of educational training portal for

Support for different user groups.

organization 11 Rate the organization of study.
12 Rate the organization of teaching strategies.
13 Rate the overall learning process you're your experience.
Pedagogical Support for 14 Rate thg overall teaching process.
usability learning and 15 Rate the achievement of your learning goals.
tutoring process 16 Would you like to use this platform in your school?
17 Do you believe that the system identified successfully your
learning style?
Support for 18 Rate the degree of your self-direction.
PP 19 Rate the degree of interaction with peers and instructors.
development of
) . . 20 Rate your degree of autonomy.
earning skills . . . - .
1 Did you like the way with which the system delivered the
domain knowledge?
. . 22 Rate the reliability of information.
Inf 1 1
nformational Quality 23 Rate the presentation of information.

mFair mLow High

64.30%

53.57%

46.43%
42.86%

39.28%

Usability Pedagogical uability Accessibility Informational Quality
Figure 4. Evaluation results based on the framework metrics of [36].
Finally, for assessing the technological affordance of the mobile technology in elementary schools

and answering RQ3, the t-test (statistical hypothesis test) was employed. Hence, the results of Class A
were compared to the results emerged from the evaluation of Class B. Table 7 illustrates the statistical
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significance of questions 1 (Rate the user interface in terms of easiness and efficiency.), 13 (Rate the
overall learning process you're your experience.) and 16 (Would you like to use this platform in your
school?). For the Null hypothesis: “There is no difference between the two groups of students” the
t-Test rejects the hypothesis for the aforementioned questions, while the remaining questions seem not
to have statistical differences between the two groups of students. Since the alpha value of t-Test was
set at 0.05 and the p-value is less than 0.05, there is a statistically significant difference between the
means of the two trials in all questions. It needs to be noted that for Question 1, the p-value is 0.001756,
for question 13, the p-value is 0.006476 and for Question 16, the p-value is 0.000199.

Table 7. T-Test: Mobile versus web application.

Question 1 Question 13 Question 16
Class A Class B Class A Class B Class A Class B
Mean 6.75 4.642857 7.821429 5.857143 8.571429 6.214286
Variance 8.712963 2.756614 8.22619 5.238095 5.291005 4.470899
Observations 28 28 28 28 28 28
Pooled variance 5.734788 6.732143 4.880952
Hypothesized Mean 0 0 0
Difference
df 54 54 54
t Stat 3.292299 2.832644 3.992065
P(T <= t) one-tail 0.000878 0.003238 9.96 x 107>
t Critical one-tail 1.673565 1.673565 1.673565
P(T <= t) two-tail 0.001756 0.006476 0.000199
t Critical two-tail 2.004879 2.004879 2.004879

Based on the t-test results, it needs to be underlined that the easiness of the user interface
(Question 1) is greater in the mobile application in comparison to the web application. This result
was expected given that young people are very accustomed to smartphones and as such mobile user
interfaces are very friendly to them. Concerning Question 13, the students’ learning experience using
the mobile application surpassed their experience in using the web application. Indeed, the utilization
of smartphones by young people is daily and they invest a great deal of time on them. As such,
they were more focused on learning through smartphones and as a result they reported to have a
better learning experience. Finally, regarding Question 16, students mentioned that they wanted to use
smartphones in the elementary school in a higher degree than using a web application. This result was
also expected since smartphones can give an air of entertainment to learning, thereby upgrading their
knowledge level and achieving their learning goals. The students” overall learning experience as well
as their wish to use Learnglish in their school involve the fact that they approved the learning style
which Learnglish detected for each one, enjoyed the delivered learning material tailored to their needs
and preferences and accepted willingly the recommendation for peer collaboration.

In view of the above, it was rather expected that younger learners, who are keen on new technology
would embrace learning though smartphones in school environments. Especially, when m-learning
employs sophisticated techniques to become more individualized and adaptive, it is welcome by
students to support their learning. The findings of this evaluation study create a fertile ground towards
adopting the increasingly growing research area of mobile technology in all grades of formal education
and lifelong learning. The findings, also, accentuate the fact that the employment of intelligent
techniques in m-learning environments can benefit the traditional education.

Analyzing the related scientific literature, the best model built by [18] achieved 85% accuracy
while the model of [15] achieved 80% accuracy. Our results (94.44% accuracy) are better than the results
presented in the aforementioned research works. Our approach employing ensemble of classifiers
managed to precisely and accurately detect the students’ learning styles in a higher degree.
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5. Conclusions

To conclude, this paper presents Learnglish, which is a mobile-assisted language learning
application for the tutoring of English as a foreign language. Learnglish incorporates automatic
identification of students’ learning styles based on the Felder-Silverman learning style model. It takes
as input personal and cognitive students’ characteristics (such as age, prior academic performance,
etc.), which have been reported in the related scientific literature, as crucial factors for identifying a
learning style. Then, it uses ensemble algorithms in order to reason between the appropriate style for
each learner. Moreover, based on his/her learning style, Learnglish embodies routines for creating an
individualized educational experience to each student based on his/her learning needs and preferences
as defined by his/her learning style.

This paper answers several research questions pertaining to the effectiveness of automatic learning
styles identification using ensemble classifiers taking as input a minimum number of personal and
cognitive students’ characteristics. Also, it seeks to investigate the appropriate instructional routines for
adapting the learning environment to students’ learning styles and the efficiency of mobile technology
supporting all students and particularly elementary school students.

The paper also presents a large-scale multi-dimensional evaluation to assess the effectiveness of
the automatic learning styles identification, the quality and usability of the pedagogical affordances
and the efficiency of the mobile learning environment. The evaluation results are very encouraging
and promising, showing great accuracy of the proposed methods.

Our future steps include the utilization of the presented approach in different domains and by
different population in terms of its age, such as students of tertiary education. Moreover, future plans
involve the creation of a hybrid learning style model, resulting from the Felder-Silverman model and
other cognitive models (e.g., Gregorc Mind Style Model, Herrmann Brain Dominance instrument, etc.)
in order to take into consideration different aspects that tend to affect e-learning, such as sentiments
and feelings or left-brain and right-brain preferences. The identification of the hybrid learning style
models will be conducted automatically using ensemble of classifiers or other intelligent techniques.
Finally, given that the presented approach of the ensemble algorithm can be extended to be used in
other fields as well, we tend to explore its effectiveness in predicting characteristics of products and
recommend them to potential buyers in e-shops.
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