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Abstract: We study the effect of self-oscillation on the escape dynamics of classical and quantum
open systems by employing the system-plus-environment-plus-interaction model. For a damped free
particle (system) with memory kernel function expressed by Zwanzig (J. Stat. Phys. 9, 215 (1973)),
which is originated from a harmonic oscillator bath (environment) of Debye type with cut-off
frequency wd, ergodicity breakdown is found because the velocity autocorrelation function oscillates
in cosine function for asymptotic time. The steady escape rate of such a self-oscillated system from
a metastable potential exhibits nonmonotonic dependence on wd, which denotes that there is an
optimal cut-off frequency makes it maximal. Comparing results in classical and quantum regimes,
the steady escape rate of a quantum open system reduces to a classical one with wd decreasing
gradually, and quantum fluctuation indeed enhances the steady escape rate. The effect of a finite
number of uncoupled harmonic oscillators N on the escape dynamics of a classical open system is
also discussed.
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1. Introduction

The study of open systems, which may trace back to the pioneering studies on Brownian
motion [1,2], has been an important area in both classical and quantum statistical mechanics [3,4]. In the
theory of open systems, the deterministic dynamics of particles in the system is replaced in the quantum
regime by a stochastic Schrödinger equation, corresponding to a stochastic Langevin equation [5] in
the classical limit. In the classical regime, many studies have been made for open systems by using
the Caldeira–Leggett (CL) model [6–8] (system-plus-environment-plus-interaction model), in which
the environment is often regarded as a heat bath consisted of a large set of independent harmonic
oscillators. In the quantum regime, a model quantum system coupled to its environment forms the
standard paradigm of quantum Brownian motion. However, the size of environment is small for
systems of interest in many contexts, in particular, in mesoscopic physics and nanotechnology [9–13].
The thermodynamic limit may no longer be justified. There is a natural infrared cut-off for the frequency
of oscillators schematizing the environment. A finite number of oscillators of a realistic heat bath is
also objective. As escape of a particle from a metastable potential plays a central role in different fields
of science, including condensed matter physics [14], polymer physics [15,16], and neuroscience [17],
two effects on escape dynamics [18] of an open system indeed need to be considered: a finite bandwidth
for the frequency of oscillators and a finite number of oscillators in a heat bath.

The aim of this paper is to analyze the effect of self-oscillation [19–21] caused by a finite
bandwidth [22,23] and a finite number of oscillators [13,24] in a heat bath on escape dynamics of
classical and quantum open systems. First, the effect of a finite bandwidth on the escape dynamics of
classical and quantum systems is studied in the limit N → ∞. One systematic approach is based on
the Zwanzig–Mori projection operator formalism, which leads to a generalized Langevin equation
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(GLE) for classical open systems. Based on an initial coherent state representations of bath oscillators
and an equilibrium canonical distribution of quantum mechanical mean values of their coordinates
and momenta, a quantum generalized Langevin equation (QGLE) in c numbers can also be derived
for quantum open systems [14,25,26]. We employ the memory kernel expressed by Zwanzig [27],

i.e., γ(t) =
3γ2

0
w2

d

sin(wdt)
t , where wd is a cut-off frequency and γ0 constant, which is originated from

the Debye cut-off for the frequency of oscillators in a heat bath. Ergodicity breakdown is found
for a damped free particle as the velocity autocorrelation function (VAF) is shown to oscillate in
cosine function for asymptotic time. The steady escape rate of such a self-oscillated system depends
non-monotonically on wd, which is analyzed from the perspective of two timescales: the correlation
time of fluctuations, τc, and the escape time, τe, [28] and the change of the friction exerting on the
system [29]. Comparing results in classical and quantum regimes, quantum fluctuation enhances
the steady escape rate. Second, the effect of a finite number of oscillators on the escape dynamics
of a classical open system is investigated by numerical simulation of (2N + 2) Hamilton equations.
The dependence of the steady escape rate on N is presented here. The effect of self-oscillation caused by
many frequencies missing in the interval of interest in a finite bath on escape dynamics is also analyzed.

The paper is organized as follows. In Section 2, we present a general analysis of VAF of a
damped free particle and obtain an exact analytical expression for asymptotic time. In Section 3,
on the one hand, the effect of a finite bandwidth for the frequency of oscillators on escape dynamics is
investigated by the numerical simulation of a GLE and a QGLE in c numbers. In particular, we analyze
the nonmonotonic dependence of the steady escape rate on wd from the view of two timescales and a
crossover between weak and strong friction regime. We also compare results of the steady escape rate
in quantum and classical regimes here. On the other hand, the effect of a finite number of oscillators
on escape dynamics of a classical open system is studied. The conclusions are drawn in Section 4.

2. General Analysis of VAF: Damped Free Particle

In the classical regime, the starting point for our analysis is the Hamiltonian of a particle plus
environment consisted of N-independent harmonic oscillators [6–8], which means the interaction of
the particles in heat bath of each other [5] has not been considered here,

H =
P2

2M
+ U(X) +

N

∑
i=1

[
p2

i
2mi

+
miw2

i
2

(xi −
ciX

miw2
i
)2]. (1)

where {X, P} and {xi, pi} (i=1, 2 , ... , N) are, respectively, the test particle and the ith oscillator
coordinates and momentums. M and mi are, respectively, the mass of the test particle and the
ith oscillator. wi denotes the vibrational frequency of the ith oscillator. The coupling parameter
ci characterizes the strength of the system–environment interaction. U(x) is an external potential.
By writing the Hamilton equations and solving for the particles of the heat bath, a GLE is obtained:

MV̇ = −U′(X)−M
∫ t

0
γ(t− s)V(s)ds + F(t), (2)

where γ(t) denotes the memory kernel function. The noise F(t) has zero means, which satisfies the
fluctuation–dissipation theorem (FDT), written as CF(t) = 〈F(t)F(0)〉 = MkBTγ(t); here, kB denotes
Boltzmann’s constant and T the temperature.

In the quantum regime, the total system-bath Hamiltonian can be written as [25,26,30]

H =
p̂2

2M
+ U(x̂) +

N

∑
i=1

[
p̂2

i
2mi

+
miw2

i
2

(x̂i −
ci x̂

miw2
i
)2], (3)

where x̂ and p̂ are the coordinate and momentum operators of the system, respectively, and {x̂i, p̂i}
are the set of coordinate and momentum operators of the bath oscillators. The coordinate and the
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momentum operators follow the commutation relation [x̂, p̂] = ih̄ and [x̂j, p̂k] = ih̄δjk. Using the
Heisenberg equation of motion for operator, a QGLE in c numbers can be obtained based on an initial
coherent state representations of bath oscillators and an equilibrium canonical distribution of quantum
mechanical mean values of their coordinates and momenta:

MV̇ + M
∫ t

0
γ(t− s)V(s)ds + U′(X) = F(t) + Q(X, t), (4)

where V(t) and X(t) denote quantum mechanical mean values of velocity and position, respectively,
expressed as 〈v̂(t)〉 = V(t) and 〈x̂(t)〉 = X(t). γ(t) denotes the dissipative memory kernel, given

by γ(t) =
∫ ∞

0
J(w)

w cos(wt)dw, where J(w) = 1
M ∑N

i=1
c2

i
miwi

δ(w− wi) denotes the bath spectral density.
F(t) is zero centered stationary noise, i.e., 〈F(t)〉 = 0 and 〈F(t)F(0)〉 = C(t), where C(t) is written
as C(t) = h̄

2

∫ ∞
0 J(w)cos(wt) × coth( h̄w

2kBT )dw. Q(X, t) is a quantum fluctuation term, expressed as
Q(X, t) = U′(〈x̂〉)− 〈U′(x̂)〉.

For a damped free particle in both regimes, we can obtain a differential equation for the
VAF CV(t) = 〈V(t)V(0)〉

〈V2(0)〉 by multiplying the initial velocity V(0) and performing an ensemble
average, specifically,

dCV(t)
dt

= −
∫ t

0
γ(t− s)CV(s)ds. (5)

We employ the memory kernel expressed by Zwanzig [27], i.e.,

γ(t) =
3γ2

0
w2

d

sin(wdt)
t

, (6)

where wd is a cut-off frequency and γ0 a constant. The parameter γ0 = 1 is fixed. In the limit of
N → ∞, the frequency distribution of the oscillators can be treated as continuous with the Debye type,
and the memory kernel can be obtained by setting ci = γ0/

√
N. The Laplace transform of the VAF

reads [31] C̃V(z) = 1
z+γ̃(z) , where the Laplace transform of the memory kernel is given by

γ̃(z) =
3γ2

0
w2

d
arctan(

wd
z
). (7)

As γ̃(z) is a multi-value function on the complex plane [32], it is complicated to obtained a closed
form of the VAF. Nevertheless, we can analyze the behavior of the VAF for asymptotic time. When wd
is equal to a finite value in Equation (6), the characteristic equation, z + γ̃(z) = 0, has a pair of pure
complex roots. Formally, the exact expression of the VAF for asymptotic time can be obtained, which is
given by

CV(t) = 2c0cos(y0t), f or asymptotic time (8)

y0 −
3γ2

0
2w2

d
Ln | y0 + wd

y0 − wd
|= 0; c0 = [1−

3γ2
0

w2
d

wd

(w2
d − y2

0)
]−1; (9)

where ±iy0 are two pure imaginary roots of the characteristic equation. The coefficient c0 denotes the
residues of the imaginary roots. For example, for wd = 0.5, y0 = 2.47, and c0 = 0.494; for wd = 1.5,
y0 = 1.74, and c0 = 0.280; and for wd = 2.0, y0 = 2.02, and c0 = 0.0505. In Figure 1, we plot numerical
and analytical results. For asymptotic time, analytical results are in good agreement with numerical
results by the numerical integration of Equation (5). From the Khinchin theorem [33], which states
that if the autocorrelation function CA(t) of a variable A satisfies CA(t → ∞) = 0, then A is an
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ergodic variable; ergodicity breakdown in the classical and quantum systems is observed because of
frequencies cut-off. Notably, the ergodicity is exhibited when wd → ∞ as y0 → 0 and CV(t→ ∞) = 0.

(a) wd = 0.5 (b) wd = 1.5

(c) wd = 2.0

Figure 1. The VAF of a damped free particle with cut-off frequencies wd = 0.5, wd = 1.5, and wd = 2.0
in order from left to right in the figure. The black solid lines were obtained from the numerical
integration of Equation (5) with Equation (6). The red lines are analytical results obtained from
Equations (8) and (9).

3. Two Effects on Escape Dynamics of Classical and Quantum Open Systems

3.1. Effect of wd

We use the second-order Runge–Kutta algorithm [34–36] with a small time-step, h = 0.005, to study
numerically how the steady escape rate of a self-oscillated system depends on wd in classical and
quantum regimes, respectively. A type of metastable potential profile is chosen to be

U(X) =

{
1
2 w2

aX2, X ≤ XC

U − 1
2 w2

b(X− Xb)
2, X > XC

, (10)

where Xa = 0 and Xb are the coordinates of the potential well bottom and saddle point, respectively.
U is the well depth. Xc is the linking point of two smooth quadratic potentials. wa and wb are the
frequencies of a harmonic potential and an inverse harmonic one, respectively. The time-dependent
escape rate of the particle is determined by r(t) = − 1

N(t)
∆N(t)

∆t [36], where N(t) denotes the number of
particles that have not arrived the exit. We chose the exit, Xe = 7.5, which is larger than the saddle
point Xb ≈ 1.4 with the choice of wa = wb = 2.0 in our simulation. ∆N(t) is the number of particles
crossing the exit first time during the period of t → t + ∆t. As the exit is chosen far enough, which
denotes that the particle cannot come back across the saddle point, it is removed once crossing the exit.
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For easy statistical analysis, we chose a finite time interval ts = 0.3. Moreover, the time-dependent
escape rate during the interval t→ t + ts is given by [37]

r(t) =
1
ts

∫ t+ts

t
(− 1

N(t)
dN(t)

dt
)dt

=
1
ts
[ln(N(t))− ln(N(t + ts))].

(11)

Initially, in the classical regime, the velocity and coordinate obey a Gaussian distribution with
zero-mean and variance, 〈V2〉 = kBT

M and 〈X2〉 = kBT
Mw2

a
. In the quantum regime, the velocity and

coordinate obey a Gaussian distribution with zero-mean and variance [25], 〈V2〉 = h̄wa
2 coth( h̄wa

2kBT ) and

〈X2〉 = h̄
2wa

coth( h̄wa
2kBT ).

Panels (a,b) in Figure 2 show the time-dependent escape rate with various wd in the classical
and quantum regime, respectively. In both regimes, it is obvious that the time-dependent escape rate
arrives to oscillate around a constant after a period of time. The transient stage lasts approximately
t1 = 10 for different values of wd. Thus, we get the steady escape rate, rst, by time-averaging over r(t),
which is given by rst =

1
t2−t1

∫ t2
t1

r(t)dt, where we choose t1 = 10 and t2 = 25. Moreover, panel (c) in
Figure 2 shows that the steady escape rate depends non-monotonically on wd, which means that there
is an optimal cut-off frequency that makes the steady escape rate maximal.

(a) The classical case (b) The quantum case

(c) The steady escape rate with various wd

Figure 2. Panels (a,b), respectively, denote the time-dependent escape rate with different values of wd
in the classical and quantum case. (c) The steady escape rate for different values of wd. The parameters
used are kB = 1.0, T = 1.0, M = 1.0, and γ0 = 1.0. The parameters of the metastable potential are
wa = 2.0, wb = 2.0, and U = 2.0. All curves in panels (a,b) were plotted from results obtained by
respectively simulating Equations (2) and (4) with 250,000 test particles. The black open squares in
panel (c) denote the classical case and the red open circles the quantum case.
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The escape behavior of a self-oscillated system is analyzed by two timescales: the correlation
time of fluctuations, τc, and escape time, τe ∼ 1

wa
exp( U

kBT ) [28], and a crossover between weak and

strong friction regime [29]. For the memory kernel given by Equation (6), τc ∼ 1
wd

. The zero frequency

friction is given by γe f f =
∫ ∞

0 γ(t)dt = 3
2

πγ2
0

w2
d
= ξ0 [38]. On the one hand, self-oscillation is reported

in both classical and quantum open systems. When wd is low, τc > τe, which means that escape
process is greatly under the influence of self-oscillation of the system. The dynamics of the system is a
non-Markovian process. In other words, the system has a strong memory of its initial states, which also
means that the system is in the strong friction regime (γe f f � 2wa). [39] From Kramers’ theory [18],
the steady escape rate can be given by rst → wawb

2πξ0
exp(− U

KBT ). When wd is moderate, the transition
state theory and the Grote–Hynes formula [28,29] can be used to analyze the change of the escape
rate rst, which is given by rst =

u
wb

wa
2π exp(− U

KBT ), where the real positive-valued quantity u can be
determined by u2 + uγ̂(u)− w2

b = 0, where γ̂(z) is given by Equation (7). Under the condition that
wd is moderate so that the result is valid, the steady escape rate increases as wd increases by solving
equation of u numerically.

On the other hand, when wd is high enough so that the system momentum varies sufficiently
slowly over times of the order of τc, the dissipative memory kernel can be approximated by a δ

function, i.e., γ(t) ' 2ξ0δ(t); ξ0 =
3πγ2

0
2w2

d
. The dynamics of the system is Markovian process and the

friction acting on the system is weak. From Kramers’ theory [18], the steady escape rate can be given
by rst → ξ0

U
kBT exp(− U

KBT ). Therefore, as the high value of wd increases, it is easy to demonstrate
that the steady escape rate decreases gradually to zero. As a result, the steady escape rate depends
non-monotonically on wd for a crossover between weak and strong friction regime.

Comparing the steady escape rate of a quantum open system to a classical open system, it is no
difficult to find that quantum fluctuation enhances the steady escape rate. It may be easy to verify that
the QGLE in c numbers reduces to the GLE in the thermal limit h̄wi � kBT [26], where {wi} are the
vibratory modes of oscillators in the heat bath. Therefore, the steady escape rate of quantum open
system reduces classical open system as wd decreases gradually when the thermal limit holds.

3.2. Effect of N

Many examples for non-Markovian ergodicity breaking in a finite-size bath [13,19,24,31] are with
a non-vanishing VAF of a force-free particle being non-stationary. A finite bath with limited resources,
namely, a finite number of degrees of freedom, leads naturally to a cut-off for the density of the bath,
which means many frequencies lack in the presence of a realistic heat bath. We start with (2N + 2)
Hamilton equations of a classical open system to investigate the effect of a finite number of oscillators
on the steady escape rate by varying N from small to large. The equations of motion are given by

Ẋ = ∂H
∂P = P

M ,

Ṗ = − ∂H
∂X

= −U′(X) + ∑N
i=1 ci(xi − ci

miw2
i
X(t)),

ẋi = ∂H
∂pi

= pi
mi

,

ṗi = − ∂H
∂xi

= −miw2
i xi + ciX(t),

. (12)

We use fourth-order Runge–Kutta algorithm with a small time-step, h = 0.005, to study
numerically how the steady escape rate depends on N. We consider a statistical average over 200,000
test particles. Each of the test particles is coupled to a bath composed by N-independent harmonic
oscillators. The initial velocity distribution of test particles is assumed to be Gaussian with zero-mean
and variance, 〈V2〉=1.0. We suppose that oscillators in the bath are in thermal equilibrium with
KBT=1.0 at the initial time, where kB is the Boltzmann constant and T is the temperature of the bath.
Moreover, the vibrational frequencies of oscillators are chosen randomly from a frequency distribution
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of Debye type. The frequency distribution function is g(w) = 3
w3

d
w2 for w < wd and g(w) = 0 for

w > wd, where wd is a cut-off frequency. As our interest is to study escape dynamics by changing N,
we fix values of wd.

Panels (a,b) in Figure 3 show the time-dependent escape rate with various N when we fix wd = 2.5
and wd = 3.0 in a frequency distribution of the Debye type, respectively. After a period of time, the
time-dependent escape rate starts to oscillate around a constant. Using the same methods, we obtain
the dependence of the steady escape rate on N in panel (c) in Figure 3, which shows that the steady
escape rate increases as the number of N increases gradually.

(a) wd = 2.5 (b) wd = 3.0

(c)The steady escape rate with various N

Figure 3. Panels (a,b) denote the time-dependent escape rate with different values of N with wd = 2.5
and wd = 3.0, respectively. (c) The steady escape rate for different values of N. The parameters used
are kB = 1.0, T = 1.0, M = mi = 1.0, and ci = 0.1. The parameters of the metastable potential are
wa = 2.0, wb = 2.0, and U = 2.0. All curves in panels (a,b) were plotted from results obtained by,
respectively, simulating Equation (12) with 200,000 test particles. The black open squares in panel (c)
denote wd = 2.5 and the red open circles wd = 3.0.

In our approach, due to the finite number of oscillators, the spectral density is always structure
for low values of N. By plotting the frequency distribution g(w) for different values of N varying
from small to large in Figure 4, it is clear that many frequencies are missing in the interval of interest
when N = 10, N = 30, and N = 120. Namely, ergodicity breaks when the value of N is low and the
dynamics of system is non-Markovian process, which means that the friction exerting on the particle
is strong. As N increases gradually, the friction becomes weak. In the limit of N → ∞, ergodicity
recovers with a high wd and the dynamics of the system becomes a Markovian process. Therefore,
during the dynamics of the system going from a non-Markovian to Markovian process, the steady
escape rate increases gradually.
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(a) N = 10 (b) N = 30

(c) N = 120

Figure 4. Frequency distribution for different values of N and wd = 2.5.

4. Conclusions

We have analyzed ergodicity breakdown in classical and quantum open systems described,
respectively, by a GLE and a QGLE in c numbers, both analytically and numerically, which is caused
by a harmonic oscillator bath of Debye type. The VAF has been shown to oscillate in cosine function
for asymptotic time. Escape of a self-oscillated open system from a metastable potential has shown
interesting phenomena. On the one hand, the steady escape rate depends non-monotonically on wd
because of the influence of self-oscillation, which has been analyzed by considering two timescales, τc

and τe. Comparing classical and quantum results, quantum fluctuation enhances the steady escape
rate. On the other hand, the effect of a small number of oscillators in heat bath has been shown to
decrease the steady escape rate comparing with large N.

The effect of self-oscillation on escape dynamics of open systems can be presented more intuitive
through the present work. We believe that the present study will provide useful information about the
study of the escape processes of open systems. Thus, some surprising findings may be revealed.
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