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Abstract: Identification of denatured biological tissue is crucial to high-intensity focused ultrasound
(HIFU) treatment, which can monitor HIFU treatment and improve treatment efficiency. In this paper,
a novel method based on compressed sensing (CS) and improved multiscale dispersion entropy
(IMDE) is proposed to evaluate the complexity of ultrasonic scattered echo signals during HIFU
treatment. In the analysis of CS, the method of orthogonal matching pursuit (OMP) is employed to
reconstruct the denoised signal. CS-OMP can denoise the ultrasonic scattered echo signal effectively.
Comparing with traditional multiscale dispersion entropy (MDE), IMDE improves the coarse-grained
process in the multiscale analysis, which improves the stability of MDE. In the analysis of simulated
signals, the entropy value of the IMDE method has less fluctuation compared with MDE, indicating
that the IMDE method has better stability. In addition, MDE and IMDE are applied to the 300 cases of
ultrasonic scattered echo signals after denoising (including 150 cases of normal tissues and 150 cases
of denatured tissues). The experimental results show that the MDE and IMDE values of denatured
tissues are higher than normal tissues. Both the MDE and IMDE method can be used to identify
whether biological tissue is denatured. However, the multiscale entropy curve of IMDE is smoother
and more stable than MDE. The interclass distance of IMDE is greater than MDE, and the intraclass
distance of IMDE is less than MDE at different scale factors. This indicates that IMDE can better
distinguish normal tissues and denatured tissues to obtain more accurate clinical diagnosis during
HIFU treatment.

Keywords: HIFU; ultrasonic scattered echo signal; CS; IMDE; denatured tissue

1. Introduction

High-intensity focused ultrasound (HIFU) has strong penetrability and focusing capability. As a
noninvasive modality for conducting high-temperature thermal therapy, HIFU can focus ultrasonic
energy on a target region of the body to kill the cells in the treatment region [1]. In modern medicine,
HIFU is often used to treat diseases such as cancer and tumors [2–4]. Overtreatment will cause
normal tissue to be damaged, so it is important to monitor whether the biological tissues have been
denatured in the HIFU treatment region [5]. HIFU treatment monitoring has three kinds of monitoring
methods, including computed tomography (CT) [6,7], magnetic resonance imaging (MRI) [8,9], and
ultrasound [10,11]. However, CT may damage the human body in HIFU monitoring, especially the
elderly and children. MRI is also limited due to poor real-time performance, high price, and poor
equipment magnetic compatibility. Ultrasound has become a research hotspot for HIFU treatment
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monitoring due to low cost, good real-time performance, and compatibility with hyperthermia
devices [12,13]. For example, the ultrasound techniques of quantitative ultrasound, ultrasound
elastography, and ultrasound entropy imaging are employed to monitor thermal ablations [14–16].

Ultrasonic signals contain a lot of noise during HIFU treatment, so we need to denoise the signals.
However, traditional wavelet and empirical mode decomposition (EMD) ultrasonic denoising methods
have some disadvantages. For example, the wavelet denoising method requires a preset wavelet basis
function, and the EMD method is prone to modal aliasing problems during decomposition [17,18].
Thus, the CS method is used to denoise the ultrasonic echo signal during HIFU treatment [19]. In the
process of CS analysis of the signal, CS can transform the signal from the time domain to other sparse
domains. Then, the OMP method is used to reconstruct the signal to obtain the ultrasonic echo signal
after denoising [20]. The CS-OMP method can obtain better denoising effects.

The ultrasonic echo signal is a nonlinear signal during HIFU treatment. Some properties of
the ultrasonic echo signal change when the biological tissues have been denatured. Researchers
in the field of ultrasound have studied the characteristics of ultrasonic attenuation, sound velocity,
and entropy of ultrasonic echo signals, and hope to find characteristics that can accurately reflect
the characteristics of biological tissues. In [21,22], the attenuation coefficient was used to evaluate
thermal lesions. In [23,24], values of acoustic absorption and sound velocity were used to predict
temperature rise and estimate treatment. In [25,26], biological tissue state after HIFU irradiation
was assessed by information entropy of the radio frequency ultrasound. Comparing with ultrasonic
attenuation, sound velocity, and information entropy, multiscale permutation entropy (MPE) can
analyze sequence information more efficiently. In [27], MPE was selected as a feature of ultrasonic
scattered echo signals to distinguish whether biological tissues have been denatured during HIFU
treatment. Although MPE has the advantages of simple calculation and strong anti-noise ability,
it ignores the amplitude difference between the same permutation patterns and excludes the amplitude
information of the time series [28,29]. In order to overcome the inherent defects of MPE methods,
Rostaghi proposed a nonlinear analysis method, named multiscale dispersion entropy (MDE) [30].
MDE has the advantages of simple calculation and strong anti-noise ability. Furthermore, MDE can
analyze time series complexity including amplitude information. In [31], MDE was applied to extract
the nonlinear features of ship-radiated noise. In [32], partial discharge fault diagnosis based on the
MDE method was implemented. Hamed Azami employed the MDE method to analyze the complexity
of biomedical time series [33]. However, as the scale factor increases, the length of the time series
becomes shorter, which results in entropy fluctuation and entropy error for MDE [34,35]. The problem
is caused by the traditional MDE coarse-grained process. To solve the problem, the coarse-grained
process was improved. The method of improved multiscale dispersion entropy (IMDE) was proposed.
The IMDE method can effectively solve the problem of entropy fluctuation and improve the stability
and reliability of multiscale entropy.

In this paper, CS was used to denoise the ultrasonic scattered echo signal. The IMDE method
was proposed based on traditional MDE. Considering the stability and reliability of IMDE, the IMDE
method is employed to analyze the difference between normal biological tissues and denatured
biological tissues. Comparing with wavelet-IMDE and EMD-IMDE methods, CS-OMP-IMDE can
better identify whether biological tissues have been denatured and guide doctors to obtain a more
accurate assessment of treatment effect during HIFU treatment. The outline of this paper is as follows:
Section 1 is the introduction; Section 2 is the methods, which includes the methods of CS, MDE, and
IMDE; Section 3 is the experimental results and analysis, which includes the experimental system,
signal denoising based on CS, and comparison between MDE and IMDE; Section 4 is the discussion;
Section 5 is the conclusion.
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2. Methods

2.1. Compressed Sensing

Donoho proposed the compressed sensing (CS) theory, which suggests that if signals are sparse or
nearly sparse, it can be reconstructed and restored to obtain denoised signals [19]. CS theory mainly
includes the following three parts.

(1) Sparse expression of the signal: when most signals are not sparse in the time domain,
the one-dimensional signal XN*1 should be converted into a sparse domain Ψ, which is “K-sparse” in
the sparse domain Ψ (K << N). The process is

f = ΨX (1)

where f is the sparse representation of X in the sparse domain; Ψ is the sparse basis; X is the signal to
be denoised.

(2) Compression observation of signal: An appropriate observation matrix Φ is selected for
observation and obtains the observation value y. The process is

y = ΦΨX (2)

where Φ is the observation matrix. In this paper, the Gaussian random matrix is selected as the
observation matrix.

(3) Reconstruction of the signal: According to the y value in Equation (2), the denoised signal is
obtained by the reconstruction method, where the reconstruction methods of L1 norm and orthogonal
matching pursuit (OMP) are used for signal reconstruction, respectively. The L1 norm reconstruction
method is a convex optimization algorithm, which uses the L1 norm for linear programming to achieve
signal reconstruction. The OMP reconstruction method selects the atom that best matches the original
signal from the observation matrix to reconstruct the sparse approximation, then, subtracts the relevant
part from the observation matrix, and obtains the reconstructed signal that satisfies the sparsity after
loop iteration.

2.2. Multiscale Dispersion Entropy

For time series xn, n = 1, 2, 3, . . . , N, it can be mapped into yn using the normal cumulative
distribution function.

yn =
1

σ
√

2π

xn∫
−∞

e
−(t−µ)2

2σ2 dt (3)

where σ is the standard deviation and µ is the average value of the time series. yn can be mapped to
the set from 1 to c through Equation (4).

zc
n = round(c·yn + 0.5) (4)

where c represents the number of categories. For embedding dimension m and time delay τ,
the embedding vector zm,c

i can be reconstructed as

zm,c
i =

{
zc

i , zc
i+d, . . . , zc

i+(m−1)d

}
, i = 1, 2, . . . , N − (m− 1)d (5)

Through zc
i = v0, zc

i+d = v1, . . . , zc
i+(m−1)d = vm−1, the embedding vector zm,c

i can be mapped into
the dispersion pattern πv1v2...vm−1 . Since each element in each πv1v2...vm−1 has c values, the number of
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potential dispersion patterns is cm. The relative frequency of each potential dispersion pattern can be
defined as

p(πv0v1...vm−1) =
Number(πv0v1...vm−1)

N − (m− 1)d
(6)

where Number(πv1v2...vm−1) is the mapping number of the dispersion pattern πv1v2...vm−1 ; the dispersion
entropy (DE) is calculated as follows

DE(x, m, c, d) = −
cm∑
π=1

p(πv0v1...vm−1) ln(p(πv0v1...vm−1)) (7)

The coarse-grained time series can be expressed as

M(τ)
k, j =

1
τ

jτ+k−1∑
n=( j−1)τ+k

xn 1 ≤ j ≤
N
τ

, 1 ≤ k ≤ τ (8)

The multiscale dispersion entropy (MDE) can be defined as

MDE(x, m, c, d, τ) = DE(M(τ)
k , m, c, d) (9)

2.3. Improved Multiscale Dispersion Entropy

The traditional coarse-grained process is shown in Figure 1. In the traditional coarse-grained
process, the number of elements in the coarse-grained time series decreases with the increase in
scale factor, which will lead to instability of the entropy value. In order to improve the stability of
MDE, the improved coarse-grained process is shown in Figure 2. Compared with the traditional
coarse-grained process, under the same time scale τ, τ sets of time series can be obtained after the
improved coarse-grained process, which can solve the unstable problem of entropy.
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Figure 1. The traditional coarse-grained process for scale factor τ = 3.

For the one-dimensional time series, τ sets of new coarse-grained time series G(τ)
i ={

y(τ)i,1 , y(τ)i,2 , . . . |i = 1, 2, . . . , τ
}

can be obtained after the improved coarse-grained process, where y(τ)i, j is

expressed as

y(τ)i, j =

τ−1∑
f=0

x f+i+τ( j−1)

τ
(10)

For each scale factor τ and embedded dimension d, the DE value of each time series in
G(τ)

i

∣∣∣∣(i = 1, 2, . . . τ) is calculated, respectively, and its average value of the τ sets of time sequences is
defined as the improved multiscale dispersion entropy (IMDE).

IMDE(x, m, c, d, τ) = DE(G(τ)
i , m, c, d) (11)
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2.4. Intraclass Distance and Interclass Distance

In feature selection, the intraclass distance and interclass distance are widely used as indicators of
separability and compactness. The smaller intraclass distance and larger interclass distance mean that
the features have better compactness and separability. For sample sets for each pattern in n-dimensional
space

{
a(i)

∣∣∣i = 1, 2 . . . , k
}
, the definition of intraclass distance is as follows.

Dintra =

√√√√
1
k

k∑
j=1

 1
k− 1

k∑
i=1,i, j

n∑
k=1

(
a j

k − ai
k

)2
 (12)

The definition of interclass distance is as follows.

Dinter =

√√ n∑
k=1

(
m1k −m2k

)2
(13)

where m1k and m2k are the mean value of the two types of pattern sample sets.

3. Experimental Results and Analysis

3.1. Experimental System

Figure 3 shows the diagram of the HIFU experimental system. Before the HIFU experiment,
povidone and 95% alcohol were mixed at a ratio of 1:4. Then, the mixed solution was mixed with water
at a volume ratio of 1:20 and took one hour to remove oxygen from the water to obtain oxygen-free
water. The sizes of the porcine muscle tissue samples in vitro were prepared as 60 × 55 × 50 mm. Then,
all the porcine muscle tissue samples in vitro were degassed to prevent it affecting the experimental
results. The target region of the fresh porcine muscle tissues in vitro was irradiated by a HIFU
transducer (PRO2008, Shenzhen, China) with a center frequency of 1.39 MHz to change the biological
tissue characteristics. At the same time, the temperature of the HIFU-irradiated porcine muscle
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target region was measured by a thermometer. After turning off the HIFU ultrasound probe, B-mode
ultrasonography (SSI-5500, SonoScape, Shenzhen, China) was used to monitor the treatment process of
HIFU and the sampling frequency of the ultrasound probe was 20 MHz. A fiber optic hydrophone
was used to obtain the B-mode ultrasonic scattered echo signal. Then, the signal was converted into a
digital signal by a digital oscilloscope and saved in the PC. In this HIFU experiment, 300 ultrasonic
scattered echo signals of normal and denatured tissues were collected (including 150 cases of normal
tissues and 150 cases of denatured tissues). Figure 4 shows the pictures of normal tissue and denatured
tissue in vitro.
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3.2. Signal Denoising Based on CS

The simulated signal was analyzed by compressed sensing (CS). The simulated signal was
as follows.

y = 2 cos(200000(π/256t)) + sin(200000(π/128t))

The time-domain waveform and frequency spectrum of the simulated signal are shown in
Figure 5. Then, Gaussian white noise was added to the simulated signal so that the signal-to-noise
ratio of the noisy simulated signal was 5 dB. The time-domain diagram and frequency spectrum of
the noisy simulated signal are shown in Figure 6. The noisy simulated signal was analyzed by CS.
The methods of L1 norm and OMP were employed to reconstruct and obtain the denoised signals,
respectively. The time-domain waveform and frequency spectrum of the denoised signals are shown
in Figures 7 and 8. It can be observed that the time-domain waveform and frequency spectrum of
the denoised signal obtained by the OMP reconstruction method was closer to that of the simulated
signal. The denoised signal obtained by the L1 norm reconstruction method contained more noise
components. The denoised effect of the OMP reconstruction was obviously better than that of the L1
norm reconstruction.
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Meanwhile, we compared with the traditional wavelet and empirical mode decomposition (EMD)
denoising methods. Table 1 shows the comparison results of various denoising methods on the noisy
simulated signals with different signal-to-noise ratios (SNR). The results show that the signal-to-noise
ratio of the CS-OMP method is the highest and the mean square error (MSE) is the lowest compared
with wavelet and EMD denoising methods, which means that the CS-OMP method can obtain a better
denoising effect.

Table 1. The comparison of effects with different denoising methods.

SNR of Noisy Simulated Signals Denoising Methods SNR/dB MSE

CS-OMP 13.2699 0.3431
2 dB Wavelet 3.8226 1.0182

EMD 2.9746 1.2596

CS-OMP 16.5219 0.2360
5 dB Wavelet 5.1166 0.8773

EMD 5.7382 0.8167

CS-OMP 31.6592 0.0413
10 dB Wavelet 4.9736 0.8919

EMD 9.7579 0.5141

The CS-OMP method was used to denoise the actual ultrasonic scattered echo signal. The waveform
of the ultrasonic scattered echo signal before and after denoising is shown in Figure 9. It can
be clearly seen that the denoised signal has obvious pulse waveform, and the waveform shows
oscillation attenuation.
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3.3. Comparison between MDE and IMDE of Simulated Signal

To illustrate the advantages of the IMDE method, white Gaussian noise of 5000 data points was
generated as the simulated signal. According to the published reports [30,33], we chose the number of
categories as 2 and the delay time as 2. The MDE and IMDE of the simulated signal were calculated
when the embedding dimension was 4, 5, 6, and 7, respectively. The results are shown in Figure 10.
It can be clearly seen from Figure 10 that both MDE and IMDE show an overall downward trend with
the increase in scale factors. However, the value of MDE fluctuates significantly with the increase in
scale factor, which reduces the stability of multiscale entropy. The value of IMDE fluctuates less and
has better stability, which means that the improvement in the coarse-grained process is effective.
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Figure 10. Different entropies values of the simulated signal using different embedding dimension.
(a) m = 4; (b) m = 5; (c) m = 6; (d) m = 7.

At the same time, we also analyzed the standard deviation of MDE and IMDE of simulated signals
at different data points. The standard deviations of MDE and IMDE of simulated signals at 500, 1000,
3000, and 5000 data points are shown in Table 2. It can be clearly seen from Table 2 that the standard
deviation of entropy is smaller as the number of data points increases. In addition, the standard
deviation of IMDE for simulated signals with different data points is significantly smaller than MDE,
which indicates that IMDE has better stability in analyzing the complexity of time series than MDE.

Table 2. Standard deviation of the MDE and IMDE of the simulated signal at different data points.

Entropy
Number of Data Points

500 1000 3000 5000

MDE 0.5481 0.3134 0.0974 0.0576
IMDE 0.2787 0.1402 0.0354 0.0227

3.4. MDE and IMDE of Actual Ultrasonic Scattered Echo Signals

The MDE and IMDE methods were used to calculate the entropy value of the ultrasonic scattered
echo signals after CS-OMP denoising. The results are shown in Figure 11. It can be clearly seen from
Figure 11 that the MDE and IMDE values of the ultrasonic scattered echo signals of the denatured
tissue are higher than that of the normal tissues. Both MDE and IMDE can distinguish normal tissues
and denatured tissues in vitro. However, compared with the MDE, the IMDE curve of ultrasonic
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scattered echo signals is smoother and more stable. The difference in IMDE between normal and
denatured tissues is more obvious at different scales.
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Figure 11. The results of MDE and IMDE of ultrasonic scattered echo signals. (a) MDE; (b) IMDE.

In order to further prove the advantage of IMDE, the two indicators of interclass distance and
intraclass distance were used to measure the separability and compactness of the MDE and IMDE
of the normal and denatured tissues in vitro. Figure 12 shows the interclass distance and intraclass
distance of MDE and IMDE within scale factors 1–20. From Figure 12, it can be clearly observed that
the interclass distance of IMDE is greater than MDE and the intraclass distance of IMDE is less than
MDE. This indicates that IMDE has better separability and compactness to identify whether biological
tissues have been denatured compared with MDE. At the same time, IMDE has the maximum interclass
distance and the minimum interclass distance when the scale factor is 14.
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4. Discussion

In HIFU treatment, the ultrasonic scattered echo signal is often used to identify whether the
biological tissues have been denatured. In this process, the ultrasonic echo signal contains a large
number of noises that affect the identification results, and it is necessary to find a method that can
accurately reflect the characteristics of denatured tissue.
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In this paper, the CS-OMP method is applied to signal denoising. Compared with the traditional
wavelet and EMD methods, the CS-OMP method can obtain a better denoising effect (Figure 8,
Table 1). In addition, the proposed IMDE method can effectively improve the stability of MDE
(Figure 10, Table 2). IMDE can also better distinguish normal and denatured tissues (Figures 11
and 12). Meanwhile, the various identification methods of denatured biological tissue including
CS-OMP-IMDE, wavelet-IMDE and EMD-IMDE are used to distinguish normal tissue and denatured
tissue. The identification effect shows that the interclass distance and the intraclass distance of the
CS-OMP-IMDE method are 1.6964 and 0.0794; the interclass distance and the intraclass distance
of the wavelet-IMDE recognition method are 1.2924 and 0.1075; the interclass distance and the
intraclass distance of the EMD-IMDE method are 1.1537 and 0.1203. This proves the advantage of
the CS-OMP-IMDE method in the identification of denatured biological tissue. These above results
support the hypothesis that the combination of the CS-OMP and IMDE methods is able to denoise and
identify. We can obtain better identification of denatured tissue. In future work, entropy imaging may
be adopted to detect the target region of HIFU.

5. Conclusions

This paper realizes the identification of denatured tissues based on CS and IMDE of the ultrasonic
scattered echo signal. In the analysis of CS, the CS-OMP method can denoise the ultrasonic scattered
echo signal effectively. In view of the shortcomings of the traditional MDE method, the IMDE method
is proposed by improving the coarse-grained process of MDE. The proposed IMDE has better stability
compared with MDE. MDE and IMDE are applied to ultrasonic scattered echo signals of normal and
denatured tissues. The results show that the interclass distance of IMDE is greater than MDE, and
the intraclass distance of IMDE is less than MDE. IMDE has better compactness and separability to
identify whether biological tissues have been denatured. Furthermore, when the scale factor is 14,
IMDE can obtain the optimal identification effect for normal tissues and denatured tissues during
HIFU treatment. Comparing with the wavelet-IMDE and EMD-IMDE methods, CS-OMP-IMDE has
better effect in the identification of denatured biological tissue.
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