On the Existence of XOR-Based Codes for Private Information Retrieval with Private Side Information
Abstract
:1. Introduction
1.1. Existing Codes for PIR-PSI Setting and Their Limitations
1.2. Motivation
1.3. Contributions
- We present the first XOR-based code construction for the PIR-PSI problem. Our code construction is applicable for the scenario when K messages, each of length bits, are replicated across non-colluding databases, and the user wishes to retrieve a message with side information at her side. Although the setting of databases and side information messages may be applicable to a specific distributed storage model, we highlight that the code contribution is non-trivial as it affirmatively answers the question posed in the motivation section, and moreover it is applicable for any K.
- Owing to the use of XOR-based queries, we show that our codes offer substantial reduction in the decoding complexity compared to the MDS-based counterparts of [15]. However, the rate of our codes marginally fall short of the capacity of the PIR-PSI problem for the setting of non-colluding databases with side information at the user (as seen in Figure 1). Nevertheless, the rates of our codes are strictly higher than that of the fully private codes [2] therefore advertising themselves as a preferred choice when privately downloading a message after having downloaded a few other messages privately from the same database at an earlier time-instant. For and , a comparison between existing solutions for PIR-PSI and our solution is captured in Table 1.
- For the proposed code construction, we prove the joint-privacy property by explicitly showing that the query to one of the databases can be fixed, and then the query to the other database can be modified in such a way that any combination of side information can be used to retrieve any demand from the two databases. This is a novel approach to physically verify the privacy of any XOR-based PIR codes.
1.4. A Sneak-Peek at Our Codes
2. Problem Statement
2.1. Design Criteria for XOR-Based PIR-PSI Codes
- Condition 1: any demand can be retrieved from and using any two side information messages.
- Condition 2: the structure of the new query to (or ) is same as that of (or ), namely: (i) the number of singleton and n-tuple sum blocks is the same, for any , and (ii) the frequency distribution of the message bits across all the codewords in the query is the same as that of (or ).
3. XOR-Based PIR Codes with Private Side Information
3.1. Ingredients and Construction Strategy
3.2. Algorithm for Code Construction
- If K = 6 or 7, perform ⨂ operation between and all the entries in the n-tuple sum block, for of Column 1, and append the result in Column 1’. Similarly, perform ⨂ operation between and all the entries in the n-tuple sum block, for , of Column 2, and append the result in Column 2’.
- If , perform ⨂ operation between and all the entries in the n-tuple sum block, for of Column 1, and append the result in Column 1’. Similarly, perform ⨂ operation between and all the entries in the n-tuple sum block, for , of Column 2, and append the result in Column 2’. However, for the -tuple sum block in Column 1, perform ⨂ operation with and append the result in Column 1’. Similarly, for the -tuple sum block in Column 2, perform ⨂ operation and append the result in Column 2’.
4. Proof for Joint Privacy of XOR-Based PIR-PSI Codes
- By fixing as one of the side information messages, we show that a query to can be synthesized such that any two messages out of the remaining messages can play the role of the demand and the other side information.
- With as the demand, we show that a query to can be synthesized such that any two messages out of the remaining messages play the role of side information.
- By fixing as one of the byproducts, we show that a query to can be synthesized such that any three messages out of the remaining messages can play the role of the demand and two side information.
5. Proof for Joint Privacy for the Code with
5.1. G as a Side Information
- The index values of the demand will change from 33 to 64 instead of 1 to 32.
- The known and unknown byproduct combinations are swapped similar to the proposed construction.
- The index values of all the side information can be retained as they were in .
5.2. G as the Demand
5.2.1. One of as Side Information and G as the Demand
5.2.2. One of as Side Information and G as the Demand
5.2.3. One of as Side Information and G as the Demand
5.2.4. One of as Side Information and G as the Demand
5.2.5. One of Is the Side Information and G Is the Demand
5.3. G as a Byproduct
5.3.1. A Is the Demand
5.3.2. B Is the Demand
5.3.3. C Is the Demand
5.3.4. One of Is the Demand
6. Discussion and Directions for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M. Private information retrieval. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995; pp. 41–50. [Google Scholar]
- Sun, H.; Jafar, S.A. The Capacity of Private Information Retrieval. IEEE Trans. Inf. Theory 2017, 63, 4075–4088. [Google Scholar] [CrossRef]
- Lex, C.J.; Gnilke, O.W. Low-Complexity PIR Using Subfield Subcodes. arXiv 2021, arXiv:2105.07369. [Google Scholar]
- Xu, J.; Zhang, Z. Building capacity-achieving PIR schemes with optimal sub-packetization over small fields. In Proceedings of the IEEE International Symposium on Information Theory, Vail, CO, USA, 17–22 June 2018; pp. 1749–1753. [Google Scholar]
- Banawan, K.; Ulukus, S. The capacity of private information retrieval from coded databases. IEEE Trans. Inf. Theory 2018, 64, 1945–1956. [Google Scholar] [CrossRef]
- Tajeddine, R.; Gnilke, O.W.; Rouayheb, S.E. Private information retrieval from mds coded data in distributed storage systems. IEEE Trans. Inf. Theory 2018, 64, 7081–7093. [Google Scholar] [CrossRef]
- Sun, H.; Jafar, S.A. The capacity of robust private information retrieval with colluding databases. IEEE Trans. Inf. Theory 2018, 64, 2361–2370. [Google Scholar] [CrossRef]
- Tandon, R. The capacity of cache aided private information retrieval. In Proceedings of the 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 3–6 October 2017; pp. 1078–1082. [Google Scholar]
- Heidarzadeh, A.; Kazemi, F.; Sprintson, A. Capacity of Single-Server Single-Message Private Information Retrieval with Coded Side Information. In Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5. [Google Scholar]
- Kazemi, F.; Karimi, E.; Heidarzadeh, A.; Sprintson, A. Private Information Retrieval with Private Coded Side Information: The Multi-Server Case. In Proceedings of the 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 24–27 September 2019; pp. 1098–1104. [Google Scholar]
- Li, S.; Gastpar, M. Converse for Multi-Server Single-Message PIR with Side Information. In Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 18–20 March 2020; pp. 1–6. [Google Scholar]
- Wei, Y.; Ulukus, S. Private Information Retrieval with Private Side Information Under Storage Constraints. In Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5. [Google Scholar]
- Shariatpanahi, S.P.; Siavoshani, M.J.; Maddah-Ali, M.A. Multi-Message Private Information Retrieval with Private Side Information. In Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November 2018; pp. 1–5. [Google Scholar]
- Kadhe, S.; Garcia, B.; Heidarzadeh, A.; Rouayheb, S.E.; Sprintson, A. Private information retrieval with side information: The single server case. In Proceedings of the 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 3–6 October 2017; pp. 1099–1106. [Google Scholar]
- Chen, Z.; Wang, Z.; Jafar, S.A. The Capacity of T-Private Information Retrieval With Private Side Information. IEEE Trans. Inf. Theory 2020, 65, 4761–4773. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Jafar, S.A. The Capacity of Symmetric Private Information Retrieval. IEEE Trans. Inf. Theory 2018, 65, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Jafar, S.A. Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2920–2932. [Google Scholar] [CrossRef]
- Tian, C.; Sun, H.; Chen, J. Capacity-Achieving Private Information Retrieval Codes With Optimal Message Size and Upload Cost. IEEE Trans. Inf. Theory 2019, 65, 7613–7627. [Google Scholar] [CrossRef]
- Tan, X.; Huang, C.; Ji, L. Access Control Scheme Based on Combination of Blockchain and XOR-Coding for ICN. In Proceedings of the 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 3–5 November 2018. [Google Scholar]
- Chou, R.A.; Kliewer, J. Secure Distributed Storage: Rate-Privacy Trade-Off and XOR-Based Coding Scheme. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 605–610. [Google Scholar]
- Seo, Y.-S.; Huh, J.-H. GUI-based software modularization through module clustering in edge computing based IoT environments. J. Ambient. Intell. Humaniz. Comput. 2019, 22, 7287–7311. [Google Scholar] [CrossRef]
- Wang, Y. Privacy-Preserving Data Storage in Cloud Using Array BP-XOR Codes. IEEE Trans. Cloud Comput. 2005, 3, 425–435. [Google Scholar] [CrossRef]
- Harshan, J. XOR-Based Codes for Private Information Retrieval with Private Side Information. arXiv 2021, arXiv:2105.05788. [Google Scholar]
Scheme | Rate | Method | Computational Complexity |
---|---|---|---|
[15] | MDS coding | High. Exponential as | |
(higher than our code) | K increases. Finite field | ||
multiplication involved. | |||
Our scheme | XOR | Low. Bit-wise XOR involved | |
[2] | XOR | Low. Bit-wise XOR involved | |
(lower than our code) |
Query to | Query to |
---|---|
Query to | () | () | () | () | () | () |
---|---|---|---|---|---|---|
Query to | () | () | () |
---|---|---|---|
Query to | () | () | () |
---|---|---|---|
A |
B |
C |
A+B |
A+C |
B+C |
A+B+C |
A | C |
B | |
A+B |
Column 1 | Column 2 |
---|---|
C | C |
Column 1 | Column 2 |
---|---|
C+D | C |
Column 1’ | Column 2’ |
---|---|
C+D | C+A |
C+D+A+B | C+B |
Column 3 |
---|
A |
B+D |
A+B |
Query to without Indices |
---|
A |
Query to with Indices |
---|
Unknown | Known |
---|---|
Query to | Query to |
---|---|
No. | Case | Transformation | Manipulations |
---|---|---|---|
1 | as SI | None | Swap the known and unknown |
byproducts to obtain query at . | |||
2 | as demand, | None | Swap the known and unknown |
or are SI | byproducts to obtain query at . | ||
3 | as demand | Pick query at | Swap the singleton bit |
are SI | and apply | and the bit from | |
, | the two-tuple sum | ||
4 | as demand | Pick query at | ⇒ |
are SI | and apply | ⇒ | |
⇌ | ⇒ | ||
5 | as demand | Pick query at | If and , perform the following: |
are SI | and apply | ⇒, ⇒, ⇒, | |
⇒ | ⇒, ⇒,⇒ | ||
, ⇒, ⇒ | |||
, ⇒, | |||
⇒, ⇒ | |||
, ⇒, | |||
⇒, ⇒ | |||
, ⇒, | |||
⇒, | |||
⇒, | |||
⇒, | |||
⇒, | |||
⇒, | |||
⇒ | |||
. For and | |||
apply to the query obtained after transformation | |||
in column 3 and perform the manipulations mentioned above. | |||
For , rearrange the query in column 3 such a way that | |||
the first codewords do not contain where | |||
. Perform manipulations on | |||
these codewords by the steps proposed under the same | |||
scenario, but by treating the message set as | |||
\. For the remaining codewords | |||
perform the following: Perform manipulations on all codewords | |||
of the form , where | |||
\ \ similar to the steps | |||
proposed under the same scenario of messages, | |||
i.e., perform the same manipulations done to the codewords of | |||
the form , where | |||
\ \ when number of | |||
messages was . Similarly, the manipulations performed | |||
for the codewords of the form when number of | |||
messages was should be repeated for all codewords of | |||
the form . If , perform the following (else skip): | |||
and | |||
, | |||
where , . | |||
6 | as demand | Pick query at | ⇒ |
are SI | obtained | ⇒ | |
from case 5 | where is some byproduct | ||
other than and . |
No. | Case | Transformation | Manipulations |
---|---|---|---|
9 | as demand, | None | Swap the known and unknown |
are SI, | byproducts to obtain query at . | ||
10 | as demand, | Pick query at | None |
are SI, | obtained | ||
from case 5 | |||
11 | as demand, | None | Swap the known and unknown |
are SI, | byproducts to obtain query at . | ||
12 | as demand, | Pick query at | None |
are SI, | obtained | ||
from case 5 | |||
13 | as demand | Pick query at | None |
are SI | obtained | ||
, | from Case 3 | ||
14 | as demand | Pick query at | None |
are SI | obtained | ||
, | from Case 4 | ||
15 | as demand | Pick query at | , , |
are SI | obtained | , , | |
, | from Case 10 | , | |
16 | as demand, | None | Swap the known and unknown |
are SI, | byproducts to obtain query at . | ||
17 | as demand, | Pick query at | None |
are SI, | obtained | ||
, | from case 5 | ||
18 | as demand, | Pick query at | , , |
are SI, | obtained | ||
, | from case 5 | ||
Query to | Query to |
---|---|
Unknown | Known |
---|---|
B | B |
B | B |
D | D |
D | D |
E | E |
E | E |
F | F |
F | F |
B+D | B+D |
B+D | B+D |
B+E | B+E |
B+E | B+E |
B+F | B+F |
B+F | B+F |
D+E | D+E |
D+E | D+E |
D+F | D+F |
D+F | D+F |
E+F | E+F |
E+F | E+F |
B+D+E | B+D+E |
B+D+E | B+D+E |
B+D+F | B+D+F |
B+D+F | B+D+F |
B+E+F | B+E+F |
B+E+F | B+E+F |
D+E+F | D+E+F |
D+E+F | D+E+F |
B+D+E+F | B+D+E+F |
B+D+E+F | B+D+E+F |
Unknown | Known | Unknown FOR B ⇌ C | Known FOR B ⇌ C |
---|---|---|---|
C | |||
C | C | C | |
C | C | C | C |
D | D | D | D |
D | D | D | D |
E | E | E | E |
E | E | E | E |
F | F | F | F |
F | F | F | F |
C+D | C+D | C+D | C+D |
C+D | C+D | C+D | C+D |
C+E | C+E | C+E | C+E |
C+E | C+E | C+E | C+E |
C+F | C+F | C+F | C+F |
C+F | C+F | C+F | C+F |
D+E | D+E | D+E | D+E |
D+E | D+E | D+E | D+E |
D+F | D+F | D+F | D+F |
D+F | D+F | D+F | D+F |
E+F | E+F | E+F | E+F |
E+F | E+F | E+F | E+F |
C+D+E | C+D+E | C+D+E | C+D+E |
C+D+E | C+D+E | C+D+E | C+D+E |
C+D+F | C+D+F | C+D+F | C+D+F |
C+D+F | C+D+F | C+D+F | C+D+F |
C+E+F | C+E+F | C+E+F | C+E+F |
C+E+F | C+E+F | C+E+F | C+E+F |
D+E+F | D+E+F | D+E+F | D+E+F |
D+E+F | D+E+F | D+E+F | D+E+F |
C+D+E+F | C+D+E+F | C+D+E+F | C+D+E+F |
C+D+E+F | C+D+E+F | C+D+E+F | C+D+E+F |
Bit Number | B⇌C | ||
---|---|---|---|
1 | A | A | C |
2 | A+B | A+C | A+C |
3 | A+D | A+D | A+D |
4 | A+E | A+E | A+E |
5 | A+F | A+F | A+F |
6 | B+C | C+B | C+B |
7 | B+D | C+D | C+D |
8 | B+E | C+E | C+E |
9 | B+F | C+F | C+F |
10 | B+G | C+G | A+G |
11 | C+G | B+G | B+G |
12 | D+G | D+G | D+G |
13 | E+G | E+G | E+G |
14 | F+G | F+G | F+G |
15 | A+C+D | A+B+D | A+B+D |
16 | A+C+E | A+B+E | A+B+E |
17 | A+C+F | A+B+F | A+B+F |
18 | A+C+G | A+B+G | A+B+G |
19 | A+D+E | A+D+E | A+D+E |
20 | A+D+F | A+D+F | A+D+F |
21 | A+E+F | A+E+F | A+E+F |
22 | B+C+D | C+B+D | C+B+D |
23 | B+C+E | C+B+E | C+B+E |
24 | B+C+F | C+B+F | C+B+F |
25 | B+D+E | C+D+E | C+D+E |
26 | B+D+F | C+D+F | C+D+F |
27 | B+E+F | C+E+F | C+E+F |
28 | C+D+E | B+D+E | B+D+E |
29 | C+D+F | B+D+F | B+D+F |
30 | C+D+G | B+D+G | B+D+G |
31 | C+E+F | B+E+F | B+E+F |
32 | C+E+G | B+E+G | B+E+G |
33 | C+F+G | B+F+G | B+F+G |
34 | D+E+F | D+E+F | D+E+F |
35 | D+E+G | D+E+G | D+E+G |
36 | D+F+G | D+F+G | D+F+G |
37 | E+F+G | E+F+G | E+F+G |
38 | A+B+C+G | A+C+B+G | A+C+B+G |
39 | A+B+D+G | A+C+D+G | A+C+D+G |
40 | A+B+E+G | A+C+E+G | A+C+E+G |
41 | A+B+F+G | A+C+F+G | A+C+F+G |
42 | C+D+E+F | B+D+E+F | B+D+E+F |
43 | A+B+C+D+E | A+C+B+D+E | A+C+B+D+E |
44 | A+B+C+D+F | A+C+B+D+F | A+C+B+D+F |
45 | A+B+C+D+G | A+C+B+D+G | A+C+B+D+G |
46 | A+B+C+E+F | A+C+B+E+F | A+C+B+E+F |
47 | A+B+C+E+G | A+C+B+E+G | A+C+B+E+G |
48 | A+B+C+F+G | A+C+B+F+G | A+C+B+F+G |
49 | A+B+D+E+F | A+C+D+E+F | A+C+D+E+F |
50 | A+B+D+E+G | A+C+D+E+G | A+C+D+E+G |
52 | A+B+E+F+G | A+C+E+F+G | A+C+E+F+G |
53 | A+C+D+E+G | A+B+D+E+G | A+B+D+E+G |
54 | A+C+D+F+G | A+B+D+F+G | A+B+D+F+G |
55 | A+C+E+F+G | A+B+E+F+G | A+B+E+F+G |
56 | A+D+E+F+G | A+D+E+F+G | A+D+E+F+G |
57 | B+C+D+E+G | C+B+D+E+G | C+B+D+E+G |
58 | B+C+D+F+G | C+B+D+F+G | C+B+D+F+G |
59 | B+C+E+F+G | C+B+E+F+G | C+B+E+F+G |
60 | B+D+E+F+G | C+D+E+F+G | C+D+E+F+G |
61 | A+B+C+D+E+F | A+C+B+D+E+F | A+C+B+D+E+F |
62 | A+C+D+E+F+G | A+B+D+E+F+G | A+B+D+E+F+G |
63 | B+C+D+E+F+G | C+B+D+E+F+G | C+B+D+E+F+G |
Unknown | Known | Unknown FOR A ⇌ B ⇌ | Known FOR A ⇌ B ⇌ |
---|---|---|---|
A | |||
A | A | A | |
A | A | A | A |
C | C | C | C |
C | C | C | C |
E | E | E | E |
E | E | E | E |
F | F | F | F |
F | F | F | F |
A+C | A+C | ||
A+C | A+C | A+C | |
A+C | A+C | A+C | |
A+E | A+E | A+E | A+E |
A+E | A+E | A+E | A+E |
A+F | A+F | A+F | A+F |
A+F | A+F | A+F | A+F |
C+E | C+E | C+E | C+E |
C+E | C+E | C+E | C+E |
C+F | C+F | C+F | C+F |
C+F | C+F | C+F | C+F |
E+F | E+F | E+F | E+F |
E+F | E+F | E+F | E+F |
A+C+E | A+C+E | A+C+E | A+C+E |
A+C+E | A+C+E | A+C+E | A+C+E |
A+C+F | A+C+F | A+C+F | A+C+F |
A+C+F | A+C+F | A+C+F | A+C+F |
A+E+F | A+E+F | A+E+F | A+E+F |
A+E+F | A+E+F | A+E+F | A+E+F |
C+E+F | C+E+F | C+E+F | C+E+F |
C+E+F | C+E+F | C+E+F | C+E+F |
A+C+E+F | A+C+E+F | A+C+E+F | A+C+E+F |
A+C+E+F | A+C+E+F | A+C+E+F | A+C+E+F |
Bit Number | A⇌B, C⇌D | ||
---|---|---|---|
1 | A | B | G |
2 | A+B | B+A | B+A |
3 | A+D | B+C | B+C |
4 | A+E | B+E | B+E |
5 | A+F | B+F | B+F |
6 | B+C | A+D | A+D |
7 | B+D | A+C | A+C |
8 | B+E | A+E | A+E |
9 | B+F | A+F | A+F |
10 | B+G | A+G | A+G |
11 | C+G | D+G | D+G |
12 | D+G | C+G | B+G |
14 | F+G | F+G | F+G |
15 | A+C+D | B+D+C | B+D+C |
16 | A+C+E | B+D+E | B+D+E |
17 | A+C+F | B+D+F | B+D+F |
18 | A+C+G | B+D+G | B+D+G |
19 | A+D+E | B+C+E | B+C+E |
20 | A+D+F | B+C+F | B+C+F |
21 | A+E+F | B+E+F | B+E+F |
22 | B+C+D | A+D+C | A+D+C |
23 | B+C+E | A+D+E | A+D+E |
24 | B+C+F | A+D+F | A+D+F |
25 | B+D+E | A+C+E | A+C+E |
26 | B+D+F | A+C+F | A+C+F |
27 | B+E+F | A+E+F | A+E+F |
28 | C+D+E | D+C+E | D+C+E |
29 | C+D+F | D+C+F | D+C+F |
30 | C+D+G | D+C+G | D+C+G |
31 | C+E+F | D+E+F | D+E+F |
32 | C+E+G | D+E+G | D+E+G |
33 | C+F+G | D+F+G | D+F+G |
34 | D+E+F | C+E+F | C+E+F |
35 | D+E+G | C+E+G | C+E+G |
36 | D+F+G | C+F+G | C+F+G |
37 | E+F+G | E+F+G | E+F+G |
38 | A+B+C+G | B+A+D+G | B+A+D+C |
39 | A+B+D+G | B+A+C+G | B+A+C+G |
40 | A+B+E+G | B+A+E+G | B+A+E+G |
41 | A+B+F+G | B+A+F+G | B+A+F+G |
42 | C+D+E+F | D+C+E+F | D+C+E+F |
43 | A+B+C+D+E | B+A+D+C+E | B+A+D+C+E |
44 | A+B+C+D+F | B+A+D+C+F | B+A+D+C+F |
45 | A+B+C+D+G | B+A+D+C+G | B+A+D+C+G |
46 | A+B+C+E+F | B+A+D+E+F | B+A+D+E+F |
47 | A+B+C+E+G | B+A+D+E+G | B+A+D+E+G |
48 | A+B+C+F+G | B+A+D+F+G | B+A+D+F+G |
49 | A+B+D+E+F | B+A+C+E+F | B+A+C+E+F |
50 | A+B+D+E+G | B+A+C+E+G | B+A+C+E+G |
51 | A+B+D+F+G | B+A+C+F+G | B+A+C+F+G |
52 | A+B+E+F+G | B+A+E+F+G | B+A+E+F+G |
53 | A+C+D+E+G | B+D+C+E+G | B+D+C+E+G |
54 | A+C+D+F+G | B+D+C+F+G | B+D+C+F+G |
55 | A+C+E+F+G | B+D+E+F+G | B+D+E+F+G |
56 | A+D+E+F+G | B+C+E+F+G | B+C+E+F+G |
57 | B+C+D+E+G | A+D+C+E+G | A+D+C+E+G |
58 | B+C+D+F+G | A+D+C+F+G | A+D+C+F+G |
59 | B+C+E+F+G | A+D+E+F+G | A+D+E+F+G |
60 | B+D+E+F+G | A+C+E+F+G | A+C+E+F+G |
61 | A+B+C+D+E+F | B+A+D+C+E+F | B+A+D+C+E+F |
62 | A+C+D+E+F+G | B+D+C+E+F+G | B+D+C+E+F+G |
63 | B+C+D+E+F+G | A+D+C+E+F+G | A+D+C+E+F+G |
Unknown | Known |
---|---|
A | A |
B | A |
E | A |
E | B |
E | B |
F | B |
F | E |
F | F |
A+B | A+B |
A+B | A+E |
A+B | A+E |
A+E | A+E |
A+F | A+F |
B+E | A+F |
B+F | A+F |
E+F | B+E |
A+B+E | B+E |
A+B+E | B+E |
A+B+E | B+F |
A+B+F | B+F |
A+B+F | B+F |
A+B+F | E+F |
A+E+F | E+F |
A+E+F | E+F |
A+E+F | A+B+E |
B+E+F | A+B+F |
B+E+F | A+E+F |
B+E+F | B+E+F |
A+B+E+F | A+B+E+F |
A+B+E+F | |
A+B+E+F |
Bit Number | A⇌D | ||
---|---|---|---|
1 | A | D | G |
2 | A+B | D+B | D+C |
3 | A+D | D+A | D+A |
4 | A+E | D+E | D+E |
5 | A+F | D+F | D+F |
6 | B+C | B+C | E+C |
7 | B+D | B+A | B+A |
8 | B+E | B+E | B+E |
9 | B+F | B+F | E+F |
10 | B+G | B+G | D+G |
11 | C+G | C+G | C+G |
12 | D+G | A+G | A+G |
13 | E+G | E+G | E+A |
14 | F+G | F+G | F+C |
15 | A+C+D | D+C+A | D+C+A |
16 | A+C+E | D+C+E | D+C+E |
17 | A+C+F | D+C+F | D+C+F |
18 | A+C+G | D+C+G | D+C+G |
19 | A+D+E | D+A+E | D+A+B |
20 | A+D+F | D+A+F | D+A+F |
21 | A+E+F | D+E+F | D+G+F |
22 | B+C+D | B+C+A | B+C+A |
23 | B+C+E | B+C+E | B+C+E |
24 | B+C+F | B+C+F | B+C+F |
25 | B+D+E | B+A+E | B+A+E |
26 | B+D+F | B+D+F | B+D+F |
27 | B+E+F | B+E+F | B+E+F |
28 | C+D+E | C+A+E | B+G+E |
29 | C+D+F | C+A+F | B+D+G |
30 | C+D+G | C+A+G | C+B+G |
31 | C+E+F | C+E+F | C+B+D |
32 | C+E+G | C+E+G | C+E+G |
33 | C+F+G | C+F+G | B+F+G |
34 | D+E+F | A+E+F | A+E+F |
35 | D+E+G | A+E+G | A+E+G |
36 | D+F+G | A+F+G | A+F+G |
37 | E+F+G | E+F+G | E+F+G |
38 | A+B+C+G | D+B+C+G | A+E+C+G |
39 | A+B+D+G | D+B+A+G | A+B+F+D |
40 | A+B+E+G | D+B+E+G | D+B+E+F |
41 | A+B+F+G | D+B+F+G | D+A+F+G |
42 | C+D+E+F | C+A+E+F | C+A+E+F |
43 | A+B+C+D+E | D+B+C+A+E | D+B+C+A+E |
44 | A+B+C+D+F | D+B+C+A+F | D+B+C+A+F |
45 | A+B+C+D+G | D+B+C+A+G | D+B+C+A+G |
46 | A+B+C+E+F | D+B+C+E+F | D+B+C+E+F |
47 | A+B+C+E+G | D+B+C+E+G | D+B+C+E+G |
48 | A+B+C+F+G | D+B+C+F+G | D+B+C+F+G |
49 | A+B+D+E+F | D+B+A+E+F | D+C+A+E+F |
51 | A+B+D+F+G | D+B+A+F+G | D+B+A+F+G |
52 | A+B+E+F+G | D+B+E+F+G | D+B+E+F+G |
53 | A+C+D+E+G | D+C+A+E+G | D+C+A+E+G |
54 | A+C+D+F+G | D+C+A+F+G | D+C+A+F+G |
55 | A+C+E+F+G | D+C+E+F+G | D+C+E+F+G |
56 | A+D+E+F+G | D+A+E+F+G | C+A+E+F+G |
57 | B+C+D+E+G | B+C+A+E+G | B+C+A+E+G |
58 | B+C+D+F+G | B+C+A+F+G | B+C+A+F+G |
59 | B+C+E+F+G | B+C+E+F+G | B+C+E+F+G |
60 | B+D+E+F+G | B+A+E+F+G | B+A+E+F+G |
61 | A+B+C+D+E+F | D+B+C+A+E+F | D+B+C+A+E+F |
62 | A+C+D+E+F+G | D+C+A+E+F+G | D+B+A+E+F+G |
63 | B+C+D+E+F+G | B+C+A+E+F+G | B+C+A+E+F+G |
Unknown | Known |
---|---|
A | A |
A | A |
B | A |
B | A |
B | B |
D | B |
D | B |
D | G |
G | G |
G | G |
G | D |
A+G | A+B |
A+G | B+G |
B+G | D+G |
A+B | D+G |
D+G | D+G |
A+D | A+D |
B+D | A+D |
A+B+G | A+D |
A+B+G | B+D |
A+B+G | B+D |
A+D+G | B+D |
A+D+G | A+B+G |
A+D+G | A+B+G |
B+D+G | A+B+G |
B+D+G | A+D+G |
B+D+G | B+D+G |
A+B+D | A+B+D |
A+B+D | A+B+D+G |
A+B+D | A+B+D+G |
A+B+D+G | A+B+D+G |
Bit Number | B⇌C | ||
---|---|---|---|
1 | A | C | C |
2 | A+B | F+E | F+G |
3 | A+D | F+A | F+A |
4 | A+E | F+B | F+B |
5 | A+F | F+D | F+D |
6 | B+C | B+E | B+E |
7 | B+D | G+A | G+E |
8 | B+E | G+B | C+B |
9 | B+F | B+D | B+D |
10 | B+G | F+C | F+C |
11 | C+G | E+C | E+C |
12 | D+G | A+C | A+C |
13 | E+G | E+A | E+A |
14 | F+G | D+E | D+E |
15 | A+C+D | E+B+A | E+B+A |
16 | A+C+E | F+E+B | F+E+B |
17 | A+C+F | F+E+D | F+E+D |
18 | A+C+G | F+E+C | F+E+C |
19 | A+D+E | F+A+G | F+A+G |
20 | A+D+F | F+A+D | F+A+D |
21 | A+E+F | F+C+D | F+C+D |
22 | B+C+D | G+E+A | G+E+A |
23 | B+C+E | G+E+B | G+E+B |
24 | B+C+F | G+E+D | G+E+D |
25 | B+D+E | G+A+B | G+A+B |
26 | B+D+F | G+F+D | G+F+D |
27 | B+E+F | G+B+D | G+B+D |
28 | C+D+E | G+C+B | F+C+B |
29 | C+D+F | G+F+C | G+F+C |
30 | C+D+G | E+G+C | E+G+C |
31 | C+E+F | E+G+F | E+G+F |
32 | C+E+G | E+B+C | E+B+C |
33 | C+F+G | G+D+C | G+D+C |
34 | D+E+F | A+B+D | A+B+D |
35 | D+E+G | A+B+C | A+B+C |
37 | E+F+G | B+D+C | B+D+C |
38 | A+B+C+G | B+G+F+C | A+D+E+C |
39 | A+B+D+G | A+G+D+F | A+G+D+F |
40 | A+B+E+G | F+G+B+D | F+G+B+D |
41 | A+B+F+G | F+A+D+C | F+A+B+G |
42 | C+D+E+F | E+A+B+D | E+A+B+D |
43 | A+B+C+D+E | F+G+E+A+B | F+G+E+A+B |
44 | A+B+C+D+F | F+G+E+A+D | F+G+E+A+D |
45 | A+B+C+D+G | F+G+E+A+C | F+G+E+A+C |
46 | A+B+C+E+F | F+G+E+B+D | F+G+E+B+D |
47 | A+B+C+E+G | F+G+E+B+C | F+G+E+B+C |
48 | A+B+C+F+G | F+G+E+D+C | F+G+E+D+C |
49 | A+B+D+E+F | F+E+A+B+D | F+E+A+B+D |
50 | A+B+D+E+G | F+G+A+B+C | F+G+A+B+C |
51 | A+B+D+F+G | F+G+A+D+C | F+G+A+D+C |
52 | A+B+E+F+G | F+G+B+D+C | F+G+B+D+C |
53 | A+C+D+E+G | F+E+A+B+C | A+G+B+D+F |
54 | A+C+D+F+G | F+E+A+D+C | F+E+A+D+C |
55 | A+C+E+F+G | F+E+B+D+C | F+E+B+D+C |
56 | A+D+E+F+G | E+A+B+D+C | E+A+B+D+C |
57 | B+C+D+E+G | G+E+A+B+C | G+E+A+B+C |
58 | B+C+D+F+G | G+E+A+D+C | G+E+A+D+C |
59 | B+C+E+F+G | G+E+B+D+C | G+E+B+D+C |
60 | B+D+E+F+G | G+A+B+D+C | G+A+B+D+C |
61 | A+B+C+D+E+F | F+G+E+A+B+D | A+B+G+C+E+F |
62 | A+C+D+E+F+G | F+G+A+B+D+C | F+G+A+B+D+C |
63 | B+C+D+E+F+G | G+E+A+B+D+C | G+E+A+B+D+C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan K. H., M.; Harshan, J. On the Existence of XOR-Based Codes for Private Information Retrieval with Private Side Information. Entropy 2021, 23, 1287. https://doi.org/10.3390/e23101287
Krishnan K. H. M, Harshan J. On the Existence of XOR-Based Codes for Private Information Retrieval with Private Side Information. Entropy. 2021; 23(10):1287. https://doi.org/10.3390/e23101287
Chicago/Turabian StyleKrishnan K. H., Murali, and Jagadeesh Harshan. 2021. "On the Existence of XOR-Based Codes for Private Information Retrieval with Private Side Information" Entropy 23, no. 10: 1287. https://doi.org/10.3390/e23101287
APA StyleKrishnan K. H., M., & Harshan, J. (2021). On the Existence of XOR-Based Codes for Private Information Retrieval with Private Side Information. Entropy, 23(10), 1287. https://doi.org/10.3390/e23101287