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Abstract: A thermodynamic approach to mechanical motion is presented, and it is shown that
dissipation of energy is the key process through which mechanical motion becomes observable.
By studying charged particles moving in conservative central force fields, it is shown that the
process of radiation emission can be treated as a frictional process that withdraws mechanical energy
from the moving particles and that dissipates the radiation energy in the environment. When the
dissipation occurs inside natural (eye) or technical photon detectors, detection events are produced
which form observational images of the underlying mechanical motion. As the individual events,
in which radiation is emitted and detected, represent pieces of physical action that add onto the
physical action associated with the mechanical motion itself, observation appears as a physical
overhead that is burdened onto the mechanical motion. We show that such overheads are minimized
by particles following Hamilton’s equations of motion. In this way, trajectories with minimum
curvature are selected and dissipative processes connected with their observation are minimized.
The minimum action principles which lie at the heart of Hamilton’s equations of motion thereby appear
as principles of minimum energy dissipation and/or minimum information gain. Whereas these
principles dominate the motion of single macroscopic particles, these principles become challenged
in microscopic and intensely interacting multi-particle systems such as molecules moving inside
macroscopic volumes of gas.

Keywords: mechanical motion; energy dissipation; information gain; Hamilton’s equations of motion;
principle of least action

1. Introduction

The basis of analytical mechanics was laid in the 18th century by Joseph Louis Lagrange and by Sir
William Rowan Hamilton. Lagrange’s and Hamilton’s equations of motion [1,2] successfully describe
the mechanical motion of macroscopic particles with the planetary motion in the solar system being a
celebrated showcase. As Lagrange’s and Hamilton’s equations of motion are invariant under the time
reversal operation t→ −t , their solutions describe time-reversible modes of mechanical motion. Later,
in the 19th century, when the foundations of thermodynamics and of the kinetic theory of gases were
developed, this time-reversibility appeared as a mental stumbling block to researchers such as Clausius,
Boltzmann, Lord Kelvin, and Maxwell. Trying to reconcile the irreversible behavior of gases with the
intrinsic reversibility of the mechanical motion of its molecular constituents, Maxwell formulated his
sorting demon paradox which soon became famous under the name “Maxwell’s demon paradox” [3].
Sticking to the belief that mechanical motion is time-reversible also on a molecular scale, it was
claimed that a sorting demon acting inside a gas should be able to create temperature or pressure
differences without expending own work and, therefore, be able to extract useful mechanical work from
a single reservoir, in obvious contradiction with the second law of thermodynamics [4,5]. Ever since
its invention in 1871, this paradox attracted the interest of researchers and caused them to propose
different kinds of explanations up to the present time. A good account of these historical developments
can be found in the books of Leff and Rex [6,7].
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The subject matter of the present paper relates to this problem of reversibility of mechanical
motion. The point we should like to make here is that analytical mechanics implicitly deals with
the mental abstraction of unobserved and unobservable mechanical motion, whereas any kind of
observable motion entails more or less pronounced degrees of irreversibility which are connected with
its observational process.

In order to illustrate our ideas, consider Figure 1. While the top panels (Figure 1a,b) relate to
trivial cases of everyday mechanical motion, the bottom panels (Figure 1c,d) relate to the mechanical
motion of electrons, i.e., electrically charged particles.
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motion is adequately described by the time-reversible Hamilton’s equations. As no interaction with 
a measurement instrument does take place during this travel, the time evolution of the trajectory 
cannot be followed and meaningful comparisons with the predictions of theory cannot be made. The 
only effect that is observable is the impact of the particle on the ground when its kinetic energy is 
converted into low-temperature heat at the environmental temperature 𝑇ா. Measuring the dissipated 
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is required for the travel back up. As, due to the second law of thermodynamics, a re-conversion of 
dissipated energy into kinetic energy is impossible, Figure 1a clearly represents an unobserved and 
unobservable kind of mechanical motion. 

Figure 1b, in contrast, shows an observed version of this same example. Here, the sun illuminates 
the falling particle which causes some of the sun’s photons with energy 𝐸 ≫ 𝑘𝑇ா  to become 
scattered into the eye of an observer, who can track the trajectory of the falling particle by performing 
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the eye the energy of the scattered photons is dissipated and converted into low-temperature heat. 
Whereas such dissipation also happens to all other photons which become scattered at the falling 

Figure 1. (a) Particle dropping to ground without any observations being made; (b) particle dropping
to ground with sunlight being scattered into the eye of an observer; (c) electron moving up and down a
center-fed antenna producing pulses of radiation which can be detected at a distance; (d) emission of a
photon from an atom with the photon carrying away signatures (Eph, h) of the electronic transition to
some remote point of detection.

Turning to the top panel first, Figure 1a sketches a particle of mass M dropping from a height H
to the ground at H = 0. As long as the particle is freely falling through empty space, its mechanical
motion is adequately described by the time-reversible Hamilton’s equations. As no interaction with a
measurement instrument does take place during this travel, the time evolution of the trajectory cannot
be followed and meaningful comparisons with the predictions of theory cannot be made. The only
effect that is observable is the impact of the particle on the ground when its kinetic energy is converted
into low-temperature heat at the environmental temperature TE. Measuring the dissipated energy,
the speed of the particle at H = 0 can be determined and a test of the time-reversibility of Hamilton’s
equations, in principle, could be made by re-converting the dissipated energy into kinetic energy and
by sending the particle back to its initial height H and checking whether the same time is required for
the travel back up. As, due to the second law of thermodynamics, a re-conversion of dissipated energy
into kinetic energy is impossible, Figure 1a clearly represents an unobserved and unobservable kind of
mechanical motion.

Figure 1b, in contrast, shows an observed version of this same example. Here, the sun illuminates
the falling particle which causes some of the sun’s photons with energy Eph � kBTE to become scattered
into the eye of an observer, who can track the trajectory of the falling particle by performing repeated
“measurements”. All these measurements very obviously involve irreversibility as inside the eye the
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energy of the scattered photons is dissipated and converted into low-temperature heat. Whereas such
dissipation also happens to all other photons which become scattered at the falling particle and
which directly hit the earth’s surface, energy dissipation inside the eye transiently converts some of
the absorbed photon energy into an electrochemical output signal that can be communicated to the
brain for further informational processing. We showed in a recent publication that, during such a
detection, a photon detector, like the human eye, effectively performs as a thermodynamic engine

that partly converts potential information, ipot
(
Eph, TE

)
= 1

ln(2)
Eph

kBTE
, carried with the sun’s photons

themselves, into information iD
(
Eph, TE

)
< ipot

(
Eph, TE

)
that is realized in the detection process [8,9].

Although this second example demonstrates the irreversibility of the observation process, it also
suggests that observation might be considered a secondary process that occurs independently of the
mechanical motion and that only takes place when the sun is shining and when an observer happens
to be in place. Further considering the energetically and entropically tiny magnitude of the observation
process, these latter considerations show that the 18th century founders of analytical mechanics could
rightfully ignore the role of observation in their description of mechanical motion.

A fact that was not known to the founders of analytical mechanics is that each light–matter
interaction occurs with atoms and molecules which are composed of equal amounts of positive and
negative electrical charge. Another fact that was unknown to those founders was that electrically
charged particles emit bursts of electromagnetic radiation whenever they suffer accelerations or
decelerations [10,11]. As, in the case of charged particles, the emission of radiation is directly coupled
to their mechanical motion, the observation of charged particles does not require any external sources
of energy. As the energy required for the informational process is directly extracted from the motional
energy of the moving particles and as the radiation is running away from its sites of emission, a certain
level of irreversibility is introduced into the mechanical motion. Figure 1c presents an everyday
example of such charged particle motion. There, a linear, center-fed antenna is shown in which electrons
are driven up and down across a macroscopic distance L with speeds v much smaller than the speed
of light (v � c). As these vibrating electrons reach their upper and lower turning points, pulses of
radiation are emitted which extract mechanical energy from the vibrating electrons and which carry
this energy from the sites of emission to a detector which is placed at some distance. Once arrived there,
this energy is dissipated and converted into low-temperature heat while intermittently producing
macroscopically observable events which represent observational images of the electron motion inside
the antenna rod. Whereas, in such macroscopic arrangements, only very tiny amounts of the motional
energy are carried away in the form of electromagnetic radiation, the effects of radiation damping
become increasingly more important as the amplitude L of vibration is reduced and as the speed v of
vibration is increased. In particular, when spatio-temporal domains of the size of atoms and molecules
are reached, the emission occurs in the form of photons which carry discrete amounts of energy Eph and
angular momentum h from their sites of emission to potential sites of detection (Figure 1d). Moreover,
as the photon energies and photon angular momenta are signatures of those changes in mechanical
motion that caused their emission, photons obviously carry potential information that may be turned
into realized information once these become detected at some remote location. Photon emission and
photon detection, therefore, are key processes through which mechanical motion becomes detectable,
albeit at the expense of energy dissipation.

Building on the above considerations, we present herein a thermodynamic approach to mechanical
motion which explicitly takes into account those dissipative effects that are connected with the radiation
damping and the conversion of the emitted radiation into observations. In the course of our discussion,
we develop the idea that the mechanical motion of charged particles is burdened with an observational
overhead that can be measured in terms of physical action generated and energy dissipated during the
processes of radiation emission and radiation detection. Studying examples of macroscopic mechanical
motion, we show that the principle of least action, which lies at the heart of Hamilton’s equations of
motion [1,2], not only minimizes the physical action that is associated with the particle motion itself
but that it also minimizes those physical overheads that are connected with the radiation damping
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and the observation of the particle motion. Arguing from the standpoint of thermodynamics and
information theory, the principle of least action, therefore, appears as a principle of minimum energy
dissipation and/or minimum information gain. Whereas, in the specific case of rectilinear mechanical
motion under zero force conditions, the observational overhead vanishes, and the mechanical motion
becomes ideally reversible, but also unobservable, the principles of least action, and least dissipative
and observational overheads become challenged when the particles under consideration are swiftly
moving and intensely interacting particles, as for instance, molecules moving inside a macroscopic
volume of gas. In this latter case, very small but finite, dissipative overheads are burdened onto the
mechanical motion.

2. Thermodynamic Approach to Classical Mechanical Motion

The thermodynamic approach of describing physical systems considers the way in which such
systems are able to exchange energy with their environments. As energy can manifest itself in many
different forms, such exchanges can proceed in a variety of ways. Quantitatively, this fact is expressed
by differential forms of the kind

dE =
∑

i
ξidηi, (1)

which are commonly known as Gibbs fundamental forms [4,12,13]. Here, dE is the total amount of
energy exchanged, while the products ξidηi of intensive (ξi) and extensive variables (ηi) stand for the
individual forms in which such energy exchanges can take place.

The kinds of systems that are customarily considered in thermodynamics usually take on forms
such as

dE = TdS− pdV +
n∑

i=1

µidNi. (2)

Such fundamental forms describe changes in the system’s internal energy through exchanges of
heat (TdS), mechanical work (pdV), and particles (µidNi) with the environment. A subset of such
problems relates to chemistry, where a set of different particles is confined to the interior of a volume
V, which might or might not expand while being maintained at a temperature T. The sums

∑n
i=1 µidNi

then describe chemical reactions between the different kinds of particles enclosed in the volume V and
represented by particle numbers Ni and chemical potentials µi.

As described in detail in the textbooks of Falk and Ruppel [14,15], such Gibbs fundamental forms
are also able to deal with situations not conventionally treated in thermodynamics. A particular example
is the motion of point-like particles of mass M moving in conservative force fields. The fundamental
forms dealing with such cases are

dE = vdP− Fdr, (3)

where the bold characters stand for the vectors of the dynamical velocity v = dE
dP =

[
dE
dPx

, dE
dPy

, dE
dPz

]
,

with P standing for the linear momentum of the particle and F(r) for the force acting on this particle at
the location r as it moves along its trajectory inside the system.

In case the particle does not exchange energy with external systems, the system’s internal energy
E(P, r, t) remains constant,

dE = vdP− Fdr = 0 (4)

and its time rate of change vanishes,

d
dt

E(P, r, t) = v(r, t)
d
dt

P(r, t) − F(r)
d
dt

r(t) = 0. (5)

From this latter equation, it follows that

d
dt

r(t) = v(r, t) (6)
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and
d
dt

P(r, t) = F(r, t). (7)

Whereas the first of these conditions implies that the kinetic velocity d
dt r(t) needs to be equal to the

dynamical velocity v(r, t) =
dE(r, t)

dP of the particle, the second states that the time rate of change
of the particle momentum needs to match the force acting on the particle at the point r of its
trajectory. Both conditions, obviously, reduce to Hamilton’s equations of mechanical motion if one
puts E(P, r, t) = H(P, r, t) [1,2,14].

Such a process of conservative motion is pictorially presented in Figure 2a, considering the specific
case of circular motion in a conservative central force field. Assuming that the moving particle does
not carry any electrical charge, no radiation is emitted, and the kinetic and potential energies of the
particle remain constant over time, i.e.,

dE = vdP− Fdr = ωdL−Ddϕ = dEkin + dEpot = 0. (8)
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Figure 2. (a) Circular motion of a charged particle in a conservative central force field; (b) same process
as in (a) but allowing for radiation emission from accelerated charges; (c) same process as in (b) with the
emitted radiation being absorbed in a macroscopic heat reservoir of temperature TE, thereby producing
an amount of entropy dS = dErad

TE
and an increase d(mi) = 1

ln(2)
dErad
kBTE

in missing information concerning
the internal state of motion inside the reservoir walls; (d) absorption of radiation in a radiation detector
producing a piece of macroscopically observable information that is accessible to outside observers and
providing an information gain diD < d(mi).

In this latter equation,ϕ is the turning angle,ω is the angular velocity, L is the angular momentum,
and D is the torque acting on the rotating particle.

When the particle does carry an electrical charge, as assumed in Figure 2b, electromagnetic
radiation is emitted, and energy is carried away from the moving particle. For reasons of energy
conservation, the particle then has to move closer to its center of rotation, thus reducing its potential
energy and increasing its kinetic energy. The energy balance equation then takes on the form

dE = dEkin + dEpot = dErad, (9)
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with dErad standing for the energy emitted in the form of electromagnetic radiation. As this process
continues with time, the orbiting particle spirals inward toward its center of rotation, as shown in
Figure 2b. As the emitted radiation never returns, it becomes evident that radiative energy loss
is the principle and unavoidable dissipative mechanism that accompanies the classical motion of
charged particles.

Once emitted, the radiation normally becomes absorbed by macroscopic pieces of matter, in which
the radiation energy is internally dissipated and turned into low-temperature heat. Arguing within
the Gibbs approach, the open system of Figure 2b can be turned back into a closed system by
representing the absorbing matter with solid walls that surround the orbiting particle and that behave
like macroscopic heat reservoirs maintained at the environmental temperature TE. In this latter case,
shown in Figure 2c, the Gibbs fundamental form turns into

dE = dEkin + dEpot + TEdS = 0, (10)

with TEdS = dErad standing for the thermal energy generated inside the reservoir walls. In contrast to
Equation (8), which describes a case of conservative motion, Equation (10) describes a case of dissipative
motion. Once it is assumed that the internal energy U of the surrounding reservoir walls is large
compared to the emitted radiation energy, i.e., U � dErad, the radiation is absorbed without causing
any measurable temperature change. All informational value carried with the emitted radiation is
thereby immediately degraded and turned into a deficit, i.e., into an increased amount of missing
information, d(mi), concerning the internal state of motion inside the reservoir walls [13]. Formally,
this increase in missing information can be expressed as

d(mi) =
1

ln(2)
dErad
kBTE

. (11)

So far, all cases considered in Figure 2a–c represent cases of unobservable mechanical motion
because no radiation is emitted at all in scenario (a), the radiation disappears in empty space in scenario
(b), or because its informational value is directly converted into low-temperature heat in scenario (c).
The only way to arrive at a situation of observable mechanical motion is modifying scenario (c) into
the one shown in Figure 2d. There, the reservoir walls are replaced by detector walls which again
take the form of heat reservoirs as in Figure 2c, but constructed in a way that allows macroscopically
observable output signals F(t) to be generated and communicated to outside observers whenever these
walls are struck by radiation emitted from within the detector walls [9,16]. The scenario of Figure 2d,
therefore, again represents an open system, but one that internally involves energy dissipation and that,
in response to the energy dissipation, is able to provide an observational image to outside observers of
those mechanical motion processes that are going on within the detector walls.

3. Mechanical Motion in the Quantum Domain

When the circular motion of charged particles takes place in spatial dimensions comparable to
atomic or molecular sizes, the electromagnetic radiation is emitted in the form of discrete energy
packages, i.e., in the form of photons. For the sake of illustration, we consider below the motion of
electrons within H-atoms. With the emission of electromagnetic radiation now taking place in the form
of discrete photons, the energy balance Equation (9) becomes

∆Emn = ∆Ekin_mn + ∆Epot_mn, (12)

with the radiation energy quanta ∆Emn complying with the Rydberg formula [17–19],

∆Emn = ERyd

( 1
n2 −

1
m2

)
, (13)
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ERyd = ke
2 meq4

2h2 , (14)

in which m and n stand for the orbital quantum numbers of initial and final states, me and q stand for
the mass and charge of the orbiting electron, and h stands for Planck´s constant; ke = 1/4πε0, finally,
is the Coulomb constant.

With these changes having been implemented, the quantum analogues of the classical situations
in Figure 2 now look like those in Figure 3. There, Figure 3a–c again represent cases of unobservable
mechanical motion, while Figure 3d is the only one that deals with observable motion.
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Figure 3. (a) Radiation-less motion in an excited Bohr atom; (b) same process as in (a) but with
finite radiative lifetime and emission energies following the Rydberg formula; (c) same process as
in (b) with the emitted radiation being absorbed in a macroscopic heat reservoir of temperature
TE (TE∆Smn = ∆Emn ); (d) absorption of emitted radiation in a radiation detector operated at a
temperature TE.

Turning to Figure 3a first, we note that this represents the fictitious case of a closed system in
which all changes are internal to the atom. In this situation, any changes in potential energy are
balanced by compensating changes in kinetic energy,

∆Ekin_mn = −∆Epot_mn. (15)

As for any choice of quantum numbers m and n energy is conserved, no radiation needs to be emitted.
This first case, therefore, represents a case of unobservable mechanical motion, similar to the classical
Hamiltonian case in Figure 2a. Moreover, with energy being internally conserved, there is also no
driving force that would favor downward transitions to states with lower potential energy over upward
transitions to states with higher potential energy. This first case of unobservable motion, therefore,
also represents a case of reversible mechanical motion.

Figure 3b illustrates a very different situation. In this latter case, the emission energies of the
photons are assumed to match with those given by the Rydberg formula (Equation (14)). As in this
case, any loss of potential energy in a downward transition is no longer balanced by an equal gain in
kinetic energy, the misbalance in energy needs to be carried away by a photon. Whereas, classically,
the emitted radiation would take the form of a spherical wave traveling outward with the speed of light,
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the emitted photon with energy ∆Emn and wavelength λmn = hc/∆Emn could be anywhere within a
spherical shell of radius R = ct and thickness λmn after a time t has elapsed after its emission (see
Figure 4a). The resulting uncertainty in photon location can then be expressed as a change in entropy,

∆Smn(t) = kBln
[
Vsph(t)/Vmn

]
, (16)

with Vsph(t) standing for the time-dependent volume of the spherical shell and Vmn = λmn
3 for the

effective volume of the photon. Alternatively, by converting Equation (16) to information units the
corresponding loss of information, ∆mimn(t), concerning the photon localization, becomes

∆mimn(t) =
1

ln(2)

[
4π

(∆Emn t
h

)2]
. (17)
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Figure 4. (a) Uncertainty in localization of a photon travelling out from the emitting atom in the center;
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With the change ∆Smn(t) being positive, the change in free energy,

∆Fmn(t) = ∆Emn − TE∆Smn(t), (18)

of the emitting atom rapidly decreases with time and even becomes negative very shortly after the
emission has taken place. The emission of radiation, therefore, is a strong thermodynamic driving
force that drives electrons to perform downward transitions to states with lower potential energy.
Conversely, upward transitions to states with higher potential energy are strongly discouraged as
this would involve transitions with the radiation moving backward in time and toward final states
with lower entropy. Figure 3b, therefore, pictures an open system, undergoing irreversible mechanical
motion and emitting photons, which carry potential information with regard to the m→ n transition,
which, however, gets lost as the emitted photons move out toward infinity. Figure 3b, therefore, once
again represents a case of unobservable mechanical motion, but one exhibiting dissipation.

Figure 3c illustrates a situation in which the emitted photons are no longer able to travel out to
infinity as these become absorbed by pieces of macroscopic matter on their way out. For simplicity,
the absorbing matter is represented in Figure 3c by solid walls that surround the radiation-emitting
atom and that effectively perform as macroscopic heat reservoirs, maintained at the environmental
temperature TE. Once absorbed inside this reservoir, the photon energy ∆Emn is dissipated without
affecting any measurable temperature change, and the potential information,

imn =
1

ln(2)
∆Emn

kBTE
, (19)
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carried with the photons directly after emission is converted into missing information about the internal
state of motion inside the reservoir. All information about the m→ n quantum transition, therefore,
is once again lost, which means that Figure 3c represents another case of irreversible and unobservable
mechanical motion.

Figure 3d, finally, looks very similar to Figure 3c. In this latter example, however, the passively
absorbing reservoir walls of Figure 3c are replaced by walls which are able to perform as photon
detectors. Like the passive walls in Figure 3c, the detector walls again absorb all photons that hit their
inner surfaces and that dissipate their energies ∆Emn at the wall temperature TE. During dissipation,
however, these detector walls function as thermodynamic engines which transiently convert the
dissipated energy into macroscopically observable events that can be monitored at their outside
surfaces [9]. As shown in Figure 5a and discussed in more detail in the Appendix A, these events
constitute pieces of physical action endowed with an observational value iD

(
Eph, TE

)
< ipot

(
Eph, TE

)
,

which measures the probability that an observed event is caused by a true photon–detector interaction
and unlikely by a random thermal excitation inside the detector wall itself. Figure 3d, therefore, once
again represents an open system, but one endowed with the capability of providing macroscopically
observable images at its outside surfaces of those microscopic mechanical processes that are going on
within the reservoir walls.
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Figure 5. (a) Photon detector turning potential information ipot into missing information miD and
transiently producing macroscopically observable events with informational value iD < ipot; (b) photon
cascade produced by de-excitation of a highly excited H-atom, de-exciting from a quantum state with
m = 100 toward its ground state with n = 1 with a step size of ∆n = 1; (c) potential information carried
with the emitted photons and measured relative to the detector temperature of TE = 300 K. The graded
blue background indicates the impact of thermal detector noise, with the limit of ipot = 1 bit denoting a
conventional signal-to-noise ratio of SN = 1.

Whereas a single m→ n transition produces as a mirror image, a single macroscopically observable
event, i.e., an elementary observation, a highly excited H-atom that was initially excited to a stationary
state with quantum number m = 100 and subsequently allowed to relax back to its ground state with
n = 1, lowering in each step the final-state quantum number by one unit, produces a more complex
observational image. While Figure 5b shows the photon cascade that results from such an emission
process, Figure 5c plots the levels of potential information that are carried with each photon toward
the detector walls. As these latter values represent upper limits to the informational value iD < ipot,
which might be gained in a detection process, the bottom panel clearly shows that the majority of
detection events at the beginning of the cascade, with ipot < 1 bit, actually become buried inside the
detector noise as the corresponding photons have energies lower than the mean thermal energy inside
the detector walls.
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Whereas the effects of detector noise can simply be reduced by lowering the detector operation
temperature, another limiting factor is detector response time. When detector response times become
long compared to the radiative lifetimes of the excited quantum systems, successive emission events
might pile up with the piled-up responses ultimately looking like continuously varying responses
produced by classical radiation fields. Unlike the effects of thermal noise, which can simply be
combatted by reducing detector operation temperatures, the temporal broadening of detector output
signals needs to be tolerated to a certain extent to make microscopic photon–detector interactions
observable at a macroscopic scale. This latter effect is explained in more detail in the Appendix A.

4. Least Action Principles and Observational Overhead

The above discussion has shown that the emission of radiation from moving charged particles
adds an element of irreversibility both on their classical and quantum mechanical motions. While the
emission of each photon from a charged particle represents an interaction event in which mechanical
energy is withdrawn from the moving particle, the emitted photon in turn is able to trigger a follow-on
event in which the photon energy is dissipated and a macroscopically observable event is generated,
which makes the mechanical motion observable from a distance. As both emission and detection
events represent pieces of physical action (see Appendix A), which add onto the physical action of
the particle motion itself, it becomes evident that the emission of radiation and its eventual detection
represent overheads on the particle motion that are measurable in units of physical action. Below,
we present evidence that the principle of least action, which is at the heart of Hamilton’s equations of
motion, not only minimizes the physical action that is associated with the particle motion itself but
that it also tends to minimize those dissipative and observational overheads that are associated with
the physically realized trajectories.

In order to demonstrate this, consider the example presented in Figure 6. There, a charged particle
of mass M is supposed to move from the far left-hand to the far right-hand side of this graph, following
a straight-line path in the absence of any external force fields. On its way, the particle also passes

through the line section L =
→

AB. Figure 6 also shows several alternative routes, connecting points A
and B, which the particle might take but which are ruled out by the principle of least action. In assessing
this situation, we firstly calculate the physical action that is associated with the particle motion from
point A to B itself, ignoring for the moment the emission of electromagnetic radiation. In a second step,
we determine the overhead in physical action that is associated with the emission of electromagnetic
radiation that occurs as the particle follows the sinusoidal alternative routes.
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In order to calculate the associated pieces of physical action, we firstly parameterize the different
trajectories in Figure 6. Assuming that the particle moves with speed vx along the x-axis of our
coordinate system, covering the distance L between points A and B in time τ = L/vx, the x-coordinates
of all trajectories become

x(t) = vxt, 0 ≤ t ≤ τ. (20)

Allowing additional excursions into the y-direction, we put

y(a, n, t) = a sin
[
nπ

(vx

L

)
t
]
,n = 0, 1, 2, 3 . . . , (21)

where a stands for the amplitude of excursion, and n stands for the number of excursions as the particle
moves form A and B.

With these coordinates, it is easy to calculate the kinetic energy of the particle as it moves along
the distance L and the physical action generated upon arrival at point B.

Ekin(t) =
1
2

M
[

.
x(t)

2
+

.

y(a, n, t)2
]
, (22)

Wmech(a, n, τ) =
∫ τ

0
Ekin(t) dt =

1
2

Mvx
2τ

[
1 +

1
2

n2π2
( a

L

)2
]
. (23)

This latter result shows that Wmech(a, n, τ) takes on a minimum value in case the number of excursions
n and/or their relative amplitudes a/L are minimized, i.e., in case a straight-line motion is followed.

We now move on to a particle carrying an electrical charge Q and performing the same trips as
before. In case the charged particle makes excursions into the y-direction, it suffers accelerations and,
thus, emits electromagnetic radiation as predicted by the Larmor formula [10,11,17,18].

Prad(a, n, t) =
Q2

6πε0c3 (
d2y(a, n, t)

dt2 )

2

(24)

where ε0 stands for the vacuum dielectric constant and c for the speed of light. With this formula and
the coordinate functions above, the electromagnetic energy Erad and the associated physical action
Wrad can be evaluated by double integration of Equation (24) over the time duration of travel τ. In this
way, one obtains

Erad(a, n, τ) =
1
3

(
Q
q

)2

αFSh̄
[
n2π2

( a
L

)]2[vx

c

]2 1
τ

(25)

Wrad(a, n, τ) = Erad(a, n, τ) τ (26)

Wrel(a, n, τ) =
Wrad(a, n, τ)

Wmech(a, n, τ)
=

 n4π4
(

a
L

)2

1 + 1
2 n2π2

(
a
L

)2


(

Q
q

)2(me

M

)(
τrad
τ

)
(27)

In these latter equations, αFS stands for the fine-structure constant,

αFS = q2/4πε0h̄c ≈ 1/137 (28)

while
τrad =

2
3
αFS

h̄
mec2 ≈ 10−23s (29)

stands for the radiation time constant of the electron [10].
Returning to Equation (27), it can be seen that not any dissipative overhead arises in case the

particle follows a straight-line path as predicted by Hamilton’s equations of motion. With the principle
of least action obviously preferring trajectories with minimum curvature, it is thereby suggested that
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the principle of least action not only minimizes those pieces of physical action that are associated
with the particle motion itself but also those that are associated with the emission of electromagnetic
radiation. With the effects of radiation emission being minimized, it also follows that any follow-on
effects such as the dissipation of the radiation energy in the environment and its eventual detection in
natural (eye) or man-made radiation detectors are minimized. From the standpoint of thermodynamics
and information theory, the principle of least action therefore appears as a principle of minimum
entropy production and/or minimum information gain.

Interestingly, such behavior also agrees with the results of Bormashenko [20,21], who analyzed
the recording and erasure of information carried by particles trapped inside a minimum Szilard-type
engine under the influence of externally applied inertial forces. The attractive aspect of this latter
approach is that it allows informational principles of mechanical motion to be extended to neutral
particles, which do not directly couple to electromagnetic fields.

5. Dissipative Overhead and Irreversibility

In the example of Figure 6, we tacitly assumed that the particle motion occurs in free space, i.e.,
with the particle avoiding any collisions with other pieces of matter as it proceeds from points A to B.
A very different situation arises when the particle is a molecular ion that is moving through a gas of
neutral molecules with the same mass. With gas–kinetic collisions now taking place, the ion is forced
into many of those small excursions from a straight-line path which were previously prohibited by the
principle of least action. In short, the particle then no longer follows a zero-dissipation path as in the
example of Figure 6 above.

Inside such a gas, the ion suffers frequent and violent ion–molecule interactions in which the ion
becomes accelerated or decelerated and in which it is forced to emit bursts of electromagnetic radiation.
Once emitted, the electromagnetic radiation either runs away from its sites of emission and disappears
in empty space, as in the scenario of Figure 2b, or it becomes absorbed inside a container wall, as in
Figure 2c. Whereas, in the first case, some of the motional energy is extracted from the moving ion
and irreversibly dispersed in space, the radiation energy absorbed inside one of the container walls
is converted into thermal radiation and re-emitted into the gas where it eventually might become
re-absorbed by the moving ion once again. As, in both cases, the resulting motional changes do not
conform with the mathematical time reversal operation t→ −t , both situations obviously involve a
certain degree of irreversibility.

In order to determine the amount of irreversibility that might be involved in a gas–kinetic collision,
consider Figure 7. There, a neutral N2 molecule is assumed to be coming from the left (1), moving with
the mean thermal velocity vth =

√
5kBT/M, hitting an N2

+ ion in the center (2), which is initially at
rest, and accelerating it during the time τint = dN2/vth from v = 0 to v = vth, thus moving the ion by
one mean-free distance to the right and bringing the neutral molecule to rest at the former position of
the N2

+ ion (3).
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Figure 7. Molecule–ion interaction inside a gas of temperature T leading to an exchange of motional
energy between the molecule and ion and causing the emission of a pulse of electromagnetic radiation
upon interaction (2).

Using the Larmor radiation formula (Equation (24)), for the radiation energy that is emitted from
each site of interaction, one obtains

Erad(τint) = 2
√

3 αFSh̄
( c

dN2

)( kBT
Mc2

)3/2

(30)

With this result, the following important parameters can be calculated:

(i) the fractional loss of mechanical energy, δErad(τint) = Erad(τint)/Eth, in each
ion–molecule interaction,

(ii) the number of collisions ndiss = 1/δErad required to transfer the mean thermal energy of the
moving ion toward its environment where it becomes dissipated,

(iii) the total time, τdiss = ndissτcoll, required for this energy transfer,

(iv) the length of the diffusion path, Ldiss =
√(

1
6
λ2

τcoll

)
τdiss, covered in the time τdiss.

Assuming standard temperature–pressure conditions for the gas, these values are listed in Table 1.

Table 1. Relative loss of motional energy δErad(τint) due to radiation damping during gas–kinetic
collisions, number of collisions (ndiss) required for a complete transfer of the mean thermal ion energy
into radiation, total time required for a complete energy transfer (τdiss), and length of ionic diffusion
path expected to be covered during time τdiss (Ldiss).

Interaction δErad(τint) ndiss τdiss (s) Ldiss (cm)

Gas–ion 6.90× 10−16 1.45× 1015 1.95× 106 1.08× 103

Gas–electron 7.97× 10−9 1.26× 108 0.17 0.32

Looking at the data in row 1, the assumption has been made that the ion as a whole is emitting
the radiation. Due to its relatively large mass of Mion = 28 amu, a very small amount of radiation is
emitted with the consequence that an extremely large number of gas–kinetic collisions is required to
completely convert the mean thermal energy of the ion into radiation energy. Consequently, very long
dissipation times τint and diffusion lengths Ldiss arise.

In view of this result, the assumption has been made in row 2 that the gas–ion interactions are
not with the ion as a whole but with electrons either bound to the ion itself or to its neutral collision
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partners. In this way, much larger energy transfers per interaction occur and a smaller number of
interactions ndiss and smaller length and time scales Ldiss and τdiss result. Both of these length and
time scales are clearly of macroscopic size but much longer than the length and time scales of the
individual ion–molecule interactions dN2 and τint = dN2/vth, respectively. Furthermore, involving
electrons in the process of radiation damping and energy dissipation involves the attractive aspect that
such interactions in principle can also appear in interactions between neutral molecules. A certain
drawback of our classical Larmor formula approach to radiation damping and energy dissipation
is the small amounts of radiation energy of about 10−7eV that are assumed to be emitted in each
ion–molecule interaction which correspond to typical radio frequencies. A full quantum-mechanical
treatment of gas–kinetic processes much more likely will yield emission energies on the order of the
rotational quantum energies of N2 molecules and, concomitantly, much smaller emission probabilities
during each gas–kinetic interaction. With this caveat in mind, we assume that the bottom line of results
in Table 1 reasonably approximates the real level of irreversibility in the gas–kinetic process.

6. Summary and Conclusions

Above, we discussed the subject matter of mechanical motion of charged particles with a special
emphasis on detection. A key enabling effect for the detection of mechanical motion is the process of
radiation damping. With the emitted radiation extracting mechanical energy from the moving particles
and dispersing it in the environment, radiation damping introduces an element of irreversibility into
the mechanical motion. Furthermore, as the emission represents an event that constitutes a piece of
physical action, it becomes clear that the process of radiation damping can be regarded as a dissipative
overhead that is burdened onto the mechanical motion and that is measurable in units of physical
action and entropy.

With the emitted radiation carrying away signatures of those changes in mechanical motion that
had caused its emission, the emitted radiation, in principle, makes mechanical motion detectable from
a distance. This is particularly evident in the case of photons emitted from excited atoms. In this case,
the changes in electronic orbital energy and in orbital angular momentum inside an atom are encoded
into the energy and the angular momentum of the emitted photons. With the photons carrying these
signatures away from their sites of emission to potential sites of observation, photons are obvious
carriers of potential information. In order to make the transported information available at the sites
of observation, the photon energy needs to be dissipated there and a macroscopically observable
event has to be formed that represents an amplified version of the microscopic emission event. Such
amplification features in the form of a huge increase in the physical action of detection (WD) over the
physical action of emission (h) and an associated elongation of the detector response times (τD) over
the time duration of the emission event (τem) (see Appendix A) [9]. Furthermore, as the detection
process involves energy dissipation and thermal noise, detection events represent noisy and temporally
elongated images of the respective emission events. With observation following emission, observation
once more appears as a dissipative overhead that is burdened onto the mechanical motion and that
needs to be accepted in order to allow mechanical motion to be actually observed.

With observation being related to physical action and with observational overheads adding onto
the physical action of the mechanical motion itself, both overheads should be controlled by the principle
of least action. Considering an example of constant-speed rectilinear motion in the absence of any
external force fields, we have shown that the principle of least action not only minimizes the physical
action of the mechanical motion itself but that it also minimizes any overheads that might be associated
with the radiation damping and the eventual detection of the emitted radiation. In the example
considered, this means that constant-speed rectilinear motion is unobservable and fully reversible,
in full agreement with Hamilton’s equations of motion. Extrapolating from this result, we propose that
the principle of least action, which is at the heart of Hamilton’s equations of motion, could also be
viewed as a principle of minimum energy dissipation and/or of minimum information gain.



Entropy 2020, 22, 737 15 of 18

Quantitative estimates of the dissipative burdens on mechanical motion show that the effects of
radiation damping are close to immeasurably small as long as the mechanical motion of macroscopic
particles at non-relativistic speeds is concerned. In the case of swiftly moving and intensely interacting
particles, such as molecules moving inside macroscopic volumes of gas, the dissipative burdens can
take on measurable sizes, thus shedding some doubt on the assumed ideal reversibility of mechanical
motion at the molecular scale.

Funding: This research received no external funding.

Acknowledgments: The author is grateful for constructive and clarifying remarks by anonymous reviewers.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Photon Detection

Here, we summarize the key results of a previous paper [9] in which we showed that detection
events represent pieces of physical action produced at the expense of dissipation of photon energy
and endowed with an observational value, which measures the probability that the events were
produced by true photon–detector interactions and unlikely by random thermal fluctuations inside the
detector itself.

In order to see how energy dissipation can be put to work to generate pieces of realized information,
we consider the process of photon detection in a photoionization detector (PID). The reason for choosing
the example of PIDs is that these are conceptually simple devices and that these most closely resemble
ideal photon detectors [9,16]. Photon detection in PIDs was already treated in some detail in a previous
publication [9]. Here, we briefly summarize the main results as far as these are relevant in the present
context. PIDs are basically parallel-plate capacitor devices consisting of metal plates with a work
function qφm and biased to a static potential Vb (Figure A1). When photons with energy Eph ≥ qφm

enter the gap in between both plates, electrons can be excited to the vacuum levels in both plates,
thereby enabling them to enter the gap in between both plates. When electrons are released from the
negatively biased emitter electrode, triangular electrical current pulses,

Is(t) = 2 q
t
τt2

(0 ≤ t ≤ τt) (A1)

are induced, which abruptly end when the photoelectrons reach the grounded collector electrode at
times τt, where the current flow can be monitored.
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Figure A1. (a) Signal photon (red vertical arrow) entering a gap between two metal plates.
Photons absorbed inside the negatively biased emitter electrode release signal photoelectrons (blue
horizontal arrows). Emitter and collector electrodes maintained at the ambient temperature TD produce
blackbody radiation (red cloud), producing noise electrons. Signal and noise currents together produce
externally observable detector currents ID(t); (b) processes of photoelectron excitation, signal generation,
and energy dissipation as seen in a band diagram.
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The current pulses (Equation (A1)), obviously, are observational images of those microscopic
photon–detector interactions in which photons are converted into photoelectrons. These current
pulses, therefore, represent pieces of realized information. Considering the fact that these current
transients have a finite time duration τt and that these occur within the finite volume of the detector
gap, these pieces of information obviously take the form of space–time events. In addition to space
and time coordinates and space–time extension, such detection events are endowed with additional
properties, which are revealed from integrals taken over the time duration of these events.

A first and obvious measure is the collected charge,

q =

∫ τt

0
Is(t)dt (A2)

A second important measure can be obtained by multiplying the current pulses Is(t) with the
potential drop through which the photoelectrons fell on their travel through the detector gap. In this
way, the signal power Ps(t) is obtained. Double integration over time then successively leads to the
signal energy Es(t) and the physical action Ws(t) after a time t and, finally, the physical action obtained
after termination of the current transient,

WD(τt) =
1
3

qVbτt (A3)

This latter result shows that detection events are not merely quadruples of space-time coordinates,
but pieces of physical action. More importantly, the pieces of physical action WD(τt) represent a
physically measurable value that was gained in the detection process.

Once a photoelectron arrives at the collector electrode, its kinetic energy is dissipated inside
this electrode, i.e., broken up into pieces of energy of size kBTD � qVb and, therefore, converted into
low-temperature heat. Due to the thermal coupling of the PID to the environment, this low-temperature
heat ultimately ends up as entropy transferred to the environment,

SD =
Eph + qVb

T
(A4)

As the photoelectron energy is negligible in comparison to the huge internal energy U of the
environmental reservoir (U � Eph + qVb), a measurable change in the environmental temperature T
does not result, and the entropy SD finally ends up as missing information,

miD =
1

ln(2)

Eph + qVb

kBT
, (A5)

concerning the internal state of motion inside the huge environmental reservoir. This conversion
of photoelectron energy into low-temperature heat, obviously, represents the physical price
aid for transiently obtaining the piece of physical action WD(τt). Eliminating qVb from
Equations (A3) and (A4), a simple proportionality between physical action gained and entropic price
paid is obtained,

WD(τt) =
1
3
(τtT)SD(T) (A6)

Interestingly, this proportionality depends on the time duration τt that the electron travel through
the gap took. Physically, this time duration is the minimum time that is required to reset the detector to
its pre-detection state and to ready it for a new round of photon detection. As shown in our previous
paper [9], this time duration depends on the detector gap width and the bias potential applied across
this gap,

τt(d, Vb) =
1
2
τph

(
d

dmin

)√
2mec2

qVb
(A7)
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with τph standing for the photon vibrational period and dmin = λ/2 standing for the minimum detector
gap width which corresponds to half the photon wavelength λ = hc/Eph; mec2, finally, is the electron
rest mass. In case qVb is chosen to match the photon energy Eph and d is the minimum gap size of
dmin = λ/2, this reduces to

WD(τt) =
1
6

h

√
2mec2

Eph
� h̄ (A8)

which shows that the physical action gained upon detection hugely exceeds the physical action carried
with the photon prior to its detection in the form of its spin angular momentum. The inequality in
Equation (A8), therefore, shows that detection involves a fair bit of amplification, which results from
the elongation of the electron transit time τt to time scales much larger than the photon vibrational
period τph = h/Eph. Such an elongation is instrumental in turning microscopic interaction events into
macroscopically observable events. Large values of τt, however, limit the rate with which photons can
be counted.

As a final point, we note that every detection event only has a finite observational value, as detection
events, in principle, can also arise from photons, thermally generated within the detector itself (see
Figure A1). As shown in our recent paper [9], the statistical significance of detection events can be
measured by the magnitude of the information realized in the detection process, which is related to the
classical signal-to-noise ratio, SN

(
Eph, T

)
, by

ireal
(
Eph, T

)
=

1
ln(2)

ln
(
SN

(
Eph, T

))
≤ ipot

(
Eph, T

)
=

1
ln(2)

Eph

kBT
. (A9)

As shown there, ireal
(
Eph, TD

)
hardly ever exceeds values of ∼ 0.5 ipot

(
Eph, TD

)
, i.e., half the

potential information carried with the photons prior to detection and relative to a detector operated at
a temperature T.
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