Information Theory for Human and Social Processes
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. Prediction and Entropy of Printed English. Bell Syst. Tech. J. 1951, 30, 50–64. [Google Scholar] [CrossRef]
- Shannon, C.E. The bandwagon. IEEE Trans. Inf. Theory 1956, 2, 3. [Google Scholar] [CrossRef]
- Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attneave, F. Applications of Information Theory to Psychology: A Summary of Basic Concepts, Methods, and Results; Henry Holt: Oxford, UK, 1959; Volume vii. [Google Scholar]
- Ellis, D.G.; Fisher, B.A. Phases of Conflict in Small Group Development: A Markov Analysis. Hum. Commun. Res. 1975, 1, 195–212. [Google Scholar] [CrossRef]
- Fisher, B.A. Decision emergence: Phases in group decision-making. Speech Monogr. 1970, 37, 53–66. [Google Scholar] [CrossRef]
- Krain, M. Communication as a Process of Dyadic Organization and Development. J. Commun. 1973, 23, 392–408. [Google Scholar] [CrossRef]
- Poole, M.S.; Roth, J. Decision Development in Small Groups IV A Typology of Group Decision Paths. Hum. Commun. Res. 1989, 15, 323–356. [Google Scholar] [CrossRef]
- Ellis, D.G. Relational control in two group systems. Commun. Monogr. 1979, 46, 153–166. [Google Scholar] [CrossRef]
- Fisher, B.A.; Drecksel, G.L. A cyclical model of developing relationships: A study of relational control interaction. Commun. Monogr. 1983, 50, 66–78. [Google Scholar] [CrossRef]
- Hawes, L.C.; Foley, J.M. A Markov analysis of interview communication. Speech Monogr. 1973, 40, 208–219. [Google Scholar] [CrossRef]
- Watt, J.H.; VanLear, C.A. Dynamic Patterns in Communication Processes; Sage Publications: Thousand Oaks, CA, USA, 1996. Available online: http://trove.nla.gov.au/version/26467801 (accessed on 22 December 2020).
- Cappella, J.N. Talk-Silence Sequences in Informal Conversations I. Hum. Commun. Res. 1979, 6, 3–17. [Google Scholar] [CrossRef]
- Cappella, J.N. Talk and Silence Sequences in Informal Conversations II. Hum. Commun. Res. 1980, 6, 130–145. [Google Scholar] [CrossRef] [Green Version]
- Cappella, J.N.; Planalp, S. Talk and Silence Sequences in Informal Conversations III: Interspeaker Influence. Hum. Commun. Res. 1981, 7, 117–132. [Google Scholar] [CrossRef]
- Poole, M.S. Generalization in Process Theories of Communication. Commun. Methods Meas. 2007, 1, 181–190. [Google Scholar] [CrossRef]
- Monge, P.R.; Farace, R.V.; Eisenberg, E.M.; Miller, K.I.; White, L.L. The Process of Studying Process in Organizational Communication. J. Commun. 1984, 34, 22–43. [Google Scholar] [CrossRef]
- U.S. Congress, Office of Technology Assessment. Global Communications: Opportunities for Trade and Aid; (OTA-ITC-642); U.S. Government Printing Office: Washington, WA, USA, 1995. Available online: https://books.google.de/books?id=MuhaVuB-21MC (accessed on 22 December 2020).
- Chandler, D. Transmission Model of Communication. Available online: http://archive.vn/SwwM (accessed on 22 December 2020).
- Wikipedia. Shannon–Weaver Model. Available online: https://en.wikipedia.org/w/index.php?title=Shannon%E2%80%93Weaver_model&oldid=664503455 (accessed on 22 December 2020).
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana-Champaign, IL, USA, 1949. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- MacKay, D.J.C. Information Theory, Inference and Learning Algorithms, 1st ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hilbert, M.; Darmon, D. How Complexity and Uncertainty Grew with Algorithmic Trading. Entropy 2020, 22, 499. [Google Scholar] [CrossRef]
- Uppal, A.; Ferdinand, V.; Marzen, S. Inferring an Observer’s Prediction Strategy in Sequence Learning Experiments. Entropy 2020, 22, 896. [Google Scholar] [CrossRef]
- Zhao, F.; Fu, Y.; Luan, G.; Zhang, S.; Cai, J.; Ding, J.; Qian, J.; Xie, Z. Spatial-Temporal Characteristic Analysis of Ethnic Toponyms Based on Spatial Information Entropy at the Rural Level in Northeast China. Entropy 2020, 22, 393. [Google Scholar] [CrossRef] [Green Version]
- Wachtel, I.; Zidon, R.; Shelach-Lavi, G. Using the Maximal Entropy Modeling Approach to Analyze the Evolution of Sedentary Agricultural Societies in Northeast China. Entropy 2020, 22, 307. [Google Scholar] [CrossRef] [Green Version]
- Lenormand, M.; Samaniego, H.; Chaves, J.C.; da Fonseca Vieira, V.; da Silva, M.A.H.B.; Evsukoff, A.G. Entropy as a Measure of Attractiveness and Socioeconomic Complexity in Rio de Janeiro Metropolitan Area. Entropy 2020, 22, 368. [Google Scholar] [CrossRef] [Green Version]
- Soklakov, A.N. Economics of Disagreement—Financial Intuition for the Rényi Divergence. Entropy 2020, 22, 860. [Google Scholar] [CrossRef] [PubMed]
- Hadad, S.; Dinu, M.; Bumbac, R.; Iorgulescu, M.-C.; Cantaragiu, R. Source of Knowledge Dynamics—Transition from High School to University. Entropy 2020, 22, 918. [Google Scholar] [CrossRef] [PubMed]
- Singer, G.; Cohen, I. An Objective-Based Entropy Approach for Interpretable Decision Tree Models in Support of Human Resource Management: The Case of Absenteeism at Work. Entropy 2020, 22, 821. [Google Scholar] [CrossRef] [PubMed]
- Wiener, N.M. Labor Market Segmentation and Immigrant Competition: A Quantal Response Statistical Equilibrium Analysis. Entropy 2020, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Popiel, N.J.M.; Khajehabdollahi, S.; Abeyasinghe, P.M.; Riganello, F.; Nichols, E.S.; Owen, A.M.; Soddu, A. The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality. Entropy 2020, 22, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmon, D. Discrete Information Dynamics with Confidence via the Computational Mechanics Bootstrap: Confidence Sets and Significance Tests for Information-Dynamic Measures. Entropy 2020, 22, 782. [Google Scholar] [CrossRef]
- Crutchfield, J.P. Between order and chaos. Nat. Phys. 2012, 8, 17–24. [Google Scholar] [CrossRef]
- Crutchfield, J.P. The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications. arXiv 2017, arXiv:1710.06832. [Google Scholar]
- Crutchfield, J.P.; Young, K. Inferring statistical complexity. Phys. Rev. Lett. 1989, 63, 105–108. [Google Scholar] [CrossRef]
- Darmon, D. Statistical Methods for Analyzing Time Series Data Drawn from Complex Social Systems. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2015. [Google Scholar]
- Darmon, D.; Sylvester, J.; Girvan, M.; Rand, W. Predictability of User Behavior in Social Media: Bottom-Up v. Top-Down Modeling. Int. Conf. Soc. Comput. 2013, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, M.; Darmon, D. Largescale Communication Is More Complex and Unpredictable with Automated Bots. J. Commun. 2020, 70, 670–692. [Google Scholar] [CrossRef]
- Strelioff, C.C.; Crutchfield, J.P. Bayesian structural inference for hidden processes. Phys. Rev. E 2014, 89, 042119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalizi, C.R.; Klinkner, K.L. Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences. arXiv 2014, arXiv:1408.2025. [Google Scholar]
- Lizier, J.T.; Bertschinger, N.; Jost, J.; Wibral, M. Information Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current and Future Work. Entropy 2018, 20, 307. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilbert, M. Information Theory for Human and Social Processes. Entropy 2021, 23, 9. https://doi.org/10.3390/e23010009
Hilbert M. Information Theory for Human and Social Processes. Entropy. 2021; 23(1):9. https://doi.org/10.3390/e23010009
Chicago/Turabian StyleHilbert, Martin. 2021. "Information Theory for Human and Social Processes" Entropy 23, no. 1: 9. https://doi.org/10.3390/e23010009
APA StyleHilbert, M. (2021). Information Theory for Human and Social Processes. Entropy, 23(1), 9. https://doi.org/10.3390/e23010009