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Abstract: A problem that appears in many decision models is that of the simultaneous occurrence of
deterministic, stochastic, and fuzzy values in the set of multidimensional evaluations. Such problems
will be called mixed problems. They lead to the formulation of optimization problems in ordered
structures and their scalarization. The aim of the paper is to present an interactive procedure with
trade-offs for mixed problems, which helps the decision-maker to make a final decision. Its basic
advantage consists of simplicity: after having obtained the solution proposed, the decision-maker
should determine whether it is satisfactory and if not, how it should be improved by indicating the
criteria whose values should be improved, the criteria whose values cannot be made worse, and the
criteria whose values can be made worse. The procedure is applied in solving capacity planning
treated as a mixed dynamic programming problem.

Keywords: ordered structures; multiobjective dynamic programming; scalarization; interactive
procedure; trade-offs; capacity planning

1. Introduction

Many decision problems are formulated as multiobjective optimization problems.
Their goal is to find the set of non-dominated solutions in the criteria space and the
corresponding set of efficient solutions in the decision space, as well as to assist the
decision-maker in the selection of the final decision.

A problem that appears in many multiobjective optimization models is that of the
simultaneous occurrence of different types of data. We will call them mixed problems.
Examples of such situations are described in [1]. We can encounter them in a conceptual
framework for the evaluation of health risks. The qualitative risk assessment is based on
experts’ knowledge and is rather fuzzy in contrast to quantitative risk, the assessment of
which is probabilistic. Another example is the military problem of choosing the best course
of action to stop aerospace violations. The commander has to consider several attributes of
a different nature: deterministic (cost of equipment), probabilistic (risk of loss of pilots in
battle or equipment break-down), or fuzzy (risk of bad timing in resource deployment). In
the current paper, we will take care of the capacity-planning problem. We will consider
deterministic (total value of investment expenditure), stochastic (sum of discounted cash
flow, the mean level of customer demand fulfillment, or mean level of production capacity
usage), and fuzzy criteria (total labor cost related to the preparation of the investment
process). Approaches applied for solving mixed problems can be found in [1–4]. Mixed
problems lead to multiobjective optimization problems formulated in ordered structures.
Different approaches based on various types of orders are presented in [5–10].

An essential issue here is the scalarization problem, which appears, in various guises,
in the literature dealing with multicriteria decision-aiding.

In the case of real vectors, scalarization was considered in goal programming prob-
lems [11], the ε-constraint method [12], minimizing the distance using an ideal solution [13],
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the lexicographic method [14], and evolutionary algorithms for multiobjective optimiza-
tion [15]. A review of scalarization methods on multiobjective optimization based on
weights, presenting three types of weights: equal weights, rank order centroid weights,
and rank-sum weights, was given in [16].

In the case of fuzzy data, scalarization was considered in the multiobjective program-
ming problems with fuzzy coefficients using the embedding theorem and the concept of
convex cone [17], as well as in the ε-constraint method and weighted sum method in fuzzy
multiobjective programming [18]. Kon [19] studied connections between set optimization
problems and scalarization of fuzzy optimization problems.

In the case of stochastic data, some models of scalarization in stochastic multiobjec-
tive programming problems were examined by Caballero et al. [20]. Scalarization based
on expected value, variance, and Tammer Optimality was proposed by Adeyefa and
Luhandjula [21]. Noyan and Rudolf [22] proposed a new class of scalarization functions in
optimization with stochastic preferences based on coherent risk measures and second-order
stochastic dominance. Scalarization approaches in stochastic multiobjective problems were
considered by Kankova [23,24].

Finding all non-dominated solutions is very often insufficient for the decision-maker,
who has to select the final decision. For that reason, various suggestions appear, assisting
the DM in this matter.

One of the frequently used methods of solving multiobjective problems is the interac-
tive approach, which was being developed starting with the STEM method of Benayoun
et al. [25], through the methods proposed in [26–29].

The term “trade-off” is widely used in decision-making. It usually refers to a conflict
between two criteria [30–32]. The notion “value trade-offs” is used by Keeney [33] to
express how much the DM is inclined to decrease one criterion to achieve a particular
increase in another criterion. When this approach is used, the DM articulates his/her
preferences by specifying trade-off values he/she considers satisfactory [34]. The term
“trading-off” is also used to illustrate the situation of a DM who agrees to reduce the
value of one criterion in order to improve the value of another [35]. In this study, the
term “trade-off” is defined as a ratio determining how much the value of one criterion is
increased per a unit of decrease in the value of another criterion when a particular solution
is replaced by another [36,37]. An approach based on the trade-off analysis has also been
used in interactive methods [37,38].

In the present paper, we will deal with the possibility of applying an interactive
approach, based on trade-offs, to the solution of mixed problems. This requires, first, to
determine the set of efficient solutions to the decision problem in question.

The interactive approach proposed in the paper will be used to solve the problem
of capacity planning. Capacity is defined as the maximum level of value-added activity
over a period of time that the operation can achieve under normal conditions [39]. For top
management, capacity decisions are of primary importance, as they determine whether the
organization will be able to meet the demand and how effectively it will use its resources.

Two characteristics of capacity, lead-time and economics of scale, must be taken into
account when planning changes in capacity. As increasing capacity takes time, decisions
need to be made before demand levels can be estimated precisely. On the other hand, there
is pressure to make a change in capacity large enough to exploit economies of scale. Thus,
two questions must be answered: when to make a change and how large the capacity
increments should be.

The possibility of applying dynamic programming methods for the planning of pro-
duction capacities was used in the past. Erlenkotter [40] proposed two approaches for
dynamic capacity-planning problems with many locations. This was applied to a large-
scale problem of planning capacity expansion for India’s nitrogenous fertilizer industry.
Herbots et al. [41] investigated capacity planning under limited regular and non-regular
resources, with a finite planning horizon taken into consideration. Lin et al. [42] considered
the dynamic multi-site capacity planning problem in the thin film transistor liquid crystal
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display industry under stochastic demand, which follows Markov properties. Wang and
Nguyen [43] proposed a stochastic dynamic programming solution to a decision-making
problem related to technology replacement policy and a capacity plan of resources to satisfy
customer demand under technological changes in conjunction with integer programming
for simultaneous capacity planning.

Capacity planning methodology is often applied to waste management. Baetz [44]
presented a dynamic programming model for determining the optimal capacity expansion
patterns for waste-to-energy and landfill facilities over time. Huang [45] introduced a
grey dynamic programming method by incorporating concepts of grey systems and grey
decisions within a dynamic programming framework as a means for decision making under
uncertainty. Nie et al. [46] generated interval solutions for capacity expansion of waste
management facilities and the relevant waste-flow allocation. Dai et al. [47] developed an
interval-parameter, chance-constrained dynamic programming method for the capacity
planning of an integrated municipal solid waste management system under uncertainty.

There are also other new relevant approaches in the field worth to be mentioned. For
example, in [48], optimal computing budget allocation for the vector-evaluated genetic
algorithm in multiobjective simulation optimization is considered. In [49], bankruptcy
prediction for small and medium enterprises using transactional data in the multiobjective
framework is shown. In [50], three portfolio selection strategies for loss-averse investors:
semi-variance, conditional value-at-risk, and a combination of both risk measures are
analyzed.

Later in the paper, the capacity-planning problem will be considered as a mixed, multi-
objective, multistage decision process. This problem leads to the formulation of dynamical
optimization problems in ordered structures. The first paper in this field was Brown and
Strauch [51], which presented the application of the optimality principle for a class of
multicriteria dynamic programming problems with a lattice order. Mitten [52] showed a
method for solving multistage decision process in which the real-valued objective function
was replaced by a preference relation. Cangpu [53] studied the dynamic property of the
efficient solutions of dynamic systems and showed that they possessed a chain property
necessary for establishing the fundamental equation. Henig [54] defined a dynamic model
with returns in a partially ordered set and showed that Bellman’s principle of optimality is
valid with respect to maximal returns. Assumptions of separability and monotonicity of
MCDM were needed to guarantee that each non-dominated solution could be computed.
Trzaskalik and Sitarz [55,56] dealt with the solution of the problem of searching for optimal
solutions in ordered spaces. They presented optimality equations and examples of ordered
mixed structures, including structures with simultaneous deterministic, stochastic, and
fuzzy criteria. Optimality based on lattice theory in dynamic programming is also shown
in [57].

Despite the fact that the application of Bellman’s optimality equations allows generat-
ing a complete set of efficient solutions of a multiobjective dynamic programming problem,
this set is usually too numerous to be useful for the decision-maker (DM) in the making of
the final decision, and for that reason, it is necessary to narrow it down. To achieve this
goal, we will use the interactive procedure proposed in this paper.

The aim of the paper is to present an interactive procedure with trade-offs that help
the DM to make a final decision. The procedure is applied to solving the capacity planning
problem. The description of the interactive procedure that can be applied to any mixed
problem and the example of its application to capacity-planning problems are the main
contribution of the paper.

The paper consists of six sections. Section 1 is an introduction to the problems dis-
cussed. In Section 2, we provide a definition of efficient decisions in ordered structures.
Section 3 describes an interactive procedure based on the application of trade-offs, which al-
lows obtaining the final solution interactively with the DM. In Section 4, capacity planning
is formulated as a mixed multiobjective dynamic programming problem, and a numerical
example is formulated. In Section 5, an application of the proposed interactive method is



Entropy 2021, 23, 1243 4 of 20

shown. Conclusions in Section 6 end the paper.

2. Ordered Structures and Scalarization
2.1. Ordered Structures

We introduce the following notation. Let D be a decision space, which consists of the
finite number of solutions (decisions). We consider a multi-criteria problem and a set of K
criteria:

{
α1, α2, . . . , αK} :

αk : D →Wk for k ∈ 1, K. (1)

We denote the set of integers {1, . . . , K} as 1, K.
We focus on structures consisting of sets Wk, operators ◦k, and relations≤k. We assume

that these structures satisfy the following conditions:
(

Wk,≤k, ◦k
)

is a partially ordered

set for k ∈ 1, K; for all elements a, b, c of set W and for all k ∈ 1, K the following holds:

a ◦k
(

b ◦k c
)
=
(

a ◦k b
)
◦k c,

a ≤k b ⇒ a ◦k c ≤k b ◦k c ∧ c ◦k a ≤k c ◦k b.
(2)

Let
(
W,≤W , ◦W) be the Cartesian product of structures

(
Wk,≤k, ◦k

)
, i.e.,(

W,≤W , ◦W
)
=
(

W1,≤1, ◦1
)
×
(

W2,≤2, ◦2
)
× . . .×

(
WK,≤K, ◦K

)
. (3)

Furthermore,
(
W,≤W , ◦W) is an ordered structure, being the Cartesian product of

ordered structures [58]. Several examples of ordered structures are given by Trzaskalik and
Sitarz in [56]. Below, we present an example of an ordered structure consisting of mixed
data: stochastic, fuzzy, and real.

Example 1. We consider the following structure:

W = W1 ×W2 ×W3 ×W4 ×W5 (4)

where W1, W2 and W3 are the sets of random variables with finite sets of realizations, W4 is the set
of all real numbers, and W5 is the set of all triangular fuzzy numbers. As the operators in these sets,
we take the sum of random variables, denoted by “+RV”, the sum of real numbers, denoted by “+”,
and the sum of triangular fuzzy numbers, denoted by “+TFN”. Thus, the operator in the set W has
the following form:

◦W = (+RV)× (+RV)× (+RV)× (+)× (+TFN). (5)

We compare random variables by using the first-order stochastic dominance (≤FSD), see for
example, [59,60]. The relation in the set of triangular fuzzy numbers is based on the comparison of
the parameters of these fuzzy numbers (≤TFN); for more information, see [61,62]. Moreover, we
compare real numbers in a classical way (≤). We obtain the following relation in W:

≤W= (≤FSD)× (≤FSD)× (≤FSD)× (≤)× (≤TFN). (6)

The sets W1, W2 and W3 with addition and FSD are ordered structures; for details, see [59].
The set of real numbers W4 with the operator and relation defined above is an ordered structure. The
set W5 with addition and the comparison relation described above is an ordered structure; see [61].
Thus, we have here an ordered structure with mixed data: stochastic, real, and fuzzy.

Let α =
(
α1, α2, . . . , αK) be a vector function. We consider the set of elements α(D) ⊂

W. The set of maximal elements of α(D) is defined as follows:

max α(D) =
{

d∗ ∈ D : ∼ ∃d′∈D α(d∗) ≤ α
(
d′
)
∧ α(d∗) 6= α

(
d′
)}

. (7)



Entropy 2021, 23, 1243 5 of 20

Let
D∗ = argmax α(D). (8)

The set D∗ is the set of all efficient solutions in the decision space.

2.2. Scalarization

Let us consider set Wk for k ∈ 1, K and a real-valued function

βk : Wk → < (9)

where < is the set of real numbers. Function βk is called scalarization operator for criterion
αk, whereas value f k(d) = βk

(
αk(d)

)
is called the scalarized value for the solution d and

criterion αk. Vector
f (d) =

(
f 1(d), f 2(d), . . . , f K(d)

)
(10)

is the vector of scalarized values for the solution d. The scalarized vector criteria function
has the form:

f =
(

f 1, f 2, . . . , f K
)

(11)

and consists of components f 1, f 2, . . . , f K, which are scalarized criteria. Later on, they will
be treated as a set of functions:

F =
{

f 1, f 2, . . . , f K
}

. (12)

Example 2. We consider the ordered structure described in Example 1:

W = W1 ×W2 ×W3 ×W4 ×W5 (13)

where W1, W2 and W3 are the sets of random variables with finite sets of realizations, W4 is the
set of all real numbers, and W5 is the set of all triangular fuzzy numbers. Applied scalarization
operators βk are as follows. For criteria α1, α2, and α3, the assigned scalarization operators β1, β2,
and β3 are expected values of random variables. As the set W4 is the set of real numbers, for
criterion α4 we assign the scalarization operator β4 as the identity function. The set of triangular
fuzzy numbers W5 consists of triples of real numbers: center and two spreads (left and right). For
criterion α5, as the scalarization operator β5, we will take the center of the map assigned to each
fuzzy number.

For any solution d, the vector of scalarized values can be written as follows:

f (d) =
(

f 1(d), f 4(d), f 3(d), f 4(d), f 5(d)
)
=(

β1(α1(d)
)
, β2(α2(d)

)
, β3(α3(d)

)
, β4(α4(d)

)
, β5(α5(d)

))
.

(14)

The set of scalarized criteria is:

F =
{

f 1, f 2, f 3, f 4, f 5
}

. (15)

3. An Interactive Procedure Based on An Analysis of Trade-Offs
3.1. Trade-Offs Analysis

Let D = {d1, d2, . . . , dN} be the set of efficient solutions and N the number of efficient
solutions. Let Fmax be the set of the scalarized criteria for which the largest values are
preferred, and Fmin be the set of the scalarized criteria for which the smallest values are
preferred; we have

F = Fmax ∪ Fmin. (16)

For simplicity, in what follows, we will call the scalarized criteria fk simply “criteria”.
Our procedure uses trade-offs to identify the solutions proposed to the DM. The trade-

off tkl
(
di, dj

)
is calculated for the pair of solutions

(
di, dj

)
and a pair of criteria

(
f k, f l

)
,
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such that di is evaluated as better than dj with respect to f k, but worse with respect to f l . It
determines the value by which f k will change per unit of change of f l when dj is replaced
by di.

The application of trade-offs in a two-criteria problem is fairly obvious. Let us assume
that solution dj has been selected and presented to the DM, with the information that a
simultaneous improvement of both criteria is not possible. Once the DM knows the value
of both criteria, he/she states that f k should be improved at the expense of f l . If the DM
does not formulate his/her expectations in any other way, then as the next proposal for
him/her, we can select, from among those solutions for which the value of f k is better than
it is for dj, the one for which the trade-off is the highest.

If more than two criteria are considered, the application of trade-offs is not obvious.
Assume that the DM is given a solution dj and is considering whether it is worth replacing
it with another solution di. In the proposed procedure, we assume that in each iteration,
the DM evaluates the proposed solution and either accepts it as the final solution or
determines how it should be improved. He/she provides the relevant information by
dividing the criteria into three groups: those whose values should be improved (the set
F1), those whose values should be at least preserved at the current level (the set F2), and
those whose values can be made worse (the set F3). Next, all the solutions which satisfy
these requirements are determined. If such solutions do not exist, the DM is asked to
correct his/her requirements. On the other hand, if there are more than two such solutions,
trade-offs are used to determine another candidate solution, calculated for each pair of
criteria

(
f k, f l

)
such that f k ∈ F1 and f l ∈ F3.

The question arises of how to compare trade-offs calculated for various pairs of criteria.
There are two problems here. First, the values of trade-offs calculated for various criteria
pairs can be incomparable because of various units used to measure various criteria. This
problem is relatively easy to solve since criteria values can be standardized. The second
problem is more complex: for some criteria pairs, the calculation of trade-offs can be
invalid.

Example 3. Let us consider the situation presented in Table 1.
The DM, presented with solution d1, stated that the value of f 1 should be higher, while

the values of the remaining criteria can be lowered. This means that F1 =
{

f 1}, F2 = ∅,
F3 =

{
f 2, f 3}. There are three solutions for which the value of the first criterion exceeds the value

obtained for d1: d2, d3 and d4. To determine which of them should be proposed next to the DM, the
trade-offs should be calculated for each of them for two criteria pairs:

(
f 1, f 2) and

(
f 1, f 3).

It is easy to notice that while the replacement of d1 by d4 results in decreasing both f 2 and f 3,
selecting d2 or d3 results in decreasing only one of them. Due to that, it makes no sense to calculate
the trade-off for criteria pair

(
f 1, f 3) and solution d2, and also for the criteria pair

(
f 1, f 2) and

solution d3.

Table 1. Example solutions of the problem.

Solution f 1 (max) f 2 (max) f 3 (max)

d1 10 20 15
d2 12 14 16
d3 14 22 8
d4 18 12 10

In a situation such as outlined above, we propose to calculate trade-offs whenever
it is reasonable, e.g., when the increase of one criterion is accompanied by a decrease
in the other. Whereas for when a particular solution the values of both criteria increase,
the trade-off is taken to be twice the maximum value of the trade-off calculated for the
remaining solutions. Finally, for each solution that meets the requirements formulated by
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the DM, the average of trade-offs computed for various pairs of criteria is calculated, and a
solution maximizing the average is taken as a new proposal for the DM.

During this procedure, the DM is presented with scalarized evaluation values with
respect to the individual criteria. Nonetheless, to make it possible to compare trade-offs
obtained for various criteria pairs, we will also use standardized criteria values, calculated
as follows:

gk(di) =



f k(di)−min
j∈1,N
{ f k(dj)}

max
j∈1,N
{ f k(dj)}−min

j∈1,N
{ f k(dj)} for f k ∈ Fmax

max
j∈1,N
{ f k(dj)}− f k(di)

max
j∈1,N
{ f k(dj)}−min

j∈1,N
{ f k(dj)} for f k ∈ Fmin

(17)

In order to standardize the values of criteria that are maximized, we divide the
difference between the value for a particular solution di and the minimal value for this
criterion by the difference between the maximal and minimal value of this criterion. On
the other hand, in order to standardize the values of criteria that are minimized, we divide
the difference between the minimum value for this criterion and the value for a particular
solution di by the difference between maximal and minimal value of this criterion. Thus
the standardized values of all the criteria belong to the interval [0, 1], with the value 0
assigned to the worst solution, and the value 1 to the best solution with respect to the given
criterion.

The trade-off is calculated from the following formula:

tkl
(
di, dj

)
=

gk(di)− gk(dj
)

gl
(
dj
)
− gl(di)

(18)

The trade-off is calculated for standardized values of criteria. It determines the value
by which gk will change per unit of change of gl when dj is replaced by di. The greater the
trade-off, the greater the increase in gk per unit decrease in gl .

Let D(q) be the set of solutions considered in iteration q. In each iteration, the DM is
shown a candidate solution d(q) and a potency matrix M(q) with two rows: the first one
groups the best values of the criteria for the solutions from set D(q), and the second one,
the worst values:

M(q) =

[
f

1(q) · · · f
K(q)

f 1(q) · · · f K(q)

]
, (19)

where:

f
k(q)

=


max

di∈D(q)
f k(di) for f k ∈ Fmax

min
di∈D(q)

f k(di) for f k ∈ Fmin
,

f k(q) =


min

di∈D(q)
f k(di) for f k ∈ Fmax

max
di∈D(q)

f k(di) for f k ∈ Fmin
.

(20)

to return to the solution considered in previous iterations if it is considered better than the
current proposal.

3.2. Description of the Interactive Procedure

We define set S as a set that contains all the solutions proposed to the DM till now. This
allows the DM to return to the solution considered in previous iterations if it is considered
better than the current proposal. At the beginning of the procedure, set S is empty.

The proposed interactive procedure consists of the following steps:

Preliminary stage

1. For each efficient solution, calculate f k(di), k ∈ 1, K, i ∈ 1, N.
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2. Calculate the standardized criteria values gk(di), for all the efficient solutions, k ∈ 1, K,
i ∈ 1, N.

3. Determine the first candidate solution d(1) using the max–min criterion:

(a) For each solution di, determine the minimum of the standardized evaluations
with respect to each criterion:

gmin(di) = min
k∈1,K

gk(di) (21)

(b) As the first candidate solution d(1), take di for which the value gmin(di) is
maximal.

4. Set q = 1, D(1) = D, and S =
{

d(1)
}

; determine the potency matrix M(1) and proceed
to the first iteration.

Iteration q

1. Present the criteria values obtained for solution d(q) and potency matrix M(q) to the
DM. If the DM is satisfied with the proposed solution, end the procedure.

2. Ask the DM if he/she wants to formulate additional requirements that the solution
should meet. If the answer is positive, proceed to step 6.

3. Ask the DM if he/she would like to reconsider any of the previously proposed
solutions. If the answer is negative, end the procedure.

4. Present to the DM the solutions proposed earlier and ask him/her to indicate which
one he/she would like to reconsider.

5. As the next solution d(q+1), take the one indicated by the DM in step 4; set q = q + 1
and proceed to the next iteration.

6. Ask the DM to assign each criterion f k to one of the following three sets:

F1—the set of criteria whose values should be improved as compared with the value
obtained for solution d(q);
F2—the set of criteria whose values should not be made worse as compared with the
value obtained for solution d(q);
F3 —the set of criteria whose values can be made worse as compared with the value
obtained for solution d(q).

We have:
F = F1 ∪ F2 ∪ F3 (22)

7. Determine the set D(q+1) as the set of solutions di ∈ D(q) satisfying the following
conditions:

∀ f k∈F1∩ Fmax
f k(di) > f k

(
d(q)

)
,

∀ f k∈F2∩ Fmax
f k(di) ≥ f k

(
d(q)

)
,

∀ f k∈F1∩ Fmin
f k(di) < f k

(
d(q)

)
,

∀ f k∈F2∩ Fmin
f k(di) ≤ f k

(
d(q)

)
.

(23)

8. If D(q+1) = ∅, notify the DM that there are no solutions satisfying his/her require-
ments, proceed to step 1.

9. Determine the potency matrix M(q+1) and ask the DM if he/she accepts the replace-
ment of M(q) by M(q+1). If the answer is negative, proceed to step 1.

10. If D(q+1) consists of only one solution, take this solution as the next proposed solution
d(q+1). Proceed to step 14.

11. For each solution di ∈ D(q+1) and for each criteria pair, such that f k ∈ F1, f l ∈
F3 and gl(di) < gl

(
d(q)

)
, calculate the value of the trade-off tkl

(
di, d(q)

)
.
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12. For each criteria pair
(

f k, f l
)

such that f k ∈ F1, f l ∈ F3, check if there exists at least

one solution di for which the value of tkl

(
di, d(q)

)
has been calculated in step 11. If so,

then for each solution dj ∈ D(q+1) such that gl(dj
)
≥ gl

(
d(q)

)
, take as the trade-off

tkl

(
dj, d(q)

)
twice the maximal value of the trade-offs calculated for the pair

(
f k, f l

)
in step 11; otherwise, take tkl

(
dj, d(q)

)
= 1 for each dj ∈ D(q+1).

13. For each solution di ∈ D(q+1), calculate the average of the trade-offs calculated in

steps 11 and 12 for each criteria pair
(

f k, f l
)

such that f k ∈ F1, f l ∈ F3. As the

next solution d(q+1) to be proposed to the DM, take the one for which this average is
highest.

14. Set S = S ∪
{

d(q+1)
}

, q = q + 1 and proceed to the next iteration.

A flow chart of the iterative part of the procedure is presented in Figure 1.

3.3. Discussion

The first candidate solution is determined using the max–min criterion. In each
iteration, the DM is presented with evaluations of the proposed solution and with the
potency matrix consisting of maximal and minimal criteria values obtained for the currently
considered solutions. The DM can either accept the proposed solutions as the solution of
the problem or else determine the direction of improvement by indicating:

(a) The criteria which should achieve a value higher than the one obtained for the
candidate solution;

(b) The criteria which should retain the value obtained for the candidate solution;
(c) The criteria which can have a lower value than the one obtained for the candidate

solution.

Of course, since we operate within the set of efficient solutions, the DM must indicate
at least one criterion whose value can be made worse.

The procedure should continue until the DM is satisfied with the proposed solution
(step 1). During the dialog, it can turn out, however, that the consecutive proposals do not
satisfy the DM’s expectations. He/she can then either end the procedure (step 3) or once
again consider the solutions proposed earlier and decide to select one of them (step 4).

The procedure allows the DM to return to the solution which he/she previously
regarded as unsatisfactory (steps 3 and 4). There is, of course, the danger that the DM will
“fall into a loop” while searching for the solution. We assume, however, that the DM is
aware of this danger. To abandon this possibility would exclude the risk of falling into a
loop, but at the same time, it would substantially limit the flexibility of the procedure. It
could also lead to the rejection of the determined solution by the DM as unsatisfactory.

If in Step 3 the DM gave a negative answer, the procedure is halted without the final
solution being determined. Such a situation occurs when the DM does not accept the
currently proposed solution, and at the same time, does not intend to formulate additional
requirements, nor does he/she want to return to any of the solutions proposed earlier.

In the procedure, it has been assumed that when the calculation of the trade-off for the
given solution and the given criteria pair is not possible, we take for its value the double
value of the maximal trade-off for the same criteria pair, but for different solutions. This
is related to the fact that in such a case, it is possible to improve the value of criterion f k

without making the value of criterion f l worse, which is, of course, very advantageous.
It is also possible to take more than double the maximum, which allows for an even
stronger preference of those solutions whose choice will not entail a decrease of the values
of non-essential (for the DM) criteria.
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4. Capacity Planning as a Mixed, Multiobjective Dynamic Programming Problem

Capacity planning is usually analyzed in a larger time horizon and can be considered
as a discrete multistage decision process with a fixed number of stages. At the beginning of
each stage, the process is in one of the feasible states, which is represented by the current
production capacity. For each state, a set of feasible decisions is defined. Each decision
determines the scale of the expansion of production capacities at the current stage. The
state at the beginning of the next stage is determined by the transition function.

Let us denote:

T—Time horizon of the analysis (number of years);
yt—The production capacity at the beginning of stage t;
xt –Production capacity increment in stage t.

The transition function is as follows:

yt+1 = yt + xt (24)

Let us consider the following problem. A company introduces a new product to
the market. The initial production capacity is 1000 units per year. It is forecasted that in
the next five years the demand for the product will be increasing, and then it will level
out at 5000 units. Therefore, the company prepares a long-term investment plan whose
implementation will allow it to reach the full production capacity at the level of 5000
units no later than at the end of the fifth year. It is also assumed that after ten years,
the production of the product will end. Because of the technology used, the value by
which the production capacity is increased must be a multiple of 1000 units. Since the full
production capacity has to be achieved at the end of the fifth year, we assume that the
process considered has five stages, that is, T = 5.

Now we will determine the sets Yt of admissible states, for t ∈ 1, T, and of admissible
decisions for the consecutive stages Xt(yt). On the basis of our assumptions, we have:

Y1 = {1000}
Y2 = Y3 = Y4 = Y5 = {1000, 2000, 3000, 4000, 5000}
Y6 = {5000}

For stages 1 through 4, the sets of feasible decisions are:

Xt(1000) = {0, 1000, 2000, 3000, 4000} Xt(2000) = {0, 1000, 2000, 3000}
Xt(3000) = {0, 1000, 2000} Xt(4000) = {0, 1000}
Xt(5000) = {0}

In stage 5, the feasible decisions are:

X5(1000) = {4000} X5(2000) = {3000} X5(3000) = {2000}
X5(4000) = {1000} X5(5000) = {0}

A stage realization is a pair (yt, xt), where xt ∈Xt(yt). A process realization d is a
sequence of stage realizations (y1, x1), (y2, x2), . . . , (yT, xT), where yt+1 = Ωt(yt, xt) for
t∈1, T − 1.

The evaluation of each process realization is an additive composition of stage evalua-
tions for the individual stages.

When making decisions regarding the expansion of production capacity, many criteria
are usually considered. Some of them are financial (for instance, Net Present Value or
NPV), others allow evaluating the degree to which the company will be able to satisfy the
demand in the future, the future demand for investment capital, or the future labor cost
related to the investment projects being implemented.

We assume that the scope of the possible expansion of production capacity in the
consecutive stages of the process analyzed has been determined on the basis of an analysis
of technical and organizational constraints. In our model, five criteria are taken into
account:

α1—Sum of discounted cash flow, to be maximized;
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α2—Mean level of customer demand fulfillment in the analyzed period, to be maximized;
α3—Mean level of production capacity usage in the analyzed period, to be maximized;
α4—Total value of investment expenditure in the analyzed period, to be minimized;
α5—Total labor cost related to the preparation of the investment process, to be minimized.

We denote:

zt—Forecasted demand at stage t;
st—Value of sales in stage t:

st = min{yt, zt} (25)

The value of the discounted cash flow in period t is calculated using the following
formula [63]:

α1
t (yt, xt) =

−It(xt) + Pt(st)− Kt(yt, st)

(1 + r)t (26)

where:

It(xt)—Function describing the value of investment expenditure needed to increase the
capacity by xt units;
Pt(st)—Function describing the value of sales revenue;
Kt(yt, st)—Function describing production costs;
r—discount rate. We assume that k = 0.1.

The values of criteria α2, α3, and α4 are determined as follows:

α2
t (yt, xt) =

st
zt
= min{yt ,zt}

zt

α3
t (yt, xt) =

st
yt

= min{yt ,zt}
yt

α4
t (yt, xt) = It(xt)

(27)

The values of criterion α5 are determined by an expert.
On the basis of the data prepared by the marketing department, the demand forecasts

for the product for the next five years are prepared (Table 2).

Table 2. Demand for the product.

Year 1 Year 2 Year 3 Year 4 Year 5

Demand P(zt) Demand P(zt) Demand P(zt) Demand P(zt) Demand P(zt)

650 0.15 1880 0.20 3470 0.25 3930 0.30 4320 0.35
710 0.80 2130 0.65 4090 0.55 4770 0.45 4990 0.35
790 0.05 2510 0.15 4880 0.20 5000 0.25 5000 0.30

A single capacity increase requires to cover the fixed cost of 1000 monetary units and,
additionally, the variable cost of two monetary units for each unit of production capacity
increase. The company sells the product at the price of five monetary units. Production
cost depends on the production capacity installed and on the number of units produced.
Each unit of the available production capacity entails the cost of one monetary unit, while
the variable production cost is three per production unit.

Because of fairly low employment, of essential importance is the labor expenditure
related to the preparation of investment processes; its estimation is expressed by a fuzzy
number. The data are presented in Table 3.
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Table 3. Estimation of the labor expenditure related to the preparation of the investment process: the
number of man-hours (m is the center of the fuzzy number, α, β are spreads).

Production Capacity
Increment

Fuzzy Number Parameters

α M β

0 0 0 0
1000 20 200 80
2000 40 240 100
3000 60 320 130
4000 90 480 140

The value of investment expenditure is as follows:

It(xt) = 1000λ(xt) + 2xt (28)

where:

λ(xt) =

{
1 if xt > 0
0 if xt = 0

(29)

Revenue and production costs are determined as follows:

Pt(st) = 5st
Kt(yt, st) = yt + 3st

(30)

Since it is assumed that in the years 6 through 10 the demand will level out at
5000 units, the sum of discounted profits achieved in that period will be constant, regardless
of the strategy of production capacity expansion adopted during the first five years.

Criteria α1, α2, and α3 are stochastic: we assume that the company has a demand
forecast for its products, which allows generating probability distributions for NPV, mean
degree of demand fulfillment, and the mean level of production capacity usage. Criterion
α4 is deterministic: we assume that the available data allow us to precisely determine the
investments needed for the expansion of production capacity. Criterion α5 is fuzzy: the
estimation of labor expenditure required to carry out the investment project is determined
by an expert as a triangular fuzzy number.

The operators are the same as in Example 1, described in Section 2. Moreover, the way
of comparing random variables, real numbers, and triangular fuzzy numbers is the same
as described there. The evaluation space is therefore a partially ordered space. Its structure
corresponds to the structure presented in Example 1.

It is possible to find efficient realizations using the optimization principle and opti-
mization equations derived for partially ordered spaces. These equations and proofs of the
theorems can be found in [49,50]. A numerical solution of the problem has been presented
in [64].

Efficient realizations D = {d1, . . . , d25}, determined by means of optimization equations,
are presented in Table 4.

Table 4. Efficient process realizations.

Process
Realization y1 x1 y2 x2 y3 x3 y4 x4 y5 x5 y6

d1 1000 4000 5000 0 5000 0 5000 0 5000 0 5000
d2 1000 2000 3000 2000 5000 0 5000 0 5000 0 5000
d3 1000 2000 3000 1000 4000 1000 5000 0 5000 0 5000
d4 1000 2000 3000 0 3000 2000 5000 0 5000 0 5000
d5 1000 1000 2000 3000 5000 0 5000 0 5000 0 5000
d6 1000 1000 2000 2000 4000 1000 5000 0 5000 0 5000
d7 1000 1000 2000 2000 4000 0 4000 1000 5000 0 5000
d8 1000 1000 2000 2000 4000 0 4000 0 4000 1000 5000
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Table 4. Cont.

Process
Realization y1 x1 y2 x2 y3 x3 y4 x4 y5 x5 y6

d9 1000 1000 2000 1000 3000 1000 4000 0 4000 1000 5000
d10 1000 1000 2000 1000 3000 0 3000 1000 4000 1000 5000
d11 1000 1000 2000 1000 3000 0 3000 0 3000 2000 5000
d12 1000 1000 2000 0 2000 3000 5000 0 5000 0 5000
d13 1000 1000 2000 0 2000 2000 4000 0 4000 1000 5000
d14 1000 0 1000 4000 5000 0 5000 0 5000 0 5000
d15 1000 0 1000 3000 4000 1000 5000 0 5000 0 5000
d16 1000 0 1000 3000 4000 0 4000 1000 5000 0 5000
d17 1000 0 1000 3000 4000 0 4000 0 4000 1000 5000
d18 1000 0 1000 2000 3000 2000 5000 0 5000 0 5000
d19 1000 0 1000 2000 3000 1000 4000 0 4000 1000 5000
d20 1000 0 1000 2000 3000 0 3000 2000 5000 0 5000
d21 1000 0 1000 2000 3000 0 3000 1000 4000 1000 5000
d22 1000 0 1000 2000 3000 0 3000 0 3000 2000 5000
d23 1000 0 1000 0 1000 4000 5000 0 5000 0 5000
d24 1000 0 1000 0 1000 0 1000 4000 5000 0 5000
d25 1000 0 1000 0 1000 0 1000 0 1000 4000 5000

5. Application of the Interactive Procedure

The next three examples are illustrations of the procedure. Example 4 illustrates the
preliminary stage, and example 5 illustrates three subsequent iterations.

The operators are the same as in Example 1, described in Section 2. Moreover, the
way of comparing random variables, real numbers, and triangular fuzzy numbers is the
same as described there. The evaluation space is, therefore, a partially ordered space. Its
structure corresponds to the structure presented in Example 2. All efficient solutions are
included in D(1).

Example 4. In the preliminary stage, calculations proceed as follows:

1. Applying Formulas (25)–(30), for each efficient solution di∈D(1), we calculate f k(di), k ∈
1, K, i ∈ 1, N. The results are given in Table 5 in columns f 1(di), f 2(di), f 3(di), f 4(di),
f 5(di).

2. Applying formula (17), for each efficient solution di∈ D(1), we calculate gk(di), k∈1, K,
i ∈ 1, N. The results are given in Table 5 in columns g1(di), g2(di), g3(di), g4(di), g5(di).

3. We determine the first candidate solution d(1).

(a) For each solution di, we determine the minimum of the standardized evaluations with
respect to each criterion, applying formula (21).

(b) The value gmin(di)is maximal for i∈{12, 15, 16, 17, 18}. As the first candidate
solution d(1), we take d12 (the first of the five solutions for which the minimum of the
standardized criteria values is 0.667):

d(1) = d12. (31)

4. We set q = 1, D(1) = D, S =
{

d(1)
}

, and determine the potency matrix M(1) according to

Formula (19). The potency matrix M(1)is shown in Table 6.

Then, we proceed to the first iteration.
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Table 5. Scalarized values of criteria for efficient realizations and standardized values.

Solution f 1(di) f 2(di) f 3(di) f 4(di) f 5(di) g 1(di) g 2(di) g 3(di) g 4(di) g 5(di) Min

d1 11,393 100.00% 76.36% 9000 480 0.474 1.000 0.000 1.000 1.000 0.000
d2 12,550 100.00% 82.05% 10,000 480 0.755 1.000 0.321 0.667 1.000 0.321
d3 12,361 99.04% 85.02% 11,000 640 0.709 0.983 0.488 0.333 0.500 0.333
d4 12,786 94.85% 85.68% 10,000 480 0.812 0.910 0.526 0.667 1.000 0.526
d5 13,276 98.60% 87.57% 10,000 520 0.930 0.975 0.632 0.667 0.875 0.632
d6 13,087 97.63% 90.53% 11,000 640 0.885 0.958 0.799 0.333 0.500 0.333
d7 13,161 95.18% 92.13% 11,000 640 0.902 0.915 0.889 0.333 0.500 0.333
d8 13,026 92.07% 93.09% 11,000 640 0.870 0.861 0.943 0.333 0.500 0.333
d9 11,873 87.89% 93.76% 12,000 800 0.590 0.787 0.981 0.000 0.000 0.000
d10 11,423 83.58% 93.86% 12,000 800 0.482 0.712 0.986 0.000 0.000 0.000
d11 11,609 79.36% 93.86% 11,000 640 0.527 0.638 0.986 0.333 0.500 0.333
d12 12,911 88.50% 91.20% 10,000 520 0.842 0.798 0.836 0.667 0.875 0.667
d13 12,098 82.94% 93.76% 11,000 640 0.645 0.701 0.981 0.333 0.500 0.333
d14 13,564 89.43% 87.81% 9000 480 1.000 0.814 0.645 1.000 1.000 0.645
d15 13,375 88.46% 90.77% 10,000 520 0.954 0.798 0.813 0.667 0.875 0.667
d16 13,448 86.01% 92.37% 10,000 520 0.972 0.755 0.902 0.667 0.875 0.667
d17 13,313 82.90% 93.33% 10,000 520 0.939 0.700 0.957 0.667 0.875 0.667
d18 12,973 84.28% 91.44% 10,000 480 0.857 0.724 0.850 0.667 1.000 0.667
d19 12,160 78.72% 94.00% 11,000 640 0.660 0.627 0.994 0.333 0.500 0.333
d20 12,528 77.52% 93.13% 10,000 480 0.749 0.605 0.946 0.667 1.000 0.605
d21 11,711 74.41% 94.10% 11,000 640 0.551 0.551 1.000 0.333 0.500 0.333
d22 11,897 70.19% 94.10% 10,000 480 0.596 0.477 1.000 0.667 1.000 0.477
d23 12,597 74.38% 91.44% 9000 620 0.766 0.550 0.850 1.000 1.000 0.550
d24 11,060 58.79% 93.13% 9000 620 0.394 0.277 0.946 1.000 1.000 0.277
d25 9435 43.01% 94.10% 9000 620 0.000 0.000 1.000 1.000 1.000 0.000

Table 6. Candidate solution d(1) and potency matrix M(1).

f 1 (max) f 2 (max) f 3 (max) f 4 (min) f 5 (min)

d(1) 12,911 88.50% 91.20% 10,000 520

f
k(1) 13,564 100.00% 94.10% 9000 480

f k(1) 9435 43.01% 76.36% 12,000 800

Example 5. In iteration 1, the calculations proceed as follows:

1. The criteria values for solution d(1) and the potency matrix M(1) (Table 6) are presented to
the DM. Assume that the DM is not satisfied with solution d(1).

2. The DM decides to formulate additional requirements—the procedure proceeds to step 6.
6. The DM decides that the value of criterion f1 should be higher than 12911, while the values

of f2 and f3 can be decreased, and the values of f4 and f5 should not be increased as compared
with the ones obtained for solution d(1):

F1 =
{

f 1
}

, F2 =
{

f 4, f 5
}

, F3 =
{

f 2, f 3
}

. (32)

7. The set of solutions satisfying the conditions formulated by the DM in step 6 are determined:

D(2) = {d5, d14, d15, d16, d18}. (33)

8. SinceD(2) 6= ∅, we proceed to the next step.
9. The potency matrix M(2) is determined (Table 7); potency matrices M(1) and M(2) are

presented to the DM, who accepts the move from M(1) to M(2).
10. Since D(2) contains more than one solution, we proceed to the next step.
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11. Trade-offs t12

(
di, d(1)

)
and t13

(
di, d(1)

)
for di ∈ D(2) are calculated. When calculating the

first value, we omit the solutions for which f 2(di) ≥ f 2
(

d(1)
)

: d5 and d14. For the remaining

solutions from D(2)thetrade-offsare:

t12

(
d15, d(1)

)
= 186.39, t12

(
d16, d(1)

)
= 2.98, t12

(
d18, d(1)

)
= 0.20. (34)

When calculating t13

(
di, d(1)

)
, we note that f 3(di) ≥ f 3

(
d(1)

)
holds for d16 and d18. The

trade-offs calculated for the other solutions are:

t13

(
d5, d(1)

)
= 0.43, t13

(
d14, d(1)

)
= 0.83, t13

(
d15, d(1)

)
= 4.72. (35)

12. For d5 and d14, for which trade-offs t12

(
di, d(1)

)
have not been calculated in step 7, we take:

t12

(
d5, d(1)

)
= t12

(
d14, d(1)

)
= 372.78 (36)

Using the same rule, we calculate trade-offs t13

(
di, d(1)

)
for d16 and d18:

t13

(
d16, d(1)

)
= t13

(
d18, d(1)

)
= 9.44. (37)

13. The average values of thetrade-offsare calculated (Table 8).
The next solution d(2) proposed to the DM is d14.

14. We set S = {d12, d14}, q = 2 and proceed to the second iteration.

In iteration 2, the calculations proceed as follows:

1. The criteria values for solution d(2) and potency matrix M(2) (Table 9) are presented to the
DM.

The DM is not satisfied with solution d(2).

2. The DM decides to formulate additional requirements—the procedure proceeds to step 6.
6. The DM decides that the value of criterion f 3 should be higher than 87.81%, while the values

of the remaining criteria can be made worse (smaller for f1 and f2 and larger for f4 and f5) with
respect to the values admitted by these criteria for d(2):

F1 =
{

f 3
}

, F2 = ∅, F3 =
{

f 1, f 2, f 4, f 5
}

. (38)

7. The set of solutions satisfying the conditions formulated by the DM in step 3 are determined:

D(3) = {d15, d16, d18}. (39)

8. Since D(3) 6= ∅, we proceed to the next step.
9. The potency matrix M(3) is determined (Table 11); potency matrices M(2) and M(3) are

presented to the DM, who accepts the move from M(2) to M(3).
10. Since D(3) contains more than one solution, we proceed to the next step.

11. Trade-offs t31

(
di, d(2)

)
, t32

(
di, d(2)

)
, t34

(
di, d(2)

)
, and t35

(
di, d(2)

)
for di ∈ D(3) are

calculated. The values of f 5 for d18 is the same as for d(2), which means that t35

(
d18, d(2)

)
cannot be calculated.

12. As t35

(
d18, d(2)

)
, we take twice the maximum value of the values of trade-offs calculated for

the pair (f 3, f 5) in step 7.
13. The average values of thetrade-offsare calculated (Table 10).

The next solution d(3) proposed to the DM is d16.

14. We set S = {d12, d14, d16}, q = 3 and proceed to the next iteration.
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In iteration 3, the calculations proceed as follows:

1. The criteria values for solution d(3) and the potency matrix M(3)(Table 12) are presented to
the DM.

The DM is satisfied with solution d(3). The procedure ends.

Table 7. Potency matrix M(2).

f 1 (max) f 2 (max) f 3 (max) f 4 (min) f 5 (min)

f
k(2) 13,564 98.60% 92.37% 9000 480

f k(2) 12,973 84.28% 87.57% 10,000 520

Table 8. Values of the trade-offs in iteration 1.

Solution t12(di, d(1)) t13(di, d(1)) Average

d5 372.78 0.43 186.61
d14 372.78 0.83 186.81
d15 186.39 4.72 95.56
d16 2.98 9.44 6.21
d18 0.20 9.44 4.82

Table 9. Candidate solution d(2) and potency matrix M(2).

f 1 (max) f 2 (max) f 3 (max) f 4 (min) f 5 (min)

d(2) 13,564 89.43% 87.81% 9000 480

f
k(2) 13,564 98.60% 92.37% 9000 480

f k(2) 12,973 84.28% 87.57% 10,000 520

Table 10. Values of the trade-offs in iteration 2.

Solution t31(di, d(2)) t32(di, d(2)) t34(di, d(2)) t35(di, d(2)) Average

d15 3.66 9.89 0.50 1.34 3.85
d16 9.18 4.29 0.77 2.06 4.08
d18 1.43 2.26 0.61 4.11 2.10

Table 11. Potency matrix M(3).

f 1 (max) f 2 (max) f 3 (max) f 4 (min) f 5 (min)

f
p(3) 13,448 88.46% 92.37% 10,000 520

f p(3) 12,973 84.28% 90.77% 10,000 480

Table 12. Candidate solution d(3) and potency matrix M(3).

f 1 (max) f 2 (max) f 3 (max) f 4 (min) f 5 (min)

d(3) 13,448 86.01% 92.37% 10,000 520

f
k(3) 13,448 88.46% 92.37% 10,000 520

f k(3) 12,973 84.28% 90.77% 10,000 480

The solution determined means that the production capacity should be increased by
3000 units in the second year and by 1000 units in the fourth year.
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6. Conclusions

To determine the final solution to the problem, we use an interactive procedure. Its
basic advantage consists of not being very demanding on the DM, who, after having
obtained the solution proposed, should determine whether it is satisfactory, and if not, how
it should be improved. It is expected that the DM will indicate the criteria whose values
should be improved, the criteria whose values cannot be worsened, and the criteria whose
values can be worse than the ones obtained for the solution considered.

The interactive method proposed in the paper is an improved version of the procedure
presented by the present authors in their earlier paper [65]. The changes, as compared
with the previous versions, are as follows. First, in the current version, both the criteria to
be maximized and those to be minimized are taken into account (in the earlier versions,
we focused only on the former). Second, in the current version, the decision-maker can
compare the current potency matrix with the one resulting from taking into account the
requirements formulated by him/her and from accepting (or not) the direction of the
improvements of the solution obtained in the current iteration. Third, all the solutions
proposed to the DM are saved so that it is possible to return easily to any of the previous
ones—should the DM decide that an earlier solution better satisfies his/her expectations
than a solution proposed later—and to propose this solution as the final one.

In this paper, we also present how the procedure can be applied to capacity planning,
which is of crucial importance for achieving the strategic goals of an organization. When
making decisions regarding the expansion of the production capacity, managers usually
take into account many criteria of diverse character. Depending on the method of obtaining
data, criteria can be deterministic, stochastic, or fuzzy. In this paper, we have shown that
this problem can be formulated as a mixed multiobjective dynamic programming problem.
We have also proposed a method that can be used to solve this problem.

A certain flaw of our method is its fairly simple way of scalarization of the stochastic
and fuzzy criteria. In further papers, we plan to propose new methods of interacting with
the DM, which will allow us to present more extensive information on the expected effects
of such criteria. In particular, in the case of stochastic criteria, we intend to provide the DM
not only with the expected value but also with the values of the individual quantiles of the
distribution of evaluation.
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