
entropy

Article

An Improved Approach towards Multi-Agent Pursuit–Evasion
Game Decision-Making Using Deep Reinforcement Learning

Kaifang Wan * , Dingwei Wu , Yiwei Zhai, Bo Li , Xiaoguang Gao and Zijian Hu

����������
�������

Citation: Wan, K.; Wu, D.; Zhai, Y.;

Li, B.; Gao, X.; Hu, Z. An Improved

Approach towards Multi-Agent

Pursuit–Evasion Game

Decision-Making Using Deep

Reinforcement Learning. Entropy

2021, 23, 1433. https://doi.org/

10.3390/e23111433

Academic Editors: Kelvin Wong and

Dhanjoo N. Ghista

Received: 22 September 2021

Accepted: 25 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
wudingwei@mail.nwpu.edu.cn (D.W.); zyw@mail.nwpu.edu.cn (Y.Z.); libo803@nwpu.edu.cn (B.L.);
cxg2012@nwpu.edu.cn (X.G.); huzijian@mail.nwpu.edu.cn (Z.H.)
* Correspondence: wankaifang@nwpu.edu.cn

Abstract: A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent
systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL)
was developed in this paper to address the problem of environment sensing and decision-making
in pursuit–evasion games. A control-oriented framework developed from the DRL-based multi-
agent deep deterministic policy gradient (MADDPG) algorithm was built to implement multi-agent
cooperative decision-making to overcome the limitation of the tedious state variables required for
the traditionally complicated modeling process. To address the effects of errors between a model and
a real scenario, this paper introduces adversarial disturbances. It also proposes a novel adversarial
attack trick and adversarial learning MADDPG (A2-MADDPG) algorithm. By introducing an
adversarial attack trick for the agents themselves, uncertainties of the real world are modeled, thereby
optimizing robust training. During the training process, adversarial learning was incorporated into
our algorithm to preprocess the actions of multiple agents, which enabled them to properly respond
to uncertain dynamic changes in MASs. Experimental results verified that the proposed approach
provides superior performance and effectiveness for pursuers and evaders, and both can learn the
corresponding confrontational strategy during training.

Keywords: pursuit–evasion; multi-agent; deep reinforcement learning; decision-making; adversarial
learning; MADDPG

1. Introduction

With the development of the three generations of artificial intelligence [1], the technol-
ogy of multi-agent systems (MASs) has been widely used in many areas of society, such as
multi-agent motion planning, complex IT systems, computer communication technology,
and so on [2–5]. Pursuit–evasion games have been widely investigated in MASs during
recent years. They have been extended to various fields, to include maneuvering target
tracking, surveillance early warning, anti-intrusion protection, and intelligent transporta-
tion [6,7]. The goal of these studies is to provide good strategies for pursuers and evaders.
For pursuers, their goal is to round up the evaders as much as possible through cooperative
decision-making. For evaders, they need to choose the best strategy based on the actions of
pursuers to design an escape path to prevent being captured [8].

To address this problem, a series of research activities on agent-based pursuit–evasion
games has been carried out in the differential gaming field. Isaacs [9] proposed a one-to-one
robot hunting problem where partial differential equations describing the pursuer and
the evader were created and solved analytically. Furthermore, a generalized maximum–
minimum solving method of the Hamilton Jacobi equation for pursuit–evasion games was
provided by Krasovskii [10]. Because in complex control problems, directly solving differ-
ential equations is very complicated and consumes many computing resources, researchers
proposed some intelligent optimization algorithms that provide new ideas for solving the
differential equation problems associated with pursuit–evasion games. Chen et al. [11]

Entropy 2021, 23, 1433. https://doi.org/10.3390/e23111433 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1359-7112
https://orcid.org/0000-0001-6763-4372
https://orcid.org/0000-0002-1415-4444
https://orcid.org/0000-0001-8167-8566
https://doi.org/10.3390/e23111433
https://doi.org/10.3390/e23111433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111433
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111433?type=check_update&version=2


Entropy 2021, 23, 1433 2 of 22

simulated fish foraging behavior and proposed a cooperative pursuit strategy that studied
pursuit and evasion when trackers have a constrained turning rate. Wang et al. [12] intro-
duced an alliance generation algorithm that generates a synergistic strategy based on the
emotional factors of multirobot systems. This ensured that a team’s agents worked towards
a common goal. However, there are many constraints and state variables involved in the
complicated control process governing these issues, which make the solution intricate espe-
cially in a complex and dynamic scenario with multi-agent confrontation. Therefore, more
intelligent algorithms are needed to effectively solve the problem of pursuit–evasion games.

By combining deep learning’s ability to perceive highly dimensional data [13] and
reinforcement learning’s decision-making ability [14], deep reinforcement learning (DRL)
provides a new optimization scheme for intelligent decision-making or control. Because
techniques based on deep reinforcement learning do not require the establishment of a
differential game model and agents can learn the optimal confrontation strategy only
through interaction with the environment [15], some scholars introduced deep reinforce-
ment learning in pursuit–evasion games and acquired the Nash equilibrium of the problem.
Xu et al. [16] established a multi-agent reinforcement learning model for UAV pursuit–
evasion in which relative motion state equations were employed. As a result, the pursuit–
evasion issue was converted into a zero-sum game addressed through minimax-Q learning.
In predatory games, Park et al. [17] set up a co-evolution framework for predator and
prey to allow multiple agents to learn good policies by deep reinforcement learning.
Gu et al. [18] presented an attention-based fault-tolerant model, which could also be ap-
plied to pursuit–evasion games, and the key idea was to utilize the multihead attention
mechanism to select the correct and useful information for estimating the critics. To solve
the complicated training problems caused by discrete action sets introduced by deep Q net-
works [19], Liu et al. [20] transformed a space rendezvous optimization problem between
a space vehicle and noncooperative target into a pursuit–evasion differential game. They
introduced a branching architecture with a group of parallel neural networks and shared de-
cision modules. To overcome the unstable recognition ability of pursuers, Qadir et al. [21]
proposed a novel approach for self-organizing feature maps and deep reinforcement learn-
ing based on the agent group role membership function model. Experiments verified
the effectiveness of this method for facilitating the capture of evaders by mobile agents.
Singh et al. [22] built on the actor–critic model-free multi-agent deep deterministic policy
gradient algorithm to operate over the continuous spaces of pursuit–evasion games. In
their approach, the evader’s strategy is not learned. It is based on Voronoi regions that
pursuers try to minimize and evaders try to maximize.

Although they represent progress, previous studies on DRL-based pursuit–evasion
games are still in their early stages. In these studies, pursuing platforms are assumed
to be equipped with error-free identification and measurement systems that allow them
to acquire precise information about the position, velocity, and other characteristics of
evaders and cooperators [6,23]. However, sensors and other equipment configured in an
unmanned system encounter positioning, sensing, and actuator error in reality [24,25].
These errors cause the environment to become uncertain, thereby affecting the strategies of
the pursuers and evaders and making their performance worse. Therefore, this research is
about designing a robust algorithm for MASs to effectively mitigate these errors and that
would be significant for application research in real-world multi-agent decision-making.

This paper introduces a novel multi-agent algorithm to address the decision-making
problem of pursuit–evasion games. The algorithm can solve pursuit–evasion games in
complex virtual and real environments, where there are static or moving obstacles and
pursuers and evaders need to avoid them while making decisions. Specifically, we make
the following contributions in this paper:

(1) We develop an actor–critic-based motion control framework based on the multi-
agent deep deterministic policy gradient (MADDPG) [26], which can take the state and
behavior of other partners into account and is used to provide collaborative decision-
making capabilities for each agent in the MAS;



Entropy 2021, 23, 1433 3 of 22

(2) We propose an advanced algorithm called A2-MADDPG, which uses two skills
to make the training strategy robust. The first is adversarial attack tricks for agents. It
proposes to sample the status after stochastic Gaussian noise is applied, and this approach
can train a robust agent to cope with measurement errors in the real world. The second is
the optimized adversarial learning technique [27]. It is introduced to improve agent stability
and to assist in adapting to noise produced by interactions between multiple agents;

(3) We verified the effectiveness and robustness of the algorithm in simulation ex-
periments. We compared the performance of the proposed method with two common
and advanced algorithms, namely the MADDPG and the independent multiagent deep
deterministic policy gradient (IMDDPG), where the IMDDPG is a natural extension of the
DDPG [28] in the field of multi-agents. Through a series of experiments, we show that the
proposed method presents excellent performance for both pursuers and evaders compared
with the MADDPG and IMDDPG in the case of the same hyperparameter settings and
simulation environment parameter settings, and it can help them both develop robust
motion strategies.

The rest of the paper is structured as follows: Section 2 provides background informa-
tion about multi-agent pursuit–evasion games and describes related theoretical approaches.
Section 3 introduces a framework for collaborative pursuit missions and an improved A2-
MADDPG algorithm where an adversarial attack trick and an adversarial learning-based
optimization method are combined with the MADDPG. Section 4 verifies the robustness
and high performance of the algorithm through simulation experiments. Section 5 provides
a conclusion and envisages future work.

2. Background

In this section, the kinematic and observation model of agents executing a pursuit–
evasion task is presented. In addition, the essential theoretical background of the DRL-
based MADDPG algorithm and adversarial learning is introduced.

2.1. Problem Definition

The multi-agent pursuit–evasion game problem can be described as follows: there are
pursuers (red agents) and evaders (blue agents), as shown in Figure 1. Both agent types
have different tasks based on their maneuverability. Each agent can perceive the relative
position of the threat zone (gray circle) using radar and sensors. The velocity and position
of each agent are provided by its navigation equipment, and they share information by
transmitting through a signaling connection. Pursuers are equipped with an attack or
shielding interference device (the red circle represents the attack range of the pursuit),
and their mission is considered successful when they suppress an evader by approaching
it. Evaders must stay away from pursuers. Neither pursuers nor evaders can exceed
their boundaries.

2.1.1. Comparisons of Operators

A general decision-making program for pursuit–evasion gaming is primarily used
to determine the communication and cooperation between platforms and achieve target
pursuit. This is performed without fully considering the maneuvering characteristics of
the platforms. Both agents in this paper are mobile UAVs flying at a fixed altitude with
nonholonomic constraints [29], as portrayed in Figure 2. The status update of each UAV
can be described as: 

pt =

[
xt−1 + vt

x · ∆t
yt−1 + vt

y · ∆t

]
vt =

[
vt−1

x + at
x · ∆t

vt−1
y + at

y · ∆t

]
ϕt = a tan

(
vt

y

vt
x

) (1)



Entropy 2021, 23, 1433 4 of 22

where pt, vt, and ϕt denote the position, velocity, and yaw angle parameters. The super-
script t represents time t; ∆t is the time interval; a is UAV’s acceleration. Considering power
systems and mechanical limitations, the maximal velocity and acceleration are assumed to
be vmax and amax, which are introduced in the following simulation.

Figure 1. The scenario of multi-agent pursuit–evasion games.

Figure 2. Motion analysis of the UAV.

2.1.2. Observation Model

The observation model of the agent was presented to provide the agent with the
ability to sense the environment [30]. In this multi-agent pursuit–evasion task, (xi

a, yi
a) is

the position of each agent in the pursuit formation, and both (xj
e, yj

e) and (xk
o, yk

o) represent
the position of the center point of the evader and the threatened area, respectively. The
number of pursuers, evaders, and obstacles in the environment is defined as num_P,
num_E, and num_o, respectively. Since pursuers and evaders need to consider avoiding
obstacles to prevent being hit when making decisions, these obstacles make it more difficult
to solve the problem of pursuit–evasion. The formation of all pursuers is denoted as A. An
agent i on the pursuers’ team can use radar detection and communication transmission to
obtain its own local observations from the environment as follows:



Entropy 2021, 23, 1433 5 of 22



Oi
s =

[
vi

s,pi
s
]
=
[
vi

sx, vi
sy, xi

s, yi
s

]
Oi

c =
[

pl
s

]
l=1,...,i−1,i+1,num_P

=
[

xl
c, yl

c

]
l=1,...,i−1,i+1,num_P

Oi
e =

[
pj

s

]
j=1,...,num_E

=
[

xj
e, yj

e

]
j=1,...,num_E

Oi
o =

[
pk

o

]
k=1,...,num_o

=
[

xk
o, yk

o

]
j=k,...,num_o

(2)

Here, vsxi, vsyi, xi
s, and yi

s represent the self-observed velocity and position of the
agent on the x and y axis. Oi

c indicates the observed location of other pursuers in the
formation, and l is the sequence number of other pursuers on the team. Oi

e denotes the
observed location of an evader, and j represents its sequence number. Oi

o represents
information observed about an obstacle, and k is the obstacle number. Considering a real
mission scenario, a set of range sensors is employed to help the unmanned system detect
possible threats from obstacles ahead of it in the range. As shown in Figure 3, the 90◦ angle
containing the blue arc within the sensor range is the agent’s threat detection area. An
agent’s observations about an obstacle are divided into five parts:

Oi
o = [d1, d2, d3, d4, d5] (3)

where d1−5 denotes the five sensor indications. We set d1−5 = L when a threat is not
detected. Based on the comprehensive observation information above, an agent can
perceive and assess the situation.

Figure 3. Unmanned system obstacle threat detection based on range sensors.

2.2. Theoretical Context

Deep reinforcement learning is a representative intelligent machine learning algorithm,
and adversarial learning can increase the stability and robustness of the model trained
by reinforcement learning [31]. They provide new research ideas for multi-agent pursuit–
evasion decision-making. In this section, adversarial learning, the DRL-based DDPG
algorithm, and the MADDPG algorithm are introduced.

2.2.1. Adversarial Learning

Adversarial learning is a technique of defending against adversarial samples [32].
This approach attempts to improve the accuracy of neural network models by training
adversarial samples and normal samples together and reducing the interference of the
adversarial samples. The robustness and generalization ability of the resulting network are
improved. Adversarial training can be expressed as follows:

min
θ

max
D(x,x′)<η

Ladv
(

x′, y; θ
)

(4)

where x, x′ denote the original sample and adversarial sample, respectively, y is the label
value, and θ is the weight of the networks. D(x, x′) represents the distance measurement



Entropy 2021, 23, 1433 6 of 22

between the original sample and the adversarial sample, and Ladv(x′, y; θ) represents the
adversarial loss function. In the min–max form, the internal maximization optimization
problem is to find the optimal adversarial sample, and the external minimization opti-
mization problem is to minimize the loss function. The learning process of confrontation
training is depicted in Figure 4.

The fast gradient sign method (FGSM) efficiently generates adversarial samples [33].
The FGSM uses a model’s objective loss function to determine the input vector needed to
calculate its counter disturbance, which it adds to the corresponding input. This generates
counter samples that correspond to the original samples. Suppose that in a classification
problem, the output label of the model is class = {0, 1}. After adversarial training, the
model will have higher prediction confidence, that is the model will output the correct
sample label even if a small adversarial disturbance is added to the sample. This process
can be defined as:

x∗ = x + ηadv (5)

class(x∗) = class(x) (6)

where ηadv represents the sample perturbation added and x∗ represents adversarial sam-
ples after adding perturbation. Each time the model is trained, the FGSM performs an
optimization along the gradient direction of the counter loss function Ladv(x′, y; θ), and
counter samples are obtained. The generation process of sample disturbance ηadv can be
expressed as:

ηadv = −ε
g
‖g‖2

(7)

g = ∇xLadv
(

x′, y; θ
)

(8)

where ε denotes the magnitude of disturbance and g is the inverse gradient of the input
vector. Moreover, the FGSM-based target loss function can be defined as:

J(x, y; θ) = cJadv(x∗, y; θ) + (1− c)Jraw(x, y; θ) (9)

where c is an equilibrium coefficient that is used to balance both the original and attack
samples. As a result, the adversarial examples used in the adversarial learning method can
improve the generalization ability of a model by adding a regular term to the loss function.
The goal of adversarial training is to minimize the loss function in the worst case.

Figure 4. Schematic of adversarial learning.



Entropy 2021, 23, 1433 7 of 22

2.2.2. DRL-Based DDPG Algorithm

During the deep reinforcement learning process, an agent completes its interaction
with the environment by perceiving the environment and taking appropriate actions. It
performs adaptive iterative optimization according to a reward signal, as shown in Figure 5.
An effective approach to describe the DRL-based training process is the Markov decision
process (MDP) [34], which is represented by a five-tuple 〈S, A, R, P, γ〉. At each time step,
an agent interacts with the environment and makes observations, which comprise the
agent’s state s ∈ S. Agents then perform the action a ∈ A to obtain reward R from s
to a new state s′. P denotes the environmental model, and it represents the probability
distribution of transitioning to a new state. γ is a discount factor used to balance the impact
of instantaneous returns and long-term returns on cumulative rewards.

Figure 5. The basic process of deep reinforcement learning.

The deep deterministic policy gradient is an algorithm that combines policy-based
actor neural networks with value-based critic neural networks that can be employed for
continuous control [28]. The actor online network µ reacts according to the agent’s current
observation state st and generates a reasonable action at = µ(st). The critic online network
Q is responsible for evaluating the current action and outputting the action value function
Q(st, at; θQ). θµ and θQ denote the corresponding parameters of an actor online network
and a critic online network. In addition, actor target networks µ′ and critic target networks
Q′ are constructed for future updates.

After each decision, a training sample [st, at, rt, s′t] for time t is collected in the experi-
ence buffer M, which is applied to iteratively improve the agent’s strategies, that is in the
update optimization phase, a stochastic mini-batch of N arrays of samples of the previous
format is extracted for every training time. The critic online network is updated according
to the TD-error, which is defined as:

L
(

θQ
)
= Es,a,r, s′

[(
y−Qµ

(
s, a; θQ

))2
]

(10)

y = r + γQµ′
(

s′, a′; θQ′
)∣∣∣

a′=µ′(s)
(11)

Here, L
(
θQ) is the loss function of critic networks, y is the target value Q-target, and

i represents the sequence of extracted samples. Additionally, the actor online network
would be trained by minimizing the following policy gradient:

∇θµ J = Es,a∼M

[
∇θµ µ(a|s )∇aQµ

(
s, a; θQ

)
|a = µ(s)

]
(12)

At regular intervals, the soft update approach and update factor τ are used to copy
the network parameters to the target network, which can be expressed as:



Entropy 2021, 23, 1433 8 of 22

{
θQ′ = τθQ + (1− τ)θQ′

θµ′ = τθµ + (1− τ)θµ′ (13)

2.2.3. Multi-Agent Deep Deterministic Policy Gradient Algorithm

The MADDPG algorithm is an effective DRL algorithm derived from the DDPG algo-
rithm and can be used to address problems with multi-agent strategies. In the MADDPG,
each agent has its own actor–critic framework [35]. For a multi-agent system, the obser-
vation set consisting of n agents is x = (s1, s2, . . . , sn), the action set is a = (a1, a2, . . . , an),
and the reward set is r = (r1, r2, . . . , rn). For each agent, its observations and actions are
denoted as si and ai = µi(si|θ

µ
i ) at a point in time. The agent’s actor online network outputs

a policy according to the agent’s own observations, and its critic online network estimates
a centralized action value function Qµ

i (x, a1, a2, . . . , an). This function is based on the status
and actions of all agents, as depicted in Figure 6.

During each interaction within the environment, an agent will store relevant experi-
ences in the experience buffer. Unlike the DDPG, the N comprehensive learning samples
[x, a1, a2, . . . , an, r1, r2, . . . , rn, x′] in the MADDPG are drawn and spliced from the experi-
ence buffer of all agents each time one is trained. For agent i, the critic online network is
updated according to:

L(θi) = Ex,a,r,x′

[(
yi −Qµ

i

(
x, a1, . . . , an; θQ

i

))2
]

(14)

yi = ri + γQµ′

i

(
x′, a′1, . . . , a′n; θQ′

i

)∣∣∣ai=µi(si)
(15)

Meanwhile, by minimizing the policy gradient, its actor online network can be opti-
mized. This is expressed as:

∇θ
µ
i

J = Ex,a∼D
[
∇θ

µ
i
µi(ai|si )∇ai Q

µ
i

(
x, a1, . . . , an; θQ

i

)∣∣∣ai=µi(si)

]
(16)

The MADDPG algorithm also borrows the soft update technique described in Equation (13)
from DDPG.

(a)

(b)

Figure 6. Critic and actor network structures of the MADDPG algorithm. (a) Actor and (b) critic
network structures.



Entropy 2021, 23, 1433 9 of 22

Although agents trained with the MADDPG can achieve good results in some simple
environments, the multi-agent system is very sensitive to changes in the training envi-
ronment, and the convergence strategies obtained by agents are likely to fall into a local
optimum, that is when the strategies of other agents change, the agent cannot produce
the optimal action strategy. In order to improve the robustness of the strategy, this paper
combines the MADDPG and adversarial learning to propose the A2-MADDPG algorithm,
which is introduced in Section 3.

3. Proposed Method

This section proposes an approach for realizing control for pursuers and evaders in
a game that contains an uncertain environment. There are obstacles in the environment
that both pursuers and evaders need to avoid, and when acquiring specific values in the
state space, sensors and other devices encounter positioning, sensing, and actuator errors,
resulting in inaccurate values, so the environment is uncertain for pursuers and evaders. An
MADDPG-based control framework for multi-agent systems is presented, and it includes
action, state, space, and specific reward functions. Furthermore, an improved approach
called the A2-MADDPG is described. The A2-MADDPG incorporates an adversarial attack
trick and adversarial learning into the MADDPG algorithm.

3.1. MADDPG-Based Framework
3.1.1. Actor Space

When addressing DRL-based multi-agent decision-making, state and action spaces
must be defined based on the MDP framework. To ensure that mission control is more
similar to the real world, UAVs use dual-channel control, that is the force on a UAV is
controlled directly. The effects of this force are then applied to the UAV’s movement
attitude and flight velocity. The action output Ai of a dual-channel thrust UAV thrust can
be expressed as:

Ai = [Fi
x, Fi

y] (17)

where the superscript i represents the sequence number of the UAV in an MAS. Fi
x, Fi

y
represent the force on the x and y axes that the UAV received. Therefore, the acceleration
can be given by:

ai =

[
ai

x
ai

y

]
=

[
Fi

x
Fi

y

]
/mu (18)

where mu represents the mass of the UAV. The UAV’s attitude can then be adjusted when
combined with Equation (1).

3.1.2. State Space

The state space of a UAV provides useful information based on an agent’s observation
model. This is used to help the agent sense its surroundings and make decisions. To help
both sides during confrontation training, the state spaces of pursuers and evaders should be
presented. As per Section 2.1.2, each pursuer’s state information is processed and integrated
and includes its position relative to partners si

pc = [xl
pc − xi

ps, yl
pc − yi

ps]l=1,...,i−1,i+1,num_P
,

evader targets si
pe = [xpe − xi

ps, ype − yi
ps]j=1,...,num_E

, and obstacles si
po = [di

1, . . . , di
5], as

mentioned in Equation (3). The state space of pursuer i can be defined as:

Si
p = [si

ps, si
pc, si

pe, si
po] (19)

where si
ps=[vi

px, vi
py, xi

ps, yi
ps] denotes its position and speed based on self-observed in-

formation that has not been processed. Similarly, the state space of an evader j can be
defined as:

Sj
e = [sj

es, sj
ec, sj

ep, si
eo] (20)



Entropy 2021, 23, 1433 10 of 22

where sj
es=[vj

ex, vj
ey, xj

es, yj
es] represents the position and speed of evader j, sj

ec represents

its position relative to other evaders, sj
ec = [xl

ec − xj
es, yl

ec − yj
es]l=1,...,j−1,j+1,num_E sj

ep =

[xi
ep − xj

es, yi
ep − yj

es]i=1,...,num_P
represents its position relative to pursuers, and

sj
eo = [dj

1, . . . , dj
5] represents sensed obstacles.

3.1.3. Reward Function

In the traditional MADDPG algorithm, formation cooperation cannot be uniformly
controlled since each agent has an independent actor and critic network. When a unit
successfully hunts down a target, all agents belonging to the formation receive a positive
reward regardless of whether the agent was in effective tracking range or played a positive
role in the mission. This is contrary to the incentive policy of real pursuit–evasion scenarios.

To address this problem, a reward function based on the team strategy was presented.
An agent could receive a positive reward only if it was within a certain distance ζrangeatt
of the target when the mission terminated. The reward is shaped by three basic elements:
(1) distance ri

distance: the Euclidean distance is used to judge whether the agent success-
fully pursued the evader; (2) maneuvering safety ri

sa f e: the agent is punished if it has

collided with obstacles or collaborators; and (3) mission criteria ri
mission, ζrangeatt are used

to judge whether the agent completed the mission. These three subreward functions can be
defined as:

ri
distance=dis(pi

p − pj
e) (21)

ri
sa f e =

{
1, dis(pi

p − pk
o) > disobstacle or dis(pi

p − pn
p)n 6=i > dissa f e

0, else
(22)

ri
sa f e =

{
1, dis(pi

p − pj
e) ≤ ζrangeatt

0, else
(23)

where i is the sequence number of the agent and function dis(a, b) is used to calculate the
Euclidean distance of positions a and b. disobstacle represents the radius of an obstruction,
and dissa f e represents the minimum safe distance between each pursuer. To summarize,
the reward function for a pursuer i can be formulated as:

ri
p = β1ri

distance + β2ri
f inal+β3ri

sa f e (24)

Three relative gain factors β1−3 are introduced, which represent the respective weights
of the three rewards or punishments. Among them, β1 is negative, and both β2 and β3 are
positive. To train an autonomous evader, a specific reward function was built according
to the distance among the pursuer, evaders, and obstacles, and it has weights that are the
inverse of the pursuer’s reward function.

3.2. A2-MADDPG Algorithm
3.2.1. Adversarial Attack Trick for the Agent

When perceiving the environment in a real scenario, an agent would encounter
unavoidable errors due to the detection process, image recognition, signal processing, and
satellite position-based parameter measurements. Improving model robustness is of great
significance, especially in key intelligent control fields such as UAVs and robots, where
tiny errors or noise could lead to immeasurable and undesirable consequences.

To train a robust agent to adapt to measurement errors and other noise in real en-
vironments, an adversarial attack trick for the agent itself is proposed. This approach
aims to generate random noise in the agent’s status, thereby confusing its perception and
assisting it in producing a strategy for abnormal conditions [36]. Algorithm 1 summarizes
the adversarial attack process, in which inputs are constituted by the action ai = µi(si|θ

µ
i )

of an actor online network, the action value Qµ′

i (x, a1, a2, . . . , an) of a critic target network,
and that of agent i. Through limited iterations Na, the state is combined with stochastic



Entropy 2021, 23, 1433 11 of 22

Gaussian noise under the minimum Q value that could be excavated. Algorithm 1, to
control the sequence, introduces the pseudocode for an agent’s adversarial attack trick.

Algorithm 1 Adversarial attack trick (with the MADDPG).

1: StateAttack(Qµ′

i (x, a1, a2, . . . , an), µi(si|θ
µ
i ), si)

2: ai = µi(si|θ
µ
i ), Qi = Qµ′

i (x, a1, a2, . . . , an)
3: for i = 1, Na do
4: si(noise) = si + Gaussian(0, σ2

s )

5: ai(noise) = µi(si(noise)|θ
µ
i )

6: Qi(noise) = Qµ′

i

(
x, a1, . . . , ai(noise), . . . , an

)
7: if Qi(noise) < Qi then
8: Qi = Qi(noise), si = si(noise)
9: end if

10: end for
11: return si(noise)

The action of agent i can be remodeled based on its state after including stochastic
Gaussian noise. Similarly, the robustness of the multi-agent intelligent control model
could be optimized according to the adversarial attack of all agents by modeling the
indeterminacies of the real world.

3.2.2. Adversarial Learning for Cooperators

In addition to uncertain influences from a real environment, an agent is susceptible
to strategy changes made by other agents in the overall system [37]. In other words, an
agent cannot produce the optimal action strategy to match other agents when those agents
change strategies. Our algorithm preprocesses the actions of cooperators using adversarial
training techniques, so the agent’s strategy is updated based on the worst decisions of
other agents. Specifically, as the neural network is updated, the cumulative return of agent
i is optimized under the condition that all cooperators use adversarial strategies. The
cumulative return of agent i combined with adversarial learning can be formulated as:

Ex∼ρµ(Ri) = min
at

j 6=i

Ex∼ρµ

[
∑T

t=0 γtri
(
xt, at

1, . . . , at
n
)∣∣at

i = µ
(
st

i
) ]

= Ex0∼ρµ

min
a0

j 6=i

Qµ
i
(
xt, at

1, . . . , a0
n
)∣∣a0

i = µ
(
s0

i
) (25)

where ρµ represents the state distribution. That means xt+1 would be influenced by the
actions of all agents. Furthermore, the action value Q function could be defined in a
recursive form as:

Qµ
i (x, a1, · · · , an) = ri(x, a1, · · · , an) + γEs′

[
min
a′j 6=i

Qµ
i
(
x′, a′1, · · · , a′n

)∣∣∣a′i=µ(x′i)

]
(26)



Entropy 2021, 23, 1433 12 of 22

The single-step gradient descent method was introduced to overcome high computing
costs [38]. Using this method, the actions taken by cooperators are those exhibiting a
mixed disturbance, and the direction of the disturbance is the orientation in which the Q
function is decreasing. To summarize, the update process of the critic online network can
be formulated as:

L(θi) = Ex,a,r,x′

[(
yi −Qµ

i

(
x, a1, . . . an; θQ

i

))2
]

(27)

yi = ri + γQµ′

i

(
x′, a′∗1 , . . . , a′∗i , . . . , a′∗n ; θQ′

)
(28)

a′i = µ′i(si) (29)

a′∗j 6=i = a′j + ηj (30)

ηj 6=i = arg min
ε j 6=i

Qµ′

i
(
x′, a′1 + η1, . . . , a′i + ηi, . . . , a′n + ηn

)
(31)

where θQ′ represents the critic target network, a′∗j 6=i represents the action of other agents
in their minimum conditions, and ηj 6=i represents the disturbance added for agent j. By
linearizing the Q function, the parameter ηj is used to denote the gradient direction of

Qµ
i (x, a1, . . . , an; θQ

i ) at a′j. ηj can be replaced with this gradient approximation:

η̃j 6=i = −ε∇aj Q
µ′

i
(
x′, a′1, . . . , a′n

)
(32)

The critic network structure of the MADDPG combined with adversarial learning
is illustrated in Figure 7. When the MADDPG is implemented, adversarial interference
must be added to the actions of other agents without requiring the critic network to be
remodeled.

Figure 7. Critic network structures of the MADDPG algorithm combined with AL (the information
about the actions of other agents in the input layer is processed by AL).

To summarize, the A2-MADDPG algorithm proposed in this paper employs an ad-
versarial attack trick and adversarial learning to process an agent’s state information and
other agents’ actions during training. This bridges the gap between simulated training and
the real world by adding adversarial disturbances. The overall A2-MADDPG algorithm is
described in Algorithm 2.



Entropy 2021, 23, 1433 13 of 22

Algorithm 2 Adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) al-
gorithm.

1: for N agents, randomly initialize their critic network Qi

(
si, ai; θQ

i

)
and actor network

µi(si|θ
µ
i )

2: synchronize target networks Q
′
i(si, ai; θQ′

i ) and µ
′
i(si|θ

µ′

i ) with θQ′
i ← θQ

i , θ
µ′

i ← θ
µ
i

3: initialize hyperparameters: experience bufferD, mini-batch size m, max episode M,
max step T, actor learning rate la, critic learning rate lc, discount factor γ, soft update
rate τ

4: for episode = 1, M do
5: reset environment, and receive the initial state x
6: initialize exploration noise of action Naction
7: for t = 1, T do
8: si(noise) ← StateAttack(Qµ′

i (x, a1, a2, . . . , an), µi(si|θ
µ
i ), si)

9: for each agent i, select action ai = µ
(

si(noise); θ
µ
i

)
+Naction

10: execute a1, . . . , an, rewards r1, . . . , rn, and next state x′

11: store sample (x, a1, . . . , an, r1, . . . , rn, x′) in D
12: for agenti = 1, n do
13: randomly extract m samples

(
xk, ak, rk, x′k

)
14: update critic network by Equation (27)
15: update actor network by:

∇θ
µ
i

J = m−1 ∑j

[
∇θ

µ
i
µi(ai|si )∇ai Q

µ
i

(
x, a1 . . . ai . . . aN ; θQ

i

)∣∣∣∣ai=µi(si),a∗j 6=i=ak
j +η̃j

]
16: end for
17: update target networks by θQ′

i ← τθQ
i + (1− τ)θQ′

i , θ
µ′

i ← τθ
µ
i + (1− τ)θ

µ′

i
18: end for
19: end for

4. Experiment and Result Analysis

This section describes the simulation’s settings and a series of experiments imple-
mented to analyze the effectiveness and performance of the approaches proposed in
previous sections.

4.1. Simulation Environment Settings

The experiments were conducted using Pycharm and the gym module on an Ubuntu16.04
system with an Intel i7-6700K CPU, a GeForce1660Ti graphics card, and 16 G of RAM.
As shown in Figure 8, the testbed was a square (20 km on a side) in a two-dimensional
plane. Each obstacle was assumed to have a round threat area with radius rob ∈ [0.6, 1.3]
km (black circle). The attack range of the pursuers (red circles with a UAV inside) was
set to 1.2 km, which means the mission was considered successful for pursuers when the
distance between them and at least one evader (blue UAVs) was within 1.2 km. Table 1
provides the parameters used for the platforms.



Entropy 2021, 23, 1433 14 of 22

Figure 8. Critic network structures of the MADDPG algorithm combined with AL (the information
about actions of other agents in the input layer is processed by AL).

Table 1. The detailed parameter settings of agent platforms in the pursuit–evasion game.

Agent Attributes Pursuer Evader

initial velocity 0 km/s 0 km/s
maximum velocity 1 km/s 1.3 km/s

acceleration 0.3 km/s2 0.4 km/s2

detect range 1.5 km 1.5 km
attack range 1.2 km /

In the DRL-based multipursuer framework, a two-layer perceptron model was con-
structed for the actor and critic networks. Two fully connected 15 × 64 × 64 × 2 neural
networks were created for the actor network and its target. Furthermore, two fully con-
nected 17 × 64 × 64 × 1 neural networks were created for the critic network and its
target. Each round ends when the pursuers capture an evader, a platform collides with
an obstacle, or the simulation reaches the maximum number of steps. After each round,
the environment was reset, and the next round began. Network training ended when
the experience buffer was full, and an Adam optimizer was used to determine the neural
network parameters. The hyperparameters of the network are shown in Table 2.

Table 2. The detailed parameter setting of agent platforms in the pursuit–evasion game.

Parameters Values

Experience replay buffer D 100,000
Mini-batch size m 1024
Max episode M 50,000

Max step T 50
Actor learning rate la 0.01
Critic learning rate lc 0.01

Discount factor γ 0.95
Soft update rate τ 0.01

4.2. Experiment on the Performance of the A2-MADDPG
4.2.1. Performance of Pursuers

To examine the performance of trained pursuers, this study used different algorithms
to train them to fight evaders that were trained using the constant MADDPG algorithm
from Experiment 1. Specifically, we employed the IMDDPG, MADDPG, and A2-MADDPG



Entropy 2021, 23, 1433 15 of 22

algorithms in the MAS of pursuers and present comparative data about the average return
values for the last 1000 training episodes in Figure 9.

(a)

(b) (c)

Figure 9. Average rewards in each episode during Training Experiment 1 of (a) all agents, (b) pursuers, and (c) evaders.

As illustrated in Figure 9a, UAVs trained using all three algorithms required roughly
8000 episodes to converge to a steady value with an average reward. In Figure 9b,c, the
pursuers and evaders play against each other, and their respective average rewards do
not converge to a stable state until about 16,000 episodes. The A2-MADDPG achieved
higher convergence approaching the average reward for pursuers and a lower result for
evaders. This means the proposed algorithm produced agents that were highly successful
at pursuing while preventing targets from escaping, which resulted in lower rewards. To
prove the real performance of our algorithm, the average time of first pursuit and the
average success of the pursuers in the last 1000 training episodes are recorded in Figure 10.



Entropy 2021, 23, 1433 16 of 22

(a) (b)

Figure 10. Algorithm performance in Experiment 1. (a) Earliest pursuit time and (b) successful number of pursuers.

Figure 10a shows that the MAS pursuers can complete their pursuit after being
trained using the three DRL algorithms. As the training time increases, A2-MADDPG UAV
formations can pursue evaders in a shorter time. This means that the A2-MADDPG model
has more advanced co-adjutant siege capabilities. Figure 10b shows the variation of eligible
pursuing times produced during training. The pursuers quickly completed a large number
of pursuits in each round, but their success gradually decreased as two maneuvering
objects were introduced, confronted one another, and stabilized. This means that MADDGP
evaders could also make intelligent decisions autonomously to flee. Ultimately, the average
eligible pursuing time of A2-MADDPG UAVs was about four per round, which is better
than the other two algorithms.

To present the pros and cons of each algorithm in the steady state, the last 10,000 rounds
(from 40,000 to 50,000 episodes in Figures 9 and 10) were analyzed. The results are pre-
sented in Table 3 and include the average return values for pursuers and evaders, the
average and maximum first pursuit time, and the average and maximum successes.

Table 3. Comparison of the training results (sampled from 40,000 to 50,000 episodes in Experiment 1).

Comparison Standard IMDDPG MADDPG A2-MADDPG

Average return value of pursuers 42.15 72.87 103.20
Average return value of evader −31.65 −50.47 −60.79

Average value of earliest pursuit time 32.17 27.71 24.61
Maximum value of earliest pursuit time 35.662 29.799 26.802

Average successful number of the pursuers 2.42 3.51 4.46
Maximum successful number of the pursuers 2.994 2.508 5.241

Table 3 shows the performance of each algorithm after stable convergence. The
IMDDPG pursuers that used a distributed critic network had an average return value of
42.15, while the MADDPG pursuers had 72.87. Meanwhile, the A2-MADDPG algorithm
improved the pursuers’ performance, causing the average return value to rise to 103.20.
Driven by the shaped reward function, A2-MADDPG pursuers developed efficient strate-
gies, thereby obtaining a higher round reward. The earliest pursuit time indicator reflects
the performance of time-efficient decisions that pursuers made. Table 3 shows that for
the A2-MADDPG, the earliest pursuit time became shorter, and its average value was
reduced from IMDDPG’s, 32.17 to 24.61. The maximum earliest pursuit time was reduced
from 35.662 to 26.802. The pursuer success number describes how many evaders were
successful in each round. This indicator was better for the A2-MADDPG than for the other
two algorithms, which indicates that the MAS pursuers based on it had better performance.



Entropy 2021, 23, 1433 17 of 22

4.2.2. Performance of Evaders

In Experiment 2, we trained evaders using the IMDDPG, MADDPG, and A2-MADDPG
to challenge MADDPG pursuers. The average reward results for the last 1000 training
episodes are presented in Figure 11.

(a)

(b) (c)

Figure 11. Average rewards in each episode during Training Experiment 2 of (a) all agents, (b) pursuers, and (c) evaders.

As illustrated in Figure 11c, the evaders achieved the highest round average using
the A2-MADDPG, followed by MADDPG, and finally, IMDDPG. This means that A2-
MADDPG evaders had a larger advantage during confrontations, which helped them
avoid being attacked by pursuers more often.

We recorded the earliest completion time and the eligible tracking time of the pursuers
in each round to verify the algorithm’s performance, as shown in Figure 12. In Figure 12a,
observe that the blue curve has the highest values when the experiment stabilized, that
is the first time of pursuing task completion during confrontations between MADDPG
pursuers and A2-MADDPG evaders was the longest. This means that A2-MADDPG
evaders made efficient decisions when avoiding predators. Figure 12b shows the value
of the eligible pursuing time for 50,000 training episodes, from which we observed that
the average eligible pursuing time under the confrontation between MADDPG pursuers
and A2-MADDPG evaders was the smallest. A2-MADDPG evaders demonstrated better
escape strategies. In addition, experimental data from the last 10,000 rounds were analyzed,
as presented in Table 4, to control the sequence. The analysis included the average return
value of the pursuing UAV formation and evader, the average value of the first time of



Entropy 2021, 23, 1433 18 of 22

pursuing task completion, the minimum value of the first time of pursuing task completion,
the average eligible pursuing time, and the maximum eligible pursuing time.

(a) (b)

Figure 12. Algorithm performance in Experiment 2. (a) Earliest pursuit time and (b) number of successful pursuers.

Table 4 gives the parameters of each algorithm after stable convergence. Compared
with the IMDDPG, which uses a distributed critic network, centralized MADDPG evaders
had higher average return values, longer times being pursued, and lower occurrences
of being caught. A2-MADDPG evaders, with superior maneuverability, could generate
effective actions to flee from capture by pursuers. That means the proposed A2-MADDPG
also optimized the evaders’ strategies.

Table 4. Comparison of training results (sampled from 40,000 to 50,000 episodes in Experiment 2).

Comparison Standard IMDDPG MADDPG A2-MADDPG

Average return value of pursuers 85.97 72.87 45.13
Average return value of evader −76.93 −50.47 −40.53

Average value of earliest pursuit time 27.98 27.70 33.07
Maximum value of earliest pursuit time 30.250 29.799 35.819
Average success number of the pursuers 4.45 3.51 2.66

Maximum success number of the pursuers 4.898 3.928 3.115

4.3. Experiment on the Effectiveness of the A2-MADDPG
4.3.1. Effectiveness of Pursuing

In this section, the algorithm for a specific 3V1 pursuit and evasion confrontation was
simulated and analyzed. Table 5 provides the initial positions of the UAVs and obstacles in
Experiment 3.

Table 5. Initial positions of UAVs and obstacles in Experiment 3.

Elements Position

Pursuer 1 (red UAV) (−7.3, 7.7)
Pursuer 2 (green UAV) (4.2, 4.0)
Pursuer 3 (purple UAV) (−8.0, −2.9)

Evader (blue UAV) (2.0, 8.0)
Obstacle 1 (black circle) (6.0, 7.0)
Obstacle 2 (black circle) (3.0, 4.0)

Figure 13 presents the confrontation process of the mission starting from the same
initial state. The IMDDPG pursuer formation successfully hit the evader after 39 steps. The



Entropy 2021, 23, 1433 19 of 22

MADDPG pursuer formation generated better encirclement strategies, and it took more
time to hunt down the target (27 steps). The A2-MADDPG formation adjusted the direction
and speed of each UAV to more effectively reach the more maneuverable evader. It took
13 steps for the pursuers to reach the escape target.

(a) IMDDPG step = 0 (b) IMDDPG step = 10 (c) IMDDPG step = 20 (d) IMDDPG step =‘39

(e) MADDPG step =·0 (f) MADDPG step = 9 (g) MADDPG step = 22 (h) MADDPG step = 27

(i) A2-MADDPG step = 0 (j) A2-MADDPG step = 5 (k) A2-MADDPG step = 7 (l) A2-MADDPG step = 13

Figure 13. Experiment 3: pursuit–evasion game with one MADDPG-based evader and three groups of pursuers driven by
different algorithms. The IMDDPG took 39 steps, MADDPG 27 steps, and A2-MADDPG 13 steps to reach the escape target
for the first time.

The algorithms were examined in a random test environment with stochastic initial
states and environments in Experiment 4. Based on the chase game trained in Section 4.2.1,
the results regarding task completion for 1000 test episodes are shown in Table 6. The
improved A2-MADDPG had a higher mission success rate of 88.9% for pursuers, which was
higher than the success rate of the MADDPG’s 75.3% and the IMDDPG’s 70.4%. Moreover,
the A2-MADDPG pursuers were able to catch the evader in less time. Compared with the
MADDPG and IMDDPG, the average value of first time of pursuing completion was 23.698
for the A2-MADDPG, which shows that the A2-MADDPG pursuers can complete pursuits
in less time and the effectiveness of their pursuits was enhanced.



Entropy 2021, 23, 1433 20 of 22

Table 6. Effectiveness of pursuing in Experiment 4.

Comparison Standard A2-MADDPG MADDPG IMDDPG

Critic framework of pursuers Centralized based on AL Centralized Distributed
Critic framework of evader Centralized Centralized Centralized
Success rate of pursuers (%) 88.9 75.2 70.4

Average value of the earliest time
of pursuing completion 23.698 28.181 32.219

4.3.2. Effectiveness of Escaping

To test the effectiveness of escaping, 1000 random environments were generated in
Experiment 5 to compare with the IMDDPG, MADDPG, and A2-MADDPG. The results
are presented in Table 7. IMDDPG evaders had a success rate of 17.9%, and A2-MADDPG
evaders created better evasion strategies, which resulted in an increased success rate of
31.4%. The maximum value of 30.692 for the average value of the first time of being
pursued also proved the effectiveness of the A2-MADDPG for evaders. This means that
A2-MADDPG evaders specified more effective escape strategies.

Table 7. Effectiveness of escaping in Experiment 5.

Comparison Standard A2-MADDPG MADDPG IMDDPG

Critic framework of pursuers Centralized Centralized Centralized
Critic framework of evader Centralized based on AL Centralized Distributed
Success rate of pursuers (%) 31.4 24.7 17.9

Average value of the earliest time
of being pursued 30.692 28.181 32.219

In summary, compared with the IMDDPG and MADDPG, the evaluation indicators of
the A2-MADDPG were significantly better under the same hyperparameter and training en-
vironment settings; in the same test environment, the pursuit and escape strategies trained
by the A2-MADDPG were obviously more robust and more efficient than those trained
by the other two algorithms. Therefore, the A2-MADDPG had a superior performance in
the experiments.

5. Conclusions

In this paper, deep reinforcement learning was applied to multi-agent pursuit–evasion
decision-making without building a complicated control system, as is commonly performed
in traditional approaches. An elaborate MADDPG-based framework was constructed for
providing online decision-making schemes and determining the co-adjutant control of
multi-agent systems. By introducing adversarial disturbances, an improved A2-MADDPG
was proposed that effectively reduced the influence of errors between models and real
scenarios. Introducing an adversarial attack trick optimized the robustness of the multi-
agent intelligent control model by incorporating adversarial attacks from all agents. An
adversarial learning technique was incorporated into our algorithm to overcome the
vulnerability of responding to the changes introduced by other agents. This was performed
by processing data in the input layer of a critic network. Experimental results showed that
the proposed algorithm improved the performance of both types of players in pursuit–
evasion games and that the trained agents could devise effective strategies autonomously
in confrontational missions.

We intend to expand the pursuit–evasion missions by changing the number of pur-
suers and evaders in the future and increasing the number of obstacles to make the envi-
ronment more complex, so as to evaluate the performance, efficiency, and robustness of our
algorithms in a more realistic and dynamic space. In addition, we would like to apply the
trained robust strategies to drones or unmanned vehicles, so that they can make decisions
based on the environmental information obtained by the cameras with an authentic range.



Entropy 2021, 23, 1433 21 of 22

This will accelerate the conversion of this work from virtual digital simulations to real
multi-agent systems.

Author Contributions: Conceptualization, investigation, methodology, and writing—original draft
preparation, K.W.; resources, software, visualization, and validation, D.W. and Y.Z.; writing—review
and editing, B.L.; project administration and funding acquisition, X.G.; data curation and formal
analysis, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 62003267), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-220), and the
Open Project of Science and Technology on Electronic Information Control Laboratory (Grant No.
JS20201100339).

Acknowledgments: The authors would like to acknowledge the National Natural Science Foun-
dation of China (Grant No. 62003267), the Natural Science Foundation of Shaanxi Province (Grant
No. 2020JQ-220), and the Open Project of Science and Technology on Electronic Information Control
Laboratory (Grant No. JS20201100339) for providing the funding to conduct these experiments. We
thank LetPub (www.letpub.com, accessed on 25 July 2021) for its linguistic assistance during the
preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, Y.; De Luca, G. Technologies Supporting Artificial Intelligence and Robotics Application Development. J. Artif. Intell.

Technol. 2021, 1, 1–8. [CrossRef]
2. Wu, D.; Wan, K.; Gao, X.; Hu, Z. Multiagent Motion Planning Based on Deep Reinforcement Learning in Complex Environments.

In Proceedings of the 2021 6th International Conference on Control and Robotics Engineering (ICCRE), Beijing, China, 16–18
April 2021; pp. 123–128. [CrossRef]

3. Czap, H. Self-Organization and Autonomic Informatics (I); IOS Press: Amsterdam, The Netherlands, 2005; Volume 1.
4. Folino, G.; Forestiero, A.; Spezzano, G. A Jxta Based Asynchronous Peer-to-Peer Implementation of Genetic Programming. J.

Softw. 2006, 1, 12–23. [CrossRef]
5. Forestiero, A.; Mastroianni, C.; Papuzzo, G.; Spezzano, G. A proximity-based self-organizing framework for service composition

and discovery. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
Melbourne, VIC, Australia, 17–20 May 2010; pp. 428–437.

6. Lopez, V.G.; Lewis, F.L.; Wan, Y.; Sanchez, E.N.; Fan, L. Solutions for Multiagent Pursuit-Evasion Games on Communication
Graphs: Finite-Time Capture and Asymptotic Behaviors. IEEE Trans. Autom. Control 2019, 65, 1911–1923. [CrossRef]

7. Zhou, Z.; Xu, H. Mean Field Game and Decentralized Intelligent Adaptive Pursuit Evasion Strategy for Massive Multi-Agent
System under Uncertain Environment with Detailed Proof. In Proceedings of the Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications II, Online, 27 April–8 May 2020.

8. Liu, K.; Jia, B.; Chen, G.; Pham, K.; Blasch, E. A real-time orbit SATellites Uncertainty propagation and visualization system
using graphics computing unit and multi-threading processing. In Proceedings of the IEEE/AIAA Digital Avionics Systems
Conference, Prague, Czech Republic, 13–17 September 2015.

9. Differential Games. A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Math. Gaz.
1967, 51, 80.

10. Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide. Differ. Equ.
2009, 45, 1653–1668. [CrossRef]

11. Chen, J.; Zha, W.; Peng, Z.; Gu, D. Multi-player pursuit–evasion games with one superior evader. Automatica 2016, 71, 24–32.
[CrossRef]

12. Hao, W.; Cheng, L.; Fang, B. An alliance generation algorithm based on modified particle swarm optimization for multiple
emotional robots pursuit-evader problem. In Proceedings of the 2014 11th International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014.

13. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
14. Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement Learning, Fast and Slow. Trends

Cogn. Sci. 2019, 23, 408–422. [CrossRef]
15. Wang, Y.; Dong, L.; Sun, C. Cooperative control for multi-player pursuit–evasion games with reinforcement learning. Neurocom-

puting 2020, 412, 101–114. [CrossRef]
16. Xu, G.; Zhao, Y.; Liu, H. Pursuit and evasion game between UVAs based on multi-agent reinforcement learning. In Proceedings

of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1261–1266.
17. Park, J.; Lee, J.; Kim, T.; Ahn, I.; Park, J. Co-Evolution of Predator-Prey Ecosystems by Reinforcement Learning Agents. Entropy

2021, 23, 461. [CrossRef] [PubMed]

www.letpub.com
http://doi.org/10.37965/jait.2020.0065
http://dx.doi.org/10.1109/ICCRE51898.2021.9435656
http://dx.doi.org/10.4304/jsw.1.2.12-23
http://dx.doi.org/10.1109/TAC.2019.2926554
http://dx.doi.org/10.1134/S0012266109110111
http://dx.doi.org/10.1016/j.automatica.2016.04.012
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1016/j.neucom.2020.06.031
http://dx.doi.org/10.3390/e23040461
http://www.ncbi.nlm.nih.gov/pubmed/33924723


Entropy 2021, 23, 1433 22 of 22

18. Gu, S.; Geng, M.; Lan, L. Attention-Based Fault-Tolerant Approach for Multi-Agent Reinforcement Learning Systems. Entropy
2021, 23, 1133. [CrossRef]

19. Sewak, M. Deep q network (dqn), double dqn, and dueling dqn. In Deep Reinforcement Learning; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 95–108.

20. Liu, B.; Ye, X.; Dong, X.; Ni, L. Branching improved Deep Q Networks for solving pursuit–evasion strategy solution of spacecraft.
J. Ind. Manag. Optim. 2017, 13.

21. Qadir, M.Z.; Piao, S.; Jiang, H.; Souidi, M.E.H. A novel approach for multi-agent cooperative pursuit to capture grouped evaders.
J. Supercomput. 2020, 76, 3416–3426. [CrossRef]

22. Singh, G.; Lofaro, D.M.; Sofge, D. Pursuit-evasion with Decentralized Robotic Swarm in Continuous State Space and Action Space
via Deep Reinforcement Learning. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence,
Valletta, Malta, 22–24 February 2020; pp. 226–233.

23. Wang, X.; Xuan, S.; Ke, L. Cooperatively pursuing a target unmanned aerial vehicle by multiple unmanned aerial vehicles based
on multiagent reinforcement learning. Adv. Control Appl. Eng. Ind. Syst. 2020, 2, e27. [CrossRef]

24. Pang, C.; Xu, G.G.; Shan, G.L.; Zhang, Y.P. A new energy efficient management approach for wireless sensor networks in target
tracking. Def. Technol. 2021, 17, 932–947. [CrossRef]

25. Di, K.; Yang, S.; Wang, W.; Yan, F.; Xing, H.; Jiang, J.; Jiang, Y. Optimizing evasive strategies for an evader with imperfect vision
capacity. J. Intell. Robot. Syst. 2019, 96, 419–437. [CrossRef]

26. Lowe, R.; Wu, Y.; Tamar, A.; Harb, J.; Abbeel, P.; Mordatch, I. Multi-agent actor–critic for mixed cooperative-competitive
environments. arXiv 2017, arXiv:1706.02275.

27. Zhang, B.H.; Lemoine, B.; Mitchell, M. Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; pp. 335–340.

28. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

29. Li, B.; Gan, Z.; Chen, D.; Sergey Aleksandrovich, D. UAV Maneuvering Target Tracking in Uncertain Environments Based on
Deep Reinforcement Learning and Meta-Learning. Remote Sens. 2020, 12, 3789. [CrossRef]

30. Li, B.; Yang, Z.P.; Chen, D.Q.; Liang, S.Y.; Ma, H. Maneuvering target tracking of UAV based on MN-DDPG and transfer learning.
Def. Technol. 2021, 17, 457–466. [CrossRef]

31. Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.; Russell, S. Robust multi-agent reinforcement learning via minimax deep deterministic
policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 4213–4220.

32. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
33. Liu, Y.; Mao, S.; Mei, X.; Yang, T.; Zhao, X. Sensitivity of Adversarial Perturbation in Fast Gradient Sign Method. In Proceedings

of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 433–436.
34. Papadimitriou, C.H.; Tsitsiklis, J.N. The complexity of Markov decision processes. Math. Oper. Res. 1987, 12, 441–450. [CrossRef]
35. Guo, H.; Liu, T.; Wang, Y.; Chen, F.; Fan, J. Research on actor–critic reinforcement learning in RoboCup. In Proceedings of the

2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 9212–9216.
36. Wan, K.; Gao, X.; Hu, Z.; Wu, G. Robust motion control for UAV in dynamic uncertain environments using deep reinforcement

learning. Remote Sens. 2020, 12, 640. [CrossRef]
37. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents

Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]
38. Vivek, B.; Babu, R.V. Single-step adversarial training with dropout scheduling. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 947–956.

http://dx.doi.org/10.3390/e23091133
http://dx.doi.org/10.1007/s11227-018-2591-3
http://dx.doi.org/10.1002/adc2.27
http://dx.doi.org/10.1016/j.dt.2020.05.022
http://dx.doi.org/10.1007/s10846-019-00996-1
http://dx.doi.org/10.3390/rs12223789
http://dx.doi.org/10.1016/j.dt.2020.11.014
http://dx.doi.org/10.1287/moor.12.3.441
http://dx.doi.org/10.3390/rs12040640
http://dx.doi.org/10.1007/s10458-019-09421-1

	Introduction
	Background
	Problem Definition
	Comparisons of Operators
	Observation Model

	Theoretical Context
	Adversarial Learning
	DRL-Based DDPG Algorithm
	Multi-Agent Deep Deterministic Policy Gradient Algorithm


	Proposed Method
	MADDPG-Based Framework
	Actor Space
	State Space
	Reward Function

	A2-MADDPG Algorithm
	Adversarial Attack Trick for the Agent
	Adversarial Learning for Cooperators


	Experiment and Result Analysis
	Simulation Environment Settings
	Experiment on the Performance of the A2-MADDPG
	Performance of Pursuers
	Performance of Evaders

	Experiment on the Effectiveness of the A2-MADDPG
	Effectiveness of Pursuing
	Effectiveness of Escaping


	Conclusions
	References

