Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes
Abstract
:- What are the limits and capabilities of kMC in terms of grasp nanoscale processes and systems?
- Can we reach a novel level of understanding by merging quantum mechanical and semi-classical dynamics within multiscale descriptions?
- How can we embrace various orders of magnitude in time/energy and spatial scales?
- Can kMC combined with non equilibrium thermodynamics provide sufficient insight to design novel materials and devices to overcome the current limitations in performances and efficiencies?
Funding
Conflicts of Interest
References
- Moore, G.J.; Causa, M.; Martinez Hardigree, J.F.; Karuthedath, S.; Ramirez, I.; Jungbluth, A.; Laquai, F.; Riede, M.; Banerji, N. Ultrafast Charge Dynamics in Dilute-Donor versus Highly Intermixed TAPC: C60 Organic Solar Cell Blends. J. Phys. Chem. Lett. 2020, 11, 5610–5617. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Rinderle, M.; Kaiser, W.; Mattoni, A.; Gagliardi, A. Machine Learned Charge Transfer Integrals for Multiscale Simulations in Organic Thin Films. J. Phys. Chem. C 2020, 124, 17733–17743. [Google Scholar] [CrossRef]
- Vukmirovic, N.; Wang, L.W. Charge carrier motion in disordered conjugated polymers: A multiscale ab initio study. Nano Lett. 2009, 9, 3996–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, M.; Gronbeck, H. Scaling relations and kinetic Monte Carlo simulations to bridge the materials gap in heterogeneous catalysis. ACS Catal. 2017, 7, 5054–5061. [Google Scholar] [CrossRef]
- Kimber, R.G.; Wright, E.N.; O’Kane, S.E.; Walker, A.B.; Blakesley, J.C. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics. Phys. Rev. B 2012, 86, 235206. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, W.; Popp, J.; Rinderle, M.; Albes, T.; Gagliardi, A. Generalized kinetic Monte Carlo framework for organic electronics. Algorithms 2018, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Cheung, D.L.; Troisi, A. Modelling charge transport in organic semiconductors: From quantum dynamics to soft matter. Phys. Chem. Chem. Phys. 2008, 10, 5941–5952. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, W.; Gagliardi, A. Kinetic Monte Carlo Study of the Role of the Energetic Disorder on the Open-Circuit Voltage in Polymer/Fullerene Solar Cells. J. Phys. Chem. Lett. 2019, 10, 6097–6104. [Google Scholar] [CrossRef]
- Reuter, K. First-Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers. In Modeling and Simulation of Heterogeneous Catalytic Reactions; John Wiley & Sons, Ltd.: Chichester, UK, 2012; Chapter 3; pp. 71–111. [Google Scholar] [CrossRef]
- Kordt, P.; Stodtmann, S.; Badinski, A.; Al Helwi, M.; Lennartz, C.; Andrienko, D. Parameter-free continuous drift–diffusion models of amorphous organic semiconductors. Phys. Chem. Chem. Phys. 2015, 17, 22778–22783. [Google Scholar] [CrossRef] [Green Version]
- Melianas, A.; Felekidis, N.; Puttisong, Y.; Meskers, S.C.; Inganäs, O.; Chen, W.M.; Kemerink, M. Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces. Proc. Natl. Acad. Sci. USA 2019, 116, 23416–23425. [Google Scholar] [CrossRef] [PubMed]
- Brigeman, A.; Fusella, M.; Rand, B.P.; Giebink, N.C. Nonthermal site occupation at the donor-acceptor interface of organic solar cells. Phys. Rev. Appl. 2018, 10, 034034. [Google Scholar] [CrossRef] [Green Version]
- Roland, S.; Kniepert, J.; Love, J.A.; Negi, V.; Liu, F.; Bobbert, P.; Melianas, A.; Kemerink, M.; Hofacker, A.; Neher, D. Equilibrated charge carrier populations govern steady-state nongeminate recombination in disordered organic solar cells. J. Phys. Chem. Lett. 2019, 10, 1374–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregg, B.A. Entropy of charge separation in organic photovoltaic cells: The benefit of higher dimensionality. J. Phys. Chem. Lett. 2011, 2, 3013–3015. [Google Scholar] [CrossRef]
- Hood, S.N.; Kassal, I. Entropy and disorder enable charge separation in organic solar cells. J. Phys. Chem. Lett. 2016, 7, 4495–4500. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Lee, C.K.; Willard, A.P. The enhancement of interfacial exciton dissociation by energetic disorder is a nonequilibrium effect. ACS Cent. Sci. 2017, 3, 1262–1270. [Google Scholar] [CrossRef] [Green Version]
- Nikitenko, V.; Von Seggern, H.; Bässler, H. Non-equilibrium transport of charge carriers in disordered organic materials. J. Phys. Condens. Matter 2007, 19, 136210. [Google Scholar] [CrossRef]
- Ansari-Rad, M.; Athanasopoulos, S. Theoretical study of equilibrium and nonequilibrium exciton dynamics in disordered semiconductors. Phys. Rev. B 2018, 98, 085204. [Google Scholar] [CrossRef] [Green Version]
- Röder, F.; Braatz, R.D.; Krewer, U. Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems. Comput. Chem. Eng. 2019, 121, 722–735. [Google Scholar] [CrossRef]
- Van den Broeck, C.; Esposito, M. Ensemble and trajectory thermodynamics: A brief introduction. Phys. A 2015, 418, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, W.; Gagliardi, A. Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes. Entropy 2020, 22, 1013. https://doi.org/10.3390/e22091013
Kaiser W, Gagliardi A. Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes. Entropy. 2020; 22(9):1013. https://doi.org/10.3390/e22091013
Chicago/Turabian StyleKaiser, Waldemar, and Alessio Gagliardi. 2020. "Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes" Entropy 22, no. 9: 1013. https://doi.org/10.3390/e22091013
APA StyleKaiser, W., & Gagliardi, A. (2020). Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes. Entropy, 22(9), 1013. https://doi.org/10.3390/e22091013