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Abstract: We propose probability and density forecast combination methods that are defined using
the entropy regularized Wasserstein distance. First, we provide a theoretical characterization of the
combined density forecast based on the regularized Wasserstein distance under the assumption.
More specifically, we show that the regularized Wasserstein barycenter between multivariate Gaussian
input densities is multivariate Gaussian, and provide a simple way to compute mean and its
variance–covariance matrix. Second, we show how this type of regularization can improve the
predictive power of the resulting combined density. Third, we provide a method for choosing the
tuning parameter that governs the strength of regularization. Lastly, we apply our proposed method
to the U.S. inflation rate density forecasting, and illustrate how the entropy regularization can improve
the quality of predictive density relative to its unregularized counterpart.

Keywords: entropy regularization; Wasserstein distance; optimal transport; density forecasting;
forecast combination; model combination; quantile aggregation

1. Introduction

In this paper, we study a class of density forecast combination methods based on a Wasserstein
metric. In the univariate case, an equally weighted centroid defined by a Wasserstein metric
corresponds to a quantile averaging or vincentized center where quantiles of forecast densities are
averaged. The resulting combined density tends to be narrower than the linear opinion rule [1–3],
which may or not be desirable, depending on the context.

We propose to use the entropy regularized Wasserstein metric to construct a combined density
forecast. Like its unregularized counterpart, this combined probability/density can be defined by an
optimization problem, but the optimization problem in this case includes an additional regularization
term that penalizes densities with low entropy, which ensures the combined density forecast is smooth.
One advantage of this approach is that the entropy regularized Wasserstein barycenter can be found in
a much more computationally efficient manner than its unregularized counterpart when the input
densities are multi-dimensional [4].

While computational efficiency is the most commonly cited reason for using entropy regularization,
this paper demonstrates that there is an additional advantage of regularization when it comes to the
density combination problem. It provides a way to tune the degree of dispersion of the combined
density forecast. To the best of our knowledge, this regularized metric has not been explored in the
context of the density forecasting combination problem.

As a part of our discussion, we provide a theoretical characterization of the regularized
Wasserstein distance under the Gaussian assumption. More specifically, we show that the regularized
Wasserstein barycenter between two multivariate Gaussian inputs is multivariate Gaussian. Our proof
complements Theorem 1 of [5], which characterizes the regularized Wasserstein barycenter among an
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arbitrary number of univariate normal densities. In addition, our result also provides a simple recursive
equation that is guaranteed to converge to the variance–covariance matrix.

We proceed as follows. Section 2 formulates a density forecast combination problem with a
general metric. Several existing aggregation methods in the literature can be formulated with the
choice of a specific metric within this unified framework. After discussing these existing approaches,
we introduce our proposal of using the entropy regularized Wasserstein barycenter. Section 3 provides
theoretical results that describe the impact of entropy regularization on the combined density under
a Gaussian assumption and discusses how this helps improve the quality of the combined density
prediction. Section 4 discusses how to set the strength of the entropy regularization in practice and
shows that our proposed selection rule achieves a certain notion of optimality. Section 5 provides
an empirical exercise that illustrates how entropy regularization improves the quality of density
prediction of the U.S. inflation rate relative to the unregularized combined density forecast. Section 6
concludes the article.

2. Regularized Wasserstein Barycenter for Density Forecast Combination

This section introduces the density combination problem; see, for example [6]. We assume that
agent i ∈ {1, . . . , N} at time t ∈ N+ provides a forecast of the density function pit : Rd → R+,
with distribution function denoted by Pit : Rd → R+, of the random variable yt+h with h ∈ N+.
We are interested in aggregating information contained in the N agents’ forecasts to generate a better
predictive distribution for yt+h.

Throughout the paper, we shall focus on density combinations that can be viewed as a type of
average over probability densities. Specifically, those that can be defined as

pt = arg min
pt∈P

N

∑
i=1

D(pit, pt), (1)

where D(pi, pj) is a measure of the discrepancy between the densities pi and pj. When D(·) satisfies
the usual properties of a distance metric, which is the case when D(·) is defined as Euclidean or an
unregularized Wasserstein metric, then pt is known as a Fréchet mean, which is a generalization of
the average for real numbers. We will refer to pt as a barycenter to also encompass the more general
case in which D(·) is not a metric. As described in Equation (1), we restrict our attention to the case in
which pt is a density forecast with each input density having equal weight, which is known to perform
quite well as a combination forecast [7].

A specific choice of metric, D(pi, pj), will lead to a different combined density, pt. Before introducing
our proposed definition of D(·), the entropy regularized Wasserstein metric, the next two sections
introduce choices for D(pi, pj) that lead to well-known density forecast combination methods.

2.1. Equal-Weighted Linear Opinion Rule

As a starting point let us consider D(pi, pj) := ‖pi − pj‖2
2. Then, Equation (1) becomes

pt = arg min
pt∈P

N

∑
i=1

∫
(pit − pt)

2, (2)

which results in the following solution

pt =
1
N

N

∑
i=1

pit. (3)

This can be derived using the first-order condition with respect to pt, which is ∑N
i=1(pit − pt) = 0.

This solution is known as the linear opinion rule with equal-weighting. This is the prototypical
aggregation method both in the forecasting literature and in practice; see, for example [1]. This is a
particularly tractable density combination method, as it is equivalent to a mixture density, and it has
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the additional advantage of being computationally tractable to compute. However, one disadvantage
is that it does not preserve the shape of the individual forecast densities. For example, when combining
two uni-modal densities, the resulting solution is generally bi-modal.

2.2. Quantile Aggregation and the Wasserstein Barycenter

In this section we consider the case in which D(·) is defined as the p-Wasserstein metric, which is
defined as

Wp(pit, pjt) =

(
inf

ϕ∈Ω(pit ,pjt)

∫
||zi − zj||pdϕ(zi, zj)

)1/p

, (4)

where Ω(pit, pjt) is the set of all joint distributions ϕ(zi, zj) that have marginal densities given by pit
and pjt, respectively. Formally, we write

Ω(pit, pjt) =
{

ϕ : Rd ×Rd → R1
+|∀A ⊂ Rd, ϕ(A,Rd) = pit(A) and ϕ(Rd, A) = pjt(A)

}
. (5)

In other words, each ϕ ∈ Ω(pit, pjt) is a coupling between the distributions pit and pjt. In the
optimal transport literature, the minimizer of (4) is also known as the optimal transport plan. This is
because, for any A, B ⊂ Rd, ϕ(A, B) can be interpreted as the amount of mass that is moved from A
to B in order to minimize E

(
‖zi − zj‖

p
p

)
where zi ∼ pit and zj ∼ pjt. For more detail on the field of

optimal transport, see [8,9].
A special case of this Wasserstein barycenter has a close relation to a recently proposed

probability/density forecast combination method in the forecasting literature. More specifically,
suppose that input densities are univariate, and pt is defined as the squared Wasserstein metric,
denoted by D(·) := W2

2 (·); in this case, we have

P−1
t (τ) =

1
N

N

∑
i=1

P−1
it (τ), for all τ ∈ (0, 1), (6)

where P−1
it (·) and P−1

t (·) are the quantile function of agent i and of the combination method,
respectively. This forecast aggregation rule is also known as “quantile aggregation” or “Vincentized
distribution” [2,3,10]. We prefer the representation of Equation (1) because this definition can be easily
extended to higher dimensional densities or mixed data types (e.g., when some inputs are continuous
and others are discrete) unlike quantile aggregation.

The Wasserstein barycenter is known to preserve the shape of input densities, such as
log-concavity [11]. For example [12] show that the Wasserstein barycenter of the inputs, N(µ1, S1) and
N(µ2, S2), is N((µ1 + µ2)/2, S), where S is the solution of,

S =
(

S1/2S1S1/2
)1/2

/2 +
(

S1/2S2S1/2
)1/2

/2; (7)

see also [13]. This is different than the linear opinion rule, which leads to a mixture of two normal

densities with mean (µ1 + µ2)/2 and variance σ2
1+σ2

2
2 + (µ1−µ2)

2

4 , which, in contrast, can be expected to
be bi-modal whenever µ1 6= µ2.

Another difference between these two aggregation methods is that the variance of the Wasserstein
barycenter is smaller than that of the combined density resulting from a linear opinion rule. This holds
for a more general class of input densities as shown in [2] in the univariate case. Of course, a narrow
(i.e., sharp) predictive density can be good or bad depending on the underlying distribution of the target
variable. It may be desirable to have an ability to flexibly adjust the dispersion of the combined density.
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2.3. Regularized Wasserstein Barycenter

Now, we turn to our proposal. In this paper, we use a regularized Wasserstein distance [14,15]
to combine individual probability forecasts. The regularization term used in this approximation of
the Wasserstein metric is given by the negative differential entropy, which, when ϕ is an absolutely
continuous measure, we will define as, h(ϕ) =

∫
Rd×Rd log

(
dϕ
dλ

)
dϕ, where λ is the Lebesgue measure,

and infinity otherwise. We will use h(ϕ) to define the regularized Wasserstein metric as

Wp,γ(pit, pjt) =

(
inf

ϕ∈Ω(pit ,pjt)

∫
||zi − zj||pdϕ(zi, zj) + γh(ϕ)

)1/p

, (8)

where γ > 0 controls a strength of regularization. Note that ϕ is constrained by the same two marginal
restrictions as its unregularized counterpart, as described in the definition of Ω(pit, pjt). This form
of regularization is originally introduced by [14] in order to estimate the Wasserstein metric in a
computationally efficient manner using the iterative proportional fitting procedure (IPFP) provided
by [16].

When γ = 0, there is no regularization, so we have Wp,0(pit, pjt) = Wp(pit, pjt). One can also
show that the optimal coupling, say ϕ?

γ, satisfies limγ→0+ ϕ?
γ = ϕ?

0 when ϕ?
0 is uniquely defined, and

otherwise this limiting value is given by the element of the set of optimal unregularized couplings
with maximum entropy [15]. Higher values of γ place more weight on the second term in the
objective function, which results in optimal couplings that are smoother and more dispersed than their
unregularized counterparts.

Defining D(pit, pjt) by W2
2,γ(pit, pjt) results in the combined density

pt = arg min
pt∈P

N

∑
i=1

W2
2,γ(pit, pjt), (9)

which is known as the regularized Wasserstein barycenter. The authors of [4] provided a generalization
of the IPFP procedure to find this barycenter that is more computationally efficient than the
unregularized case. While computational efficiency is the commonly cited reason for using
entropy regularization, as we will see in the later sections, our motivation for regularization is not
entirely computational.

For the rest of the paper, we study this regularized Wasserstein barycenter, which is pt defined
in Equation (1) using (8). First, we present analytical results under a parametric assumption that
broadens our understanding about the role of the regularization in forecast density combination. Then,
we discuss how one can empirically choose the strength of the regularization that would achieve a
certain notion of optimality.

3. Analytical Results: The Impact of Entropy Regularization

In this section we provide analytical results that describe the impact of entropy regularization on
the shape of the barycenter. To better compare this barycenter with its unregularized counterpart in
the Gaussian case, as defined above, we will focus on the regularized barycenter when p1 and p2 are
d-dimensional multivariate Gaussians (d ≥ 1). The regularized Wasserstein barycenter in this case is
defined as

p ∈ arg min
q

(
W2

γ(p1, q) + W2
γ(p2, q)

)
. (10)

The following theorem completely characterizes the resulting barycenter in this case. Like the
unregularized case, the theorem shows that regularization does not impact the mean of the barycenter;
however, it does have an impact on its variance–covariance matrix.
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Theorem 1. Let p1 and p2 be Gaussian density functions with means µ1, µ2 ∈ Rd, and variance matrices,
S1, S2 ∈ Rd×d. The regularized Wasserstein barycenter between p1 and p2 is given by the density function of
N(µB, SB), where µB ∈ Rd and SB ∈ Rd×d are defined by,

µB :=(µ1 + µ2)/2

SB := (V/γ + I)−1 (V/2 + Iγ/2 + S2) (V/γ + I)−1

= (−V/γ + I)−1 (−V/2 + Iγ/2 + S1) (−V/γ + I)−1 ,

where V ∈ Rd×d is the unique symmetric matrix that satisfies these equalities and −Iγ < V < Iγ.
Also, the iterates of the following series converge to V when V(0) := 0d×d,

V(k+1) = S2 − S1 + S1

(
S1 + Iγ/2−V(k)/2

)−1
S1 − S2

(
S2 + Iγ/2 + V(k)/2

)−1
S2.

The proof of this result is included in the Appendix A. We prove a slightly more general version
of the theorem where the objective function in Equation (10) is a weighted average of W2

γ(p1, q) and
W2

γ(p2, q). The proof first derives a system of equations that characterizes the barycenter in the case in
which the regularized barycenter is Gaussian. Afterward, a fixed point theorem provided by [17] for
mappings on partially ordered sets is used to show that this system has a unique solution, and this,
along with convexity of Equation (10), implies the regularized barycenter is Gaussian.

Now, we discuss our theoretical results and their implication to the density forecast
combination problem.

Remark 1. (on location). Regularization does not affect the mean of the resulting barycenter, which is a
property that may not hold in the more general setting that does not include a normality assumption. For
example, suppose the domain of p is [0, 1], and Ex∼p(x) 6= 1/2, and consider the barycenter between p and
itself. For any fixed density function q, the optimal coupling of the optimization problem that defines W2

γ(p, q)
converges to dϕ(z1, z2)/dλ = q(z1)p(z2), as this is the coupling with maximum entropy that has marginals
given by q and p; see for example, [15]. However, the negative entropy of dϕ(z1, z2)/dλ = p(z2), is less
than or equal to that of dϕ(z1, z2)/dλ = q(z1)p(z2), for any such fixed density q. We can also ensure these
couplings are feasible by defining q to be a uniform density function, so we have limγ→∞ q = 1. This implies
that limγ→∞ Ex∼q(x) = 1/2, regardless of the Ex∼p(x). Since the unregularized density is given by q = p,
and Ex∼p(x) 6= 1/2, the regularization parameter does impact the mean of the barycenter.

Remark 2. (on dispersion) Regularization tends to smooth the resulting barycenter, leading to a more dispersed
combined density. To understand this point, let us consider a simple example below.

Example 1. Consider a case with univariate pit = N(µit, σ2) and N = 2. Then, the original Wasserstein
barycenter (quantile averaging) is pt = N((µ1t + µ2t)/2, σ2). On the other hand the regularized Wasserstein
barycenter is pt(γ) = N((µ1t + µ2t)/2, σ2 + γ/2).

As this case exemplifies the strength of the regularization controls a dispersion of the combined
density. The heavier the regularization the greater dispersed (or, the smoother) density we obtain.
This result highlights that the entropy regularization offers an extra flexibility to control the dispersion
of the combined density. In the next section, we propose a data-driven way to select the value of γ,
the strength of the regularization.

Remark 3. The normality assumption that we made to obtain the closed-form solution for the barycenter is not
needed in practice. The regularized barycenter of probability/density forecasts is well-defined and computationally
tractable for a broader context. One can have multiple inputs, non-Gaussian densities, discrete/continuous/mixed
distribution. This includes many interesting and empirically relevant situations in economic forecasting such as
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macroeconomic and financial forecasting. The efficient computation of the regularized Wasserstein distance and
barycenter with non-Gaussian input densities is still an active area of research. There is a large literature on
computing the regularized barycenter in practice; see for example [4,18–23].

Remark 4. During the review process for this paper, we became aware of a similar result that was proved
independently of ours by [5]. There are two primary differences between these results. First, our result provides
the regularized barycenter between two multivariate normal densities, while Theorem 1 in Janati et al. (2020a)
provides the barycenter between an arbitrary number of univariate normal densities. Second, our result also
provides a recursive formula to compute the variance–covariance matrix of the barycenter, which guarantees a
convergence to a desired solution. We appreciate one of referees who pointed out relevant papers.

There have also been a number of recent results on a few related barycenters, including those that are
modified to avoid the increase in the dispersion of the barycenter caused by regularization using one of the
following two techniques. First, a Kullback–Leibler divergence penalty term can be used, with a reference measure
given by the product of the input densities, rather than differential entropy. Second, a technique known as
debiasing can also be used. For example, the remaining results in [5], as well as the results provided by [24,25],
characterize these types of regularized Wasserstein barycenters between Gaussian densities. In contrast to the
barycenter we consider, which can be viewed as the original discrete entropy regularized Wasserstein barycenter in
the limit as the number of bins diverges, increasing the regularization parameter of these alternative barycenters
either decreases or does not change the variance of the barycenter.

4. On Choosing the Strength of the Regularization

This section discusses how to choose the strength of the penalization. Our empirical strategy is
to select γ by the value that most accurately fits the observed data. To economize our notation we
restrict our discussion to the 1-step-ahead prediction (i.e., h = 1). To do so, we regard the regularized
barycenter computed at time t, pt, as a predictive likelihood for yt+1. This predictive likelihood
interpretation of the barycenter can be formally justified by the principal-agent framework similar to
the one developed by [26]. Suppose we have collected the regularized barycenters and the realized
value of the target variable from the initial period (1) to present (t). We write this collection as It.
Then, we can define a maximum likelihood estimator for γ at t with It as

γ̂mle
1:t ∈ arg max

γ≥0

t−1

∑
τ=1

log pτ(yτ+1; γ), (11)

and the combined density prediction for yt+1 at time t is

p̂(yt+1|It) = pt(yt+1; γ̂mle
1:t ). (12)

There is a notion in which this combined density with γ̂ is optimal. Suppose that yt ∼i.i.d. p∗(y),
and assume that forecasters report a sequence of predictive densities, pi(y) for yt, t = 1, 2, . . . , T and
i = 1, 2, . . . , N. These forecasts are reported before the realization of yt, and the barycenter p(y; γ) is
defined by pi(y)’s and γ > 0. Then, the following can be shown under regularity conditions,

1
T

T

∑
t=1

log p(yt; γ)→p

∫
log p(y; γ)p∗(y)dy as T → ∞,

for γ ∈ Γ ∈ R+. In turn, a maximizer of the left-hand-side term also converges to the maximizer of the
right-hand-side term, which is a minimizer of

KL(p(y; γ), p∗(y)) = −
∫

log p(y)p∗(y)dy +
∫

log(p∗(y))p∗(y)dy.
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Therefore, γ̂ converges to the pseudo-true parameter that minimizes Kullback–Leibler (KL)
divergence from the regularized barycenter to the true data generating process. In other words,
we find γ that makes the resulting barycenter close to the true data generating process in the limit.
This asymptotic thought experiment can be justifiable under quite general conditions, allowing for a
range of serial dependence in yt as well as a flexible form of the regularized Wasserstein barycenter
implied by pi,t−1(yt)’s. We can operationalize this by recognizing that pt−1(y; γ) can be viewed as a
predictive likelihood for yt formed at time t− 1. Then, quasi-MLE theory can be invoked, e.g., [27,28].
We provide a simple example in which the true data generating process follows the autoregressive
(AR) process.

Example 2. Suppose that forecaster 1 and 2 use mean-zero Gaussian AR(1) process to construct their density
prediction. The two forecasts differ only by the mean reversion parameter. That is, the means of predictive
distribution for forecaster 1 and 2 are µ1t = ρ1yt−1 and µ2t = ρ2yt−1, respectively. Based on our theory in
the previous section, the barycenter is pt−1(y; γ) = N(µt, σ2 + γ/2) where µt = (µ1t + µ2t)/2, and the log
density of the regularized barycenter at τ for yτ+1 is

log(pτ(yτ+1; γ)) = −1/2 log(2π)− 1/2 log(σ2 + γ/2)− 1/2

(
yτ+1 − µτ+1√

σ2 + γ/2

)2

, (13)

and the ML estimator for γ at time t is

γ̂mle
1:t ∈ arg max

γ≥0

t−1

∑
τ=1

−1/2 log(2π)− 1/2 log(σ2 + γ/2)− 1/2

(
yτ+1 − µτ+1√

σ2 + γ/2

)2
 , (14)

which leads to

γ̂mle
1:t = 2×max

(
1

(t− 1)

t−1

∑
τ=1

(yτ+1 − µτ+1)
2 − σ2, 0

)
. (15)

Now, suppose that the actual data generating process is

yt = ρ∗yt−1 + vt, vt ∼i.i.d. N(0, σ2
∗). (16)

When the simple average of both forecasters’ autoregressive parameter equals ρ∗, the ML estimate for γ

depends on the true conditional variance, σ2
∗ , and forecasters’ conditional variance. If the sample variance is

larger than that of the forecasters, then γ is chosen so that the resulting regularized barycenter has the same
variance as the sample variance. On the other hand, if the sample variance is smaller than that of the forecasters,
then γ is set to 0. Note that there is an asymmetry in adjusting the variance of the barycenter. This is natural in
that the regularization only makes the resulting density smoother. In practice, this may not be a problem if the
practitioner’s concern is the combined density being too sharp (e.g., relative to the linear opinion rule).

Note that γ̂mle
1:t converges in probability to γ∞ = 2 max(σ2

∗ −σ2, 0). The KL divergence between p(yt+1; γ)

and the true conditional density of yt+1 at t is minimized at γ = γ∞. This confirms that our selection rule for γ

aims to fit the data well by shaping the regularized barycenter as close as possible to the data generating process.

5. Empirical Illustration

In this section, we illustrate our proposed method using macroeconomic data for the U.S.
We consider 14 hypothetical forecasters who produce their own 1-step-ahead forecast about the
U.S. inflation rate based on the following vector autoregression (VAR) with three variables,

Yt = Φ0 +
4

∑
i=1

ΦiYt−i + et, et ∼i.i.d N(0, Σ), (17)
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where Yt is a 3× 1 vector that consists three quarterly macroeconomic variables, Φ0 is a 3× 1 vector,
Φ1, Φ2, Φ3, Φ4, Σ are 3× 3 matrices. The first two elements of Yt are common to all 14 forecasters: the
annualized quarter-over-quarter inflation rate and real GDP growth rate. They differ by the third
element of Yt. We assign each forecaster a different macroeconomic variable from the FRED-QD
database by [29]. A detailed description of the variable used in this exercise is in Table 1.

Table 1. Variables used in empirical exercises.

Y(i) = [Y1, Y2, Y(i)
3 ] Used by Variable Description FRED-QD Mnemonic

Variable 1 (Y1) All Inflation rate GDPCTPI

Variable 2 (Y2) All Real GDP growth rate GDPC1

Variable 3 (Y(i)
3 ) Forecaster 1 Real Personal Consumption Expenditures PCECC96

Forecaster 2 Industrial Production Index INDPRO
Forecaster 3 All Employees: Total Nonfarm PAYEMS
Forecaster 4 Housing Starts: Total Privately Owned Housing Units Started HOUST
Forecaster 5 Real Manufacturing and Trade Industries Sales CMRMTSPLx
Forecaster 6 Real Crude Oil Prices: West Texas Intermediate (WTI) OILPRICEx
Forecaster 7 Real Average Hourly Earnings: Manufacturing CES3000000008x
Forecaster 8 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill GS10TB3Mx
Forecaster 9 Real Commercial and Industrial Loans BUSLOANSx
Forecaster 10 Real Total Assets of Households and Nonprofit Organizations TABSHNOx
Forecaster 11 U.S. / U.K. Foreign Exchange Rate EXUSUKx
Forecaster 12 Consumer Sentiment (University of Michigan) UMCSENTx
Forecaster 13 S&P’s Common Stock Price Index: Composite S&P 500
Forecaster 14 Real Disposable Business Income CNCFx

Note: All variables are obtained from the FRED-QD database [29]. Inflation rate is computed as a log
difference of the GDP deflator (GDPCTPI). Real GDP growth rate is computed as a log difference of the
real GDP (GDPC1). All other variables are transformed following [29]. We use the 2019–11 vintage data.
Each forecaster constructs a predictive distribution using their own vector autoregression with three variables

Y(i) = [Y1, Y2, Y(i)
3 ] where i = 1, 2, . . . , 14.

We compute each forecasters’ 1-step-ahead predictive distribution for the inflation rate at time
t as πt+1|t ∼ N([µt+1|t](1,1), [Σt+1|t](1,1)) where [x](i,j) denotes (i, j) element of vector/matrix x.
These forecasters assume that the 1-step-ahead predictive distribution of Yt+1 at t is Gaussian, and they
use their best guess about the predictive mean and variance to construct the predictive distribution.
More specifically, they set these two moments as

µt+1|t = Φ̂0,t +
4

∑
p=1

Y′t−p+1Φ̂p,t, and Σt+1|t = Σ̂t, (18)

where (Φ̂0,t, Φ̂1,t, Φ̂2,t, Φ̂3,t, Φ̂4,t, Σ̂t) is the posterior mean of p(Φ0, Φ1, Φ2, Φ3, Φ4, Σ|Yt:(t−R+1)) with a
flat prior. We set R = 80, meaning that they also use the most recent 20 years of data to construct the
predictive distribution.

We let the forecasters to generate their 1-step-ahead predictive distribution for the inflation
rate from 2001Q1 to 2018Q4. This leaves us 72 quarters for a forecast evaluation sample. At each
point in time, we also combine these 14 predictive densities based on the regularized Wasserstein
barycenter with 20 different values of the regularization parameter γ on [0.3, 10]. As we explained
in the previous section, a larger value of this parameter implies a stronger regularization, and the
resulting combined predictive density becomes smoother with a larger variance. We also compute the
combined density with γ = 0 , which leads to “quantile aggregation” or “Vincentized distribution”.
Our computation of the regularized barycenter is based on the algorithm developed and proposed
by [19]. The MATLAB toolbox that implements this algorithm is available from https://github.com/
gpeyre/2015-SIGGRAPH-convolutional-ot.

We evaluate each forecaster’s, and other forecast aggregation, methods by the sum of log
predictive score, which is a logarithm of the predictive density evaluated at the actualized value,
over the evaluation sample. These results are presented in Figure 1. The left panel presents the sum

https://github.com/gpeyre/2015-SIGGRAPH-convolutional-ot
https://github.com/gpeyre/2015-SIGGRAPH-convolutional-ot
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of the log score for individual forecasters sorted by their performance. There is a sizeable difference
in their historical performance. The solid line represents the performance based on the quantile
aggregation, which aggregates all forecasters in the pool. As found by other research papers, e.g., [2,3]
the quantile aggregation method generates a decent predictive distribution, which performs slightly
better than the ex-post top 4 forecaster.

Figure 1. Sum of log predictive score for U.S. inflation rate (2000Q1–2018Q4).

The right panel in Figure 1 shows the historical performance of our proposed approach with
various choices of regularization parameter, γ. For a wide range of values for γ the regularized
barycenter performs better than the quantile aggregation. It does even better than the best individual.
This is interesting because we cannot identify the best forecaster a priori.

The optimal value of γ defined in Equation (11) at the end of the evaluation sample would
be the value of γ that corresponds to the peak of the curve, which is about γ̂2018Q4 ≈ 1.3. If we
were to use this value at the beginning of the evaluation sample, then the mean difference in the log
predictive score between the regularized Wasserstein barycenter and the quantile aggregation would
have been 0.12 with the heteroscedasticity and autocorrelation consistent (HAC) standard error being
0.07. This implies that the difference in the peak of the curve and the solid line is statistically significant
at 10% confidence level.

To make the γ selection fully adaptive, we also compute the optimal γ sequentially from the
beginning to the end of the evaluation sample. That is, we set the predictive density for yt+1 as
the regularized barycenter with the value of γ that maximizes the objective function defined in
Equation (11) only using the information available from the beginning of the sample up to t. In this way,
we do not use any future information when choosing the value of γ. Even in this case the regularized
Wasserstein barycenter performs better than the best individual forecaster and the quantile aggregation.
The sum of the log predictive score is −93.09, and the mean difference in the log predictive score
with the quantile aggregation is 0.11 with the HAC standard error being 0.06. This suggests that the
regularized Wasserstein barycenter with the adaptively chosen (e.g., estimated online) γ performs
statistically better than its unregularized counterpart, the quantile aggregation, at the 10% significance
level. This superior predictive performance of the regularized Wasserstein barycenter relative to
the quantile aggregation remains unchanged even when we split the evaluation sample into two.
The mean difference in the log predictive score is 0.13 and 0.09 for the first half and the second half of
the evaluation sample, respectively.

6. Concluding Remarks

This paper proposes to use the entropy regularized Wasserstein barycenter to combine several
probability and density forecasts. The entropy regularization smooths the resulting combined forecast,
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and it offers a flexible way to adjust the dispersion of the predictive density when it is needed. We study
the effect of the regularization on the combined density forecast and provide an exact relationship
between the strength of the regularization and the variance–covariance matrix of the combined density
when input densities are Gaussian. We then provide a way to select the strength of regularization
by choosing the regularized barycenter that most closely matches the data. We apply our proposed
methodology to the U.S. inflation density forecasting and show how the entropy regularization can
improve the quality of the density forecast relative to its unregularized counterpart.

In this article, we restrict weights of each input densities on the final combined density to
be pre-determined at some values (i.e., equal weighting). This choice was intentional to focus on
studying the role of entropy regularization. In practice, however, it is possible that a subset of input
densities might be superior to others, and one may wish to put different weights on each input density.
Alternatively, it is desirable to include only a subset of input densities into the combined density and set
other weights to zero, see, for example, [30]. For those cases, it is fruitful to develop a data-dependent
method that chooses both the regularization strength and those weights simultaneously, which is a
topic for future research.
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Appendix A

The authors of [17] provide the following fixed point theorem, which we will use in the proof of
Theorem 1.

Lemma A1 (Ran and Reurings, 2004). Let T be a partially ordered set such that every pair x, y ∈ T has a
lower bound and an upper bound. Furthermore, let d be a metric on T such that (T, d) is a complete metric
space. If F : T → T is a continuous, monotone (e.g., either order-preserving or order-reversing) map from T
into T such that,

∃ c ∈ (0, 1) : d(F (x),F (y)) < cd(x, y), ∀x > y

and

∃ x0 ∈ T : F (x0) > x0 or F (x0) > x0,

then F has a unique fixed point, x? ∈ T. Also, for all x ∈ T,

limn→∞ Fn(x) = x?.

The following result follows from Lemma 1.

Lemma A2. Suppose λ ∈ (0, 1), T ⊂ Rd×d is the set of symmetric matrices with all eigenvalues in the range(
−γ
2λ , γ

2(1−λ)

)
, and S1, S2 ∈ Rd×d are positive definite matrices. Then there is a unique V? ∈ T such that

F (V?) = V?, where

F (V) := S2 − S1 + S1 (S1 + Iγ/2−V(1− λ))−1 S1 − S2 (S2 + Iγ/2 + Vλ)−1 S2.

Also, for any V ∈ T, limn→∞ Fn(V) = V?.
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Proof. Suppose A, B ∈ T and A > B. First we will establish that F (·) is order-preserving, which is
equivalent to F (A) > F (B). Note that,

S1

(
(S1 + Iγ/2− A(1− λ))−1 − (S1 + Iγ/2− B(1− λ))−1

)
S1 > 0 ⇐⇒

(S1 + Iγ/2− A(1− λ))−1 > (S1 + Iγ/2− B(1− λ))−1 ⇐⇒

−A < −B ⇐⇒ A > B.

Similar logic implies that for all such A, B ∈ T,

S2

(
(S2 + Iγ/2 + Bλ)−1 − (S2 + Iγ/2 + Aλ)−1

)
S2 > 0 ⇐⇒ A > B,

and since F (A) − F (B) is the sum of both of these order-preserving functions, F (·) is also
order-preserving.

Clearly our bounds on the eigenvalues imply that F (V) is continuous for all V ∈ T. To show that
F is a mapping from T into T, note that matrix symmetry is preserved over addition and inversion, so
F (V) is symmetric for all V ∈ T. Also, note that,

F (−Iγ/(2λ)) = −S1 + S1 (S1 + Iγ/(2λ))−1 S1 > −Iγ/(2λ) ⇐⇒

−S1/2
1

(
I −

(
I + S−1

1 γ/(2λ)
)−1

)
S1/2

1 > −Iγ/(2λ) ⇐⇒

S1/2
1

(
I −

(
I + S−1

1 γ/(2λ)
)−1

)
S1/2

1 < Iγ/(2λ) ⇐⇒

(I + S12λ/γ)−1 < S−1
1 γ/(2λ) ⇐⇒ I > 0.

Similar logic can be used to show that F (Iγ/(2(1− λ)) < Iγ/(2(1− λ). This also implies the
final requirement of Lemma 1.

The only remaining requirement of Lemma 2 is the penultimate, which we will establish for A, B ∈
T such that A > B, and using the norm, d(A, B) = Tr(A− B). Also, let α := {1,−1}, β := {λ− 1, λ},
and ‖C‖ denote the spectral norm of C ∈ Rd×d. We will use the property Tr(CD) ≤ ‖C‖Tr(D),
where C, D ∈ Rd×d and C, D > 0; see for example, [17]. Note that,

Tr(F (A)−F (B)) =

∑i αiTr(Si

(
(Si + Iγ/2 + Aβi)

−1 − (Si + Iγ/2 + Bβi)
−1
)

Si) =

∑i αiβiTr(Si (Si + Iγ/2 + Aβi)
−1 (B− A) (Si + Iγ/2 + Bβi)

−1 Si) =

∑i αiβiTr
(
(Si + Iγ/2 + Bβi)

−1 SiSi (Si + Iγ/2 + Aβi)
−1 (B− A)

)
≤

∑i αiβi

∥∥∥(Si + Iγ/2 + Bβi)
−1 SiSi (Si + Iγ/2 + Aβi)

−1
∥∥∥Tr (B− A) <

cTr (B− A)∑i αiβi = cTr (A− B) ,

where c ∈ (0, 1). The second inequality follows from the matrix Si (Si + Iγ/2− Aβi)
−1 (respectively,

Si (Si + Iγ/2− Bβi)
−1) being similar to a symmetric matrix, and with eigenvalues contained in (0, 1)

because A ∈ T (B ∈ T) implies Iγ/2− Aβi > 0 (Iγ/2− Bβi > 0).

Next we will establish Theorem 1, which is restated below. This is a slightly more general version
of the theorem in the main text where the objective function in Equation (10) is a weighted average of
W2

γ(p1, q) and W2
γ(p2, q).
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Theorem A1. Let λ ∈ (0, 1) and p1 and p2 be Gaussian density functions with means µ1, µ2 ∈ Rd, and
variance matrices, S1, S2 ∈ Rd×d. The regularized Wasserstein barycenter between p1 and p2 is given by the
density function of N(µB, SB), where µB ∈ Rd and SB ∈ Rd×d are defined by,

µB :=λµ1 + (1− λ)µ2

SB := (V2λ/γ + I)−1 (Vλ + Iγ/2 + S2) (V2λ/γ + I)−1

= (V2(λ− 1)/γ + I)−1 (V(λ− 1) + Iγ/2 + S1) (V2(λ− 1)/γ + I)−1 ,

where V ∈ Rd×d is the unique symmetric matrix that satisfies these equalities and −Iγ/(2λ) < V <

Iγ/(2(1− λ)).
Also, the iterates of the following series converge to V when V(0) := 0d×d,

V(k+1) = S2 − S1 + S1

(
S1 + Iγ/2−V(k)(1− λ)

)−1
S1 − S2

(
S2 + Iγ/2 + V(k)λ

)−1
S2.

Proof. Let φ : Rd → R be defined as, φ(z) := exp(−‖z‖2
2 /γ), and, for a given function f : Rd → R,

we will denote the convolution of f (z) and φ(z) as, f (z)~ φ(z) :=
∫
Rd f (t)φ(z− t)dt. When there is

little risk of confusion, we will omit the input z ∈ Rd of functions supported on Rd in the remainder of
the proof.

We will characterize the barycenter using the fact that it is the minimizer of the following
optimization problem.

minqλW2
γ(q, p1) + (1− λ)W2

γ(q, p2). (A1)

To do so, note that the optimal coupling corresponding to W2
γ(q, pi) can be defined by instead

solving the dual of (8), which is

wi, ui = arg max
wi ,ui

Epi (log(wi)) + Eq(log(ui))− γ
∫
Rd×Rd

wi(z1)ui(z2) exp(−‖z1 − z2‖2 /γ)dz1dz2, (A2)

and the optimal coupling can be defined in terms of the dual variables as dϕi(z1, z2)/dλ =

ui(z1)φ(z1)φ(z2)wi(z2). The first order conditions of (A2) are

pi =wi (ui ~ φ) (A3)

q =ui (wi ~ φ) . (A4)

Also, since the objective function of (A2) is differentiable, an application of the envelope
theorem implies

δW2
γ(q,pi)
δq = log(ui).

Thus, the optimum of (A1) can be characterized by the following functional derivative being zero.

δ

δq

(
λW2

γ(q, p1) + (1− λ)W2
γ(q, p2)

)
= 0 =⇒

λ log(u1) + (1− λ) log(u2) = 0

After combining this equality with (A3) and (A4), we have that the barycenter can be characterized
by the system

p1 = w1
(
u1 ~ φγ/2

)
, p2 = w2

(
u2 ~ φγ/2

)
q = u1

(
w1 ~ φγ/2

)
= u2

(
w2 ~ φγ/2

)
, and 1 = uλ

1 u1−λ
2 .
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This system can be reduced to two equalities after noting that, pi = wi
(
ui ~ φγ/2

)
and q =

ui
(
wi ~ φγ/2

)
implies

q = ui

(
pi

ui~φγ/2
~ φγ/2

)
.

After combining both equalities, and noting u1 = u(λ−1)/λ
2 , we have

q = u(λ−1)/λ
2

(
p1

u(λ−1)/λ
2 ~ φγ/2

~ φγ/2

)
= u2

(
p2

u2 ~ φγ/2
~ φγ/2

)
(A5)

Let G be defined as the set of functions g : Rd → R1
+ of the form

g(z) = a exp(−(z− µg)>V−1
g (z− µg)/2),

where µg ∈ Rd, Vg ∈ Rd×d is a symmetric and invertible matrix, and a ∈ R1
++. It will also be convenient

to let C : G → Rd×d be defined so that C(g) = Vg andM : G → Rd be defined so thatM(g) = µg. It is
well known that if g, h ∈ G are Gaussian density functions, then gb, cg, g ~ h, gh ∈ G, where b, c ∈ R1

and b 6= 0, and it is also straightforward to show

C(gb) = Vg/b, C(cg) = Vg,

C(gh) =
(

V−1
g + V−1

h

)−1
, and C(g ~ h) = Vg + Vh.

Likewise, in the case ofM(·), we will also use the properties

M(gb) = µg,M(cg) = µg,M(gh) = C(gh)
(

V−1
g µg + V−1

h µh

)
, andM(g ~ h) = µg + µh.

Note that V−1
g + V−1

h > 0 is the necessary and sufficient condition for g ~ h to be well defined,
and it is straightforward to verify that the properties above also hold over all pairs of g, h ∈ G when
this is the case; for the case of normal density functions, see for example [31].

Next, we will suppose that u2 is in G, which, due to (A5), also implies q, u1, w1, w2 ∈ G, and then
show that there exists a unique u2 ∈ G that satisfies (A5). Since (A1) is a strictly convex optimization
problem, when a solution to (A1) exists, it can be characterized uniquely by its first-order conditions.
Note that, for any pair ui, wi that solves (A1), we have that uia, wi/a, where a ∈ R1

++, are also solutions.
We avoid complications from this issue by placing the additional restriction on these dual variables
that wi(0) = 1, as this ensures strict convexity over this set of dual functions. To see that this is also
without loss of generality, note that rescaling the dual variables by uia, wi/a would not impact the
objective function in (A2) because

∫
Rd q(z)dz =

∫
Rd pi(z)dz = 1. Also, a would not impact the first

order conditions (A3) and (A4), so it would also not have an impact on q. Thus, after providing u2 ∈ G
that solves (A5), we will have also shown that this solution is unique even when not restricted to G.

Since φ, p1, and p2 are elements of G, and G is closed under multiplication, division, convolution,
and exponentiation to the (non-zero) power of (λ− 1)/λ, if u2 ∈ G then the functions on both sides
of the equality (A5) will also be elements of G. Let Ui := C(ui) and µu :=M(u2). As noted above,
the convolutions in (A5) are only well defined if the following matrix inequalities hold, so we will also
require the solution to satisfy these inequalities.

I2/γ + U−1
i > 0 and I2/γ + U−1

i (λ− 1)/λ > 0,

which hold if and only if

−2/γI < U−1
2 < 2λ/(γ(1− λ))I. (A6)
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It is straightforward to verify that these inequalities are identical to the ones that ensure the
optimal coupling is integrable, as this coupling is given by, dϕi(z1, z2)/dλ = ui(z1)φ(z1)φ(z2)wi(z2).
Thus, Fubini’s theorem implies that they are also sufficient conditions for q to be integrable.

We can find SB by applying C(·) to (A5), which implies

S−1
B =U−1

2 +

((
S−1

2 − (U2 + Iγ/2)−1
)−1

+ Iγ/2
)−1

(A7)

=U−1
2 (λ− 1)/λ +

((
S−1

1 − (U2λ/(λ− 1) + Iγ/2)−1
)−1

+ Iγ/2
)−1

. (A8)

Let bi ∈ {λ/(λ− 1), 1}. After three applications of the matrix inversion lemma and simplifying
we have that, for each i ∈ {1, 2}

S−1
B −U−1

2 /bi =

((
S−1

i − (U2bi + Iγ/2)−1
)−1

+ Iγ/2
)−1

=

((
S−1

i − I2/γ + 4/γ2
(

U−1
2 /bi + I2/γ

)−1
)−1

+ Iγ/2

)−1

=I2/γ− 4/γ2
(

S−1
i + 4/γ2

(
U−1

2 /bi + I2/γ
)−1

)−1

=I2/γ− 4/γ2Si + 4/γ2Si

(
γ2/4U−1

2 /bi + Iγ/2 + Si

)−1
Si. (A9)

This, along with Equations (A7) and (A8), implies that U2 can be characterized by

γ2/4U−1
2 − S2 + S2

(
γ2/4U−1

2 + Iγ/2 + S2

)−1
S2 =

γ2/4U−1
2 (λ− 1)/λ− S1 + S1

(
γ2/4U−1

2 (λ− 1)/λ + Iγ/2 + S1

)−1
S1.

After defining V as γ2/(4λ)U−1
2 , this implies

V = S2 − S1 + S1 (S1 + Iγ/2−V(1− λ))−1 S1 − S2 (S2 + Iγ/2 + Vλ)−1 S2.

Note that our requirement that U−1
2 satisfy (A6) can be written in terms of V as, −γ/(2λ)I < V <

γ/(2(1− λ))I, and Lemma 2 implies that there is a unique solution that satisfies these conditions.
The functional form for SB from the statement of this theorem follows from an alternative ordering

of the matrix inversion theorem. Specifically, starting from (A9)

S−1
B −U−1

2 /bi = I2/γ− 4/γ2
(

S−1
i + 4/γ2

(
U−1

2 /bi + I2/γ
)−1

)−1

= −U−1
2 /bi + 4/γ2

(
γ2/4U−1

2 /bi + Iγ/2
) (

γ2/4U−1
2 /bi + Iγ/2 + Si

)−1

×
(

γ2/4U−1
2 /bi + Iγ/2

)
= −U−1

2 /bi + (2λ/(γbi)V + I) (λ/biV + γ/2I + Si)
−1 (2λ/(γbi)V + I) .

Thus,

S−1
B = (V2λ/γ + I)−1 (S2 + Vλ + Iγ/2) (V2λ/γ + I)−1

= (V2(λ− 1)/γ + I)−1 (S1 + V(λ− 1) + Iγ/2) (V2(λ− 1)/γ + I)−1
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After applyingM(·) to both sides of (A5), we haveM
(

ubi
2

(
pi

u
bi
2 ~φγ/2

~ φγ/2

))
=

SB

(
U−1

2 µu/bi +
(

S−1
B −U−1

2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1
)−1 (

S−1
i µi − (U2bi + Iγ/2)−1 µu

))
. (A10)

To simplify this expression, we will first establish three intermediate equalities. First,
Equations (A7) and (A8) imply

S−1
B −U−1

2 /bi =

((
S−1

i − (U2bi + Iγ/2)−1
)−1

+ Iγ/2
)−1

=⇒(
S−1

B −U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1
)−1

(U2bi + Iγ/2)−1

=
(

U2bi + γ/2 (U2bi + Iγ/2) S−1
i

)−1

=
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1
U−1

2 /bi. (A11)

Second, (A11) in turn implies(
S−1

B −U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1
)−1

S−1
i

=
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1 (
I + γ/(2bi)U−1

2

)
S−1

i . (A12)

Third, after an application of the matrix inverse identity to (A7) and (A8)

S−1
B = U−1

2 /bi +

((
S−1

i − (U2bi + Iγ/2)−1
)−1

+ Iγ/2
)−1

(A13)

= U−1
2 /bi + I2/γ− I4/γ2

(
I2/γ + S−1

i − (U2bi + Iγ/2)−1
)−1

, (A14)

which implies

SB =

(
U−1

2 /bi + I2/γ− 4/γ2
(
(U2bi + Iγ/2)

(
I2/γ + S−1

i

)
− I
)−1

(U2bi + Iγ/2)
)−1

=

(
U−1

2 /bi + I2/γ− 4/γ2
(

I2/γ + (I + U−1
2 γ/(2bi))S−1

2

)−1
U−1

2 /bi (U2bi + Iγ/2)
)−1

.

Thus,

SB =
(

U−1
2 /bi + I2/γ

)−1
(

I −
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1
)−1

. (A15)
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We will start with the coefficient on µu in (A10). The equalities (A11) and (A15) imply that this
term is equal to

SB

(
U−1

2 /bi −
(

S−1
B −U−1

2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1
)−1

(U2bi + Iγ/2)−1
)

µu

=
(

U−1
2 /bi + I2/γ

)−1
(

I −
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1
)−1

×
(

I −
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1
)

U−1
2 /biµu

=
(

U−1
2 /bi + I2/γ

)−1
U−1

2 /biµu

= (I + U22bi/γ)−1 µu.

The equalities (A12) and (A15) imply that the coefficient on µi in (A10) can be written as

SB

(
S−1

B −U−1
2 /bi

) (
S−1

i − (U2bi + Iγ/2)−1
)−1

S−1
i µi

=
(

U−1
2 /bi + I2/γ

)−1
(

I −
(

I + S−1
i γ/2 + U−1

2 S−1
i /biγ

2/4
)−1

)−1

×
(

I + γ/2
(

I + γ/(2bi)U−1
2

)
S−1

i

)−1 (
I + γ/(2bi)U−1

2

)
S−1

i µi

=
(

U−1
2 /bi + I2/γ

)−1 (
γ/2

(
I + γ/(2bi)U−1

2

)
S−1

i

)−1 (
I + γ/(2bi)U−1

2

)
S−1

i µi

=
(

U−1
2 γ/(2bi) + I

)−1
µi.

After combining these terms, we can define (A10) as the solution to

µq = (I + U22bi/γ)−1 µu +
(

U−1
2 γ/(2bi) + I

)−1
µi =⇒

(I + U22bi/γ)

(
µq −

(
U−1

2 γ/(2bi) + I
)−1

µi

)
= µu =⇒

(I + U22b1/γ)

(
µq −

(
U−1

2 γ/(2b1) + I
)−1

µ1

)
= (I + U22/γ)

(
µq −

(
U−1

2 γ/2 + I
)−1

µ2

)
.

Since the matrix inverse identity also implies(
U−1

2 γ/(2bi) + I
)−1

= I − (U22bi/γ + I)−1 ,

we have

(I + U22/γ) µq −U22/γµ2 = (I + U22b1/γ) µq −U22b1/γµ1 =⇒
(1− b1)µq = µ2 − b1µ1 =⇒

(1 + λ/(1− λ))µq = µ2 + λ/(1− λ)µ1 =⇒
µq = µ2(1− λ) + λµ1.
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