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Abstract: The advancement of sensing technologies coupled with the rapid progress in big data
analysis has ushered in a new era in intelligent transport and smart city applications. In this context,
transportation mode detection (TMD) of mobile users is a field that has gained significant traction in
recent years. In this paper, we present a deep learning approach for transportation mode detection
using multimodal sensor data elicited from user smartphones. The approach is based on long short-
term Memory networks and Bayesian optimization of their parameters. We conducted an extensive
experimental evaluation of the proposed approach, which attains very high recognition rates, against
a multitude of machine learning approaches, including state-of-the-art methods. We also discuss
issues regarding feature correlation and the impact of dimensionality reduction.

Keywords: transportation mode detection; deep learning; recurrent neural networks; LSTM

1. Introduction

As urbanization and populations have increased in recent years, transportation has
become a major factor that affects the experience of people living in big cities. Quality of
life, urban productivity, energy consumption, congestion, the environment, and personal
safety—which are highly connected with citizens’ mobility—are all affected. The knowl-
edge that can be gained from observing human mobility models in different transport
environments can make a significant contribution to addressing these issues in the most
appropriate manner. Citizens’ transportation involves multiple transportation modes that
change over time, depending on users’ needs.

With the recent the growth of the Internet of Things (IoT), several attempts have been
made in the development of new methods to observe urban mobility by using APC systems
(APCSs). The operation of these systems is based on Wi-Fi access points (APs) [1], infrared
sensors [2,3], video image sensors [4,5], etc. With the advent of modern mobile devices
such as tablets, smartphones, and smartwatches, new efficient and user-centric ways have
been discovered [6] to detect an individual citizen’s movements throughout the city and
collect detailed data about their journey map.

Transportation mode detection (TMD), often regarded as a subfield of the activity
recognition field, aims to identify the means of transport used by an individual. TMD is
important for many reasons that concern the collection of data for urban transportation
planning, sending targeted advertisements to users, developing context-aware applica-
tions, urban planning and traffic management, physical and mental health improvement,
promotion of soft transportation modes (walking, running, and biking), bicycle usage
planning, etc. [7].

With the advancement of sensing technologies, modern mobile devices such as smart-
phones, smartwatches, tablets, etc., can be involved at many points in the process of
transportation mode detection, by collecting and analyzing multimodal sensor data in the
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field of transportation. Modern mobile devices now have two important characteristics
that make them more than just simple devices:

Firstly, the recent huge technological advances and the various sensors they are
equipped with allow them to measure motion, orientation, and environmental conditions
continuously, with high precision and accuracy, providing massive data that are available
to be used immediately. Furthermore, the fact that 80.76% of the world’s population owns
a smartphone [8], that the smartphone adoption among adults aged 50 and older has
increased from 62% (2017) to 79% (2019) [9], and that the number of smartphones in use is
growing at an annual rate of 5.6% [10], shows that modern mobile devices have become a
considerable factor in people’s daily lives in the past decade.

This makes it more possible than before to capture information that, until now, was
unreachable, such as where the users are, how much time they spend in certain places,
what they are interested in, what they like, and even how they feel. Modern mobile
devices’ capabilities, combined with the tremendous advances in deep learning, open new
possibilities in the transportation community, and especially in smart mobility.

In this work, we present a deep learning approach for transportation mode detection
using multimodal sensor data elicited from user smartphones. The approach is based
on long short-term memory networks and Bayesian optimization of their parameters.
We conducted an extensive experimental evaluation of the proposed approach with a
multitude of machine learning approaches, including ensemble and deep models. The
remainder of the paper is structured as follows: Section 2 offers a brief overview of related
works, Section 3 presents the Bayesian-optimized LSTM model. In Section 4, we perform
an extensive experimental evaluation of the proposed model compared to a variety of other
methods. Finally, Section 5 concludes the paper with a summary of our findings.

2. Related Work

In recent years, several models have been developed based on sensors embedded in
smartphones (such as accelerometers, magnetometers, gyroscopes, atmospheric pressure,
GPS, etc.) so as to detect transportation mode using traditional machine learning as well as
deep learning techniques.

To our knowledge, there are four publicly available datasets concerning transportation
modes that citizens use in their everyday lives:

• The first is Microsoft GeoLife’s dataset [11], collected in the (Microsoft Research Asia)
GeoLife project by 182 users in a period of over three years (from April 2007 to
August 2012), but this contains only GPS data;

• The second is the HTC dataset [12], which includes up to 8311 h of collected data, but
only from 3 sensors. This dataset could not be found, even though it is supposed to be
public for research;

• The third is the US-TMD dataset [13], which contains 31 h of data. It is based on
13 users who collected the data during their daily activities. The dataset contains
5893 samples, includes all sensors available in phones, and distinguishes 5 transporta-
tion modes: car, bus, train, still, and walking;

• The fourth dataset, which is the dataset used in this work, is the Sussex-Huawei
Locomotion–Transportation (SHL) dataset, and is considered to be one of the biggest
datasets in the research community. It includes 2812 h of annotated data collected for
7 months by 3 participants. Each participant carried 4 smartphones at 4 body locations
(hand, torso, hip pocket, and backpack), and 15 sensors in the smartphone were used
for recognizing 8 modes of transportation (i.e., still, walk, run, bike, car, bus, train,
and subway).

Models: Various traditional (“shallow”) machine learning methods on multimodal
sensor data have been used in the field of TMD. In [14], the sensor data were divided into
frames with a sliding window size of 5.12 s with half overlap, and in each frame computed
seven features from the magnitude of the three motion sensors. For the accelerometer, the
mean, standard deviation, index of the highest FFT (fast Fourier transform value), and
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ratio between the first- and second-highest FFT values were computed. For the gyroscope,
mean and standard deviation were computed, while for the magnetometer only standard
deviation was computed. A decision tree algorithm was employed to train a transportation
mode classification model, achieving a 71% F1-score. In the 2020 Research Challenge [15]
created by the University of Sussex and Huawei Ltd., among the ML classifiers used,
XGBoost achieved the highest F1-score (77.9%), followed by random forest (69.1%) and
multilayer perceptron (MLP) (52.8%).

Different machine learning classifiers (K-nearest neighbor, support vector machines,
tree-based methods, etc.) were developed in [16] to identify different transportation modes,
including bike, car, walk, run, and bus, with random forest producing the best overall
performance of 95.1%. Tree-based ensemble models (random forest, gradient-boosting
decision tree, and XGBoost) were used in [17] to classify the different transportation
modes using Global Positioning System (GPS) data. The experimental results showed
that the XGBoost model produced the best performance, with a classification accuracy of
90.77%. In [13], three datasets were created and used for TMD, each with different types of
sensors. For each of these datasets, four classification machine learning algorithms were
used: decision trees (DT), random forest (RF), support vector machines (SVM), and neural
network (NN). For all datasets, random forest had the highest accuracy (81–93%).

Numerous experiments were carried out in [18] to compare the impact of different
feature sets (e.g., time-domain features, frequency-domain features, Hjorth features), as
well as the impact of various classification algorithms (e.g., random forest, naive Bayes,
decision tree, K-nearest neighbor, support vector machine), on the prediction accuracy.
This system achieved an average accuracy of 98.33% in detecting the vehicle modes when
using the random forest classifier.

Deep learning techniques, which attract significant interest in the machine learning
community, were applied in addition to traditional ML algorithms to the transportation
mode recognition task, in order to improve the models’ performance. A unified framework
(CL-TRANSMODE) composed of CNN and LSTM was proposed in [19], using the SHL
dataset, and managed to outperform DNN, CNN, RNN, LSTM, decision tree, random
forest, AdaBoost, and XGBoost for identifying eight transportation modes with a 98.1%
accuracy. In [20], a model to detect transportation modes based on a partially observed
sequence was presented, and CNN, LSTM, and DNN were used for comparison; the
proposed model outperformed them, with an accuracy of 92%.

In [21], ML and DL techniques were used on the same dataset as in [13]. Random
forest had the best performance among all methods (87%), while convolutional neural
network (CNN) and long short-term memory (LSTM) had F1-scores of 80% and 76%,
respectively. A series of machine learning approaches for real-time transportation mode
recognition were presented in [22], built on both statistical feature extraction and raw
data, and a comparison was made for these approaches using random forest (RF), sup-
port vector machines (SVMs), feed-forward neural networks (FFNNs), multilayer LSTM
recurrent neural networks, recurrent neural networks (RNNs), and convolutional neural
networks (CNNs). RNNs obtained the best performance (88%) using statistical features,
while CNNs obtained 98.6% via the analysis of the seven raw data measures without any
pre-processing. In [23], a deep neural network (DNN)-based approach was proposed to
efficiently recognize five transportation modes (still, walk, run, bike, and vehicle) from
accelerometer, magnetometer, and gyroscope measurements. The DNN achieved approx-
imately 95% classification accuracy, and outperformed four machine learning methods,
i.e., AdaBoost, decision trees (DT), K-nearest neighbors (KNN), and SVM. In [24], a novel
input set consisting of extracted features, rather than raw data, was fed to an LSTM model,
for 10 different transportation modes, achieving 96.82% performance. A CNN model built
on the one-dimensional acceleration data was used to determine the transportation mode
in [25]. Different architectures and classification methods (naive Bayes, Bayes network, deci-
sion tree, K-nearest neighbor, random forest, adaptive boosting, neural network, supporting
vector, and LSTM) were tested. The proposed approach achieved an accuracy of 94.48%.
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According to the literature above, although machine learning (including deep learn-
ing) techniques have been applied in transportation mode detection using smartphone
sensor measurements, often successfully, most of them have investigated a limited number
of algorithms. In [12,14,16,18,23], only traditional machine learning approaches were ex-
ploited, or ensemble methods in [17], or only DL in [24]. Other works have implemented
a still limited selection of both conventional ML and DL techniques [15,19,21,22,25], but
the performance attained has room for improvement. In this work, a wide variety of
algorithms (e.g., traditional ML algorithms, ensemble methods, DL algorithms) was used
as a benchmark for comparison of our proposed Bayesian-optimized LSTM model. Some
works have tried to use very few sensors so as to save on energy consumption, such as
the accelerometer, gyroscope, magnetometer in [14,23], as well as pressure in [19] and
rotation vector in [16] in addition to the basic sensors, only GPS in [17], and only an
accelerometer in [20]. However, the information acquired from this limited number of
sensors, as well as the limitations associated with the use of GPS sensors (signal losses),
resulted in a low prediction accuracy. Our model achieved higher prediction accuracy by
using a wider range of sensor measurements (accelerometer, gyroscope, magnetometer,
pressure sensor, GPS (altitude metrics), and temperature) so as to enable more accurate
prediction. Several classifiers are built on statistical features [13,18,24], and others on raw
data [15,22], as input variables to the model. In our work, preprocessing our raw data and
then applying feature extraction methods to reduce the dimensional space of data resulted
in improved performance.

The goal of this paper was to build a robust and optimized TMD system using
sequential information from multiple smartphone sensors, with an increased detection
accuracy compared to existing methods. The contributions of this work with respect
to the state of the art are as follows: (1) the development of a probabilistic Bayesian-
optimized LSTM framework, through which the model configuration parameters are
optimally tuned, resulting in outperforming other state-of-the-art methods for identifying
all eight transportation modes; (2) the scrutinization of the effectiveness of a large number
of conventional machine learning and deep learning methods used for transportation
mode detection based on multimodal smartphone sensor data; (3) a first attempt to explore
techniques for understanding and visualizing feature maps for features’ correlation impact
on the model performance; (4) although time measurements may vary depending on the
system and model architecture, numerous experiments were carried out to compare the
impact of different features and algorithm parameters on process time.

3. Bayesian-Optimized Long Short-Term Recurrent Modelling for Transportation
Mode Detection
3.1. LSTM for Recognition of Transportation Mode

Recognition of transportation mode is an inherently recurrent problem; hence, the em-
ployment of recurrent neural networks appears to be a natural choice. A strong advantage
of recurrent neural networks (RNNs) is their ability to use contextual information when
mapping between input and output sequences. Unfortunately, one problem is that the
sensitivity of a given input on the hidden layer and, therefore, on the network output, de-
creases over time as it cycles around the network’s recurrent connections and the network
“forgets” the first inputs. This effect is often referred to in the literature as the “vanishing
gradient problem” [26]. Numerous attempts were made in the early 1990s to deal with
the problem of vanishing gradients for RNNs. One such approach is the long short-term
memory (LSTM) architecture [27].

LSTM is a type of recurrent neural network (RNN) that allows the network to retain
long-term dependencies at a given time from many timesteps before; it consists of a set
of recurrently connected subnets, known as memory cells, which allow the network to
store and access information over long periods of time. LSTM can combine simple deep
neural network architectures with smart mechanisms so as to learn what parts of history to
“remember” and what to “forget” over long periods. The ability of LSTM to learn patterns
in data over long sequences makes it suitable for time-series forecasting.
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The memory cell of an LSTM network contains three different components: (1) the
forget gate, (2) the input node and the input gate, and (3) the output gate. Each component
applies a nonlinear relation to the inner product between the input vectors and respective
weights (estimated through a training process). Some of the components have the sigmoid
function, expressed as σ(·), while others the hyperbolic tangent function, tanh(·).

The forget gate F(n) separates the information that should be retained from the
unnecessary information, by keeping the latter out of the memory cell [28]. The input
node H(n) appropriately activates the respective state (true or false output from the “tanh”
activation). The input gate I(n) regulates whether the respective hidden state is “significant
enough” for the accurate estimation of the transportation mode. The output gate O(n)
regulates whether the response of the current memory cell is “significant enough” to
contribute to the next cell.

One characteristic of the memory cell of the conventional LSTM is that it processes
only previous state information and, thus, cannot always successfully model non-causal
phenomena. The causality property indicates that the system output (i.e., in our case, the
current mode of transportation) depends solely on past and current inputs, and not future
ones, which may not always be the case. Bidirectional LSTM can provide a promising
alternative in this case, since it processes data in both directions, including a forward and a
backward pass [29], thus accounting for potential dependencies from “future” instances.
In the experimental evaluation section we will scrutinize the effectiveness of both the plain
and bidirectional LSTM for the problem at hand.

3.2. Bayesian Optimization

Regarding the selection of model parameters, in this work we employed a proba-
bilistic Bayesian framework, through which the model configuration parameters were
optimally tuned.

Assuming that a certain number of configuration parameters are available, such as
the number of memory cells, the learning rates, etc., denoted as πi, if we construct a set
of Q different configurations—i.e., D1:Q =

{
π1 · · · πQ

}
—then we can evaluate the

error E(p, d,π) that the network gives when (1) it receives as inputs the data p, (2) the
network output is compared against the desired (target) outputs d, and (3) a given π model
configuration. In this context, we have omitted index n, since we refer to any time instance.
Let us denote as Emin the minimum across all Q configurations. Then, an improvement
function is given:

I(p, d,π)) = max{0, Emin − E(p, d,π)} (1)

In a probabilistic framework, we estimate:

Expect(I(p, d, π)) = Expect(max{0, Emin − E(p, d, π)}) (2)

Equation (2) can be solved only by knowing the probability distribution of the error
function given a set of configurations, i.e., P

(
E
∣∣D1:Q

)
. Based on the Bayesian rule, we have:

P(E
∣∣D1:Q) ∝ P

(
D1:Q

∣∣E)P(E) (3)

P(E) generally follows a Gaussian distribution, and P
(

D1:Q
∣∣E) is then expressed as a

Gaussian process of mean µ(π) and standard deviation Σ [30]:

Σ =

 k(π1,π1) · · · k
(
π1,πQ

)
...

. . .
...

k
(
πQ,π1

)
· · · k

(
πQ,πQ

)
 (4)

where k(·) is a kernel function. The goal of the optimization is to find a new configura-
tion π∗ ≡ πQ+1, which decreases the MSE or equivalently increases the improvement
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I(p, d,π∗). For the augmented set D1:Q+1 containing π∗ ≡ πQ+1, P
(

D1:Q+1
∣∣E) will again

be a Gaussian process of standard deviation:[
Σ b
bT k

(
πQ+1,πQ+1)

) ] (5)

where b =
[
k
(
πQ+1,π1

)
. . . k

(
πQ+1,πQ

)]
. It can be proven [22] that P(EQ+1

∣∣D1:Q, πQ+1)
is also Gaussian, with a mean value and standard deviation related to previous variables.
Equation (2) can be used to compute the new configuration π∗, as the integral of I(·) and
P(EQ+1

∣∣D1:Q, πQ+1) , i.e., the probability that I(·) follows.

4. Experimental Evaluation

This section presents the performance analysis of the proposed Bayesian-optimized
LSTM-based model. Firstly, a brief description of the datasets is provided, followed by
data preparation and the analysis of the experimental results.

4.1. Dataset Description

The SHL dataset used in the experiments is a subset of the original Sussex-Huawei
Locomotion–Transportation (SHL) dataset, which contains the data recorded from one
participant’s phone placed in their front trouser pocket, and includes a period from
1 March 2017 to 5 July 2017. For the analysis, eight main activities are considered: still,
walk, run, bike, car, bus, train, and subway. The number of samples per class are shown
in Table 1. SHL is a multivariate time-series dataset that contains 23 features represent-
ing measurements from 6 smartphone sensors: accelerometer, gyroscope, magnetometer,
pressure sensor, GPS (altitude metrics), and temperature. Even though the number of
participants was limited, the focus was on the quality of the collected and annotated data,
and on collecting real-life data over a long period (2812 h of labeled data and 17,562 km of
traveled distance collected over 7 months) [6].

Table 1. Samples per class.

Class Samples

Still 19,085
Walk 46,987
Run 39,814
Bike 43,988
Car 26,268
Bus 3861

Train 623
Subway 693

The data were used to frame a forecasting problem where, given the sensor measure-
ments and mode of transport used previously, the mode of transport at the next time could
be predicted.

4.2. Preliminary Data Analysis

The dataset was already a supervised learning problem with input and output vari-
ables. The first column represents the timestamp of the sample, in milliseconds, while the
rest of the columns represent the x, y, and z measurements of the accelerometer (m/s2),
gyroscope (rad/s), magnetometer (µT), gravity (m/s2), and linear acceleration (m/s2), as
well as the w, x, y, and z measurements of orientation, and the ambient pressure (hPa),
altitude, and temperature. The mean values of features per class are shown in Figure 1.
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Figure 1. The mean values of features per class.

The correlation between and among the continuous variables, so as to better under-
stand the underlying relationships in the data, is shown in a heat map that visualizes the
correlation matrix, in Figure 2. The annotation inside each cell indicates the correlation
coefficient of the relationship.

The highest positively correlated features are:

• Acceleration with gravity, which seems reasonable, because the accelerometer outputs
the acceleration of the device in three axes by measuring consequent forces applied to
the device, and the force of gravity influences this measurement;

• Orientation with gravity, because both are typically derived from the accelerometer.

The highest negatively correlated features are:

• Altitude with pressure;
• Gravity with magnitude.
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ous variables.

To get insight—not only on the distribution of a single machine learning variable,
but also on the interrelationship between sensor parameters and their impact on each
class—the dataset was represented with pair plots using the Seaborn visualization library.

The kde diagrams on the diagonal allow us to see the distribution of a single variable,
while the scatterplots on the upper and lower triangles show the relationship (or lack
thereof) between two variables. As we can see in Figure 3, the pair plots show the relation-
ships between all pairs of features per class and, in case of a linear relationship, denote
the strength of this relationship. The more the dots scatter from the trend line, the weaker
the relationship. Strong linear correlations exist between gravity and acceleration (A) and
between altitude and pressure (B). Gravity-y and orientation-x (C), as well as gravity-z and
orientation-w (C), have medium linear relationships. Gravity and magnitude (D) have a
weak linear relationship. The large amount of overlap between classes in the univariate
kernel density plots shows that neither feature of the pair alone is able to classify trans-
portation modes very well. The classes are not well separated into clusters based on the
sensor measurements. Thus, it becomes very difficult to distinguish one class from another.

4.3. Data Preparation

The dataset was already a supervised learning problem with input and output vari-
ables. In Figure 4a–c, the data preparation process is depicted.
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For a better performance, two data preprocessing techniques were employed in this
work. The first step was to drop rows with class 0 (null class) and sort the column of time
values so that the data were sorted by date. The original dataset described the daily sensor
measurements for 7 months at various times per day. The dataset was resampled so as to
be available at the same frequency that we wanted to make predictions. Downsampling
decreased the frequency of the samples from milliseconds to minutes. This makes sense, as
switching between transportation modes can be quite frequent.

The goal was to establish a multivariate LSTM prediction model. The problem was
framed so that multiple, recent timesteps could be used to make the prediction for the next
timestep. For example, given the current time (t), we wanted to predict the value at the
next time in the sequence (t + 1), so we used the current time (t), as well as the one or more
prior times (t − 1, t − 2, . . . , t − n), as input variables. The input features were normalized,
as there were differing scales in input values.
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4.4. Proposed LSTM Model

First, the dataset was split into training and test sets (80% for training, 20% for testing),
and then the training and test sets were split into input and output variables. As depicted
in Figure 4d, two approaches were made for constructing the final prediction model.
Firstly, the data were fed to LSTM as a whole set of the original 22 features, and then a
dimensionality reduction algorithm was used before applying LSTM to the data so as to
reduce the dimensions of the training data and positively affect the performance of the
model. The inputs were reshaped into the 3D format expected by LSTM. The LSTM model
selected through the Bayesian optimization process was defined with 64 neurons in the first
hidden layer, and an output layer with a softmax activation function and 9 output values.
Only one layer of LSTM was used, but different numbers of LSTM cells—such as 128, 256,
512, and 1024, which are the most used numbers in the literature—were tested. Categorical
cross-entropy was used as a method for error calculation and, in order to update the
weights of our neural network, the Adam optimizer was used, with a learning rate of
0.001. Additionally, dropout was implemented to randomly drop 20% of units from the
network. To reduce underfitting and improve model performance, the network was fitted
for a different number of epochs and various batch sizes, while a 10-fold cross-validation
was used to overcome the limitation of dataset size and prevent overfitting.

Each experimental scenario was run 10 times with the same parameters so as to obtain
an average outcome. Various tests were conducted concerning resampling, LSTM model
(number of cells, dropout), epochs, and batch size variances.
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The model learned better after each epoch. However, it started to memorize with
the increasing number of epochs. As the batch size value decreased, the complication
of the model increased and gave better results, but after a certain time there was no
significant improvement.

4.5. Experimental Results

In this subsection, we evaluate the performance of the proposed optimized LSTM
model. Several traditional machine learning algorithms, ensemble methods, and deep
learning models were used to determine transportation modes as a benchmark to the LSTM
model, as shown in Figure 4e:

• Traditional machine learning algorithms: logistic regression (LR), linear discriminant
analysis (LDA), k-nearest neighbor (kNN), classification and regression tree (CART),
naive Bayes (NB), multilayer perceptrons (MLPs);

• Ensemble algorithms: random forest (RF, bagging algorithm), AdaBoost, XGBoost,
(boosting algorithms), bagging (bootstrap aggregating), extra trees (extremely ran-
domized trees), voting (hard or soft voting);

• Deep learning algorithms: convolutional neural network (CNN), bidirectional long
short-term memory networks (Bi-LSTM).

The hyperparameters of all models were optimized, and are summarized in Tables 2–4.

Table 2. The parameters of traditional ML algorithms.

Ada-Boost Bagging Extra Trees XG Boosting Voting

n_estimators 1000 150 150 -
Base estimators Random forest classifier Decision tree classifier - RF, SVC, DT
Number of trees - 500 - -

Max_features - - 5 -
RF n-estimators - - - 50
SVC parameters - - - default

Table 3. The parameters of ensemble methods.

LR LDA k-NN NN RF CART

Multiclass One-vs-rest - - - - -
K value 5 - - -

Classifier - - - MLP - -
Layers 100 hidden

n_estimators - - - - 20 -
Max depth - - - - 5 -

Max tree depth - - - - - None
Solver - Singular value decomposition (svd) - - - -

Table 4. The parameters of DL methods.

CNN Bi-LSTM LSTM

Conv1D layer 2 - -
Activation Relu - -

Layers MaxPooling Flatten - -
Number of neurons in the first layer 8 8 64

Output values 9 9 9
Optimizer Adam Adam Adam
Dropout 0.1 0.1 0.2

Learning rate 0.001 0.001 0.001
Error calculation Categorical cross-entropy Categorical cross-entropy Categorical cross-entropy

Dense layer 2 (50,9) 1(9) 1 (9)
Activation ReLU, softmax Softmax Softmax
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In order to evaluate the performance of different classification models, among several
metrics used in this study—i.e., accuracy, precision, recall, F1-score, and confusion matrix—
weighted F1-score was selected to be the most representative, as it computes the F1-score for
each label, and returns the average, considering the proportion of each label in the dataset.

For forecasting, three different cases were used, i.e., 1-before, 2-before, and 3-before,
meaning that 1, 2, and 3 min before were taken into consideration, respectively, so as to
predict the transportation media used in the next minute.

As presented in Table 5, all traditional ML algorithms had similar F1-scores in all three
cases, apart from ANN, which performed better when prediction took 3 previous minutes
into consideration. k-NN performed best, achieving 98% in all three cases.

Table 5. F1-scores for cases 1-, 2-, and 3-before of applying traditional ML algorithms.

LR LDA k-NN CART NB ANN RF

1-before 70 87 98 92 92 79 87
2-before 68 87 98 91 92 86 88
3-before 68 87 98 92 89 98 87

As Figure 5 shows, k-NN classified all classes the best, whereas ANN showed a better
prediction in the case of 3-before for all classes, except for run and subway.
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The ensemble methods performed better than the traditional ML algorithms, as
presented in Table 6. AdaBoost in the case of 3-before, and hard voting in the 1-before and
2-before cases, reached 98% and 99% F1-scores, respectively.

Table 6. F1-scores for cases 1-, 2-, and 3-before of applying traditional ensemble methods.

AdaBoost (RF) Bagging Extra Trees XG Boosting Hard Voting

1-before 62 92 53 98 98
2-before 69 92 50 98 99
3-before 99 92 82 98 95
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The ensemble methods that achieved less than 70% F1-scores had difficulty in ac-
curately predicting the car and bike classes, as presented for example in Figure 6a,b,
where AdaBoost and extra trees in the 1-before case prediction per class are presented.
In Figure 6c,d, the same results are shown for the two cases that achieved the best results—
hard voting in the 2-before case, and AdaBoost in the 3-before case—where the prediction
was almost perfect. DL methods performed as shown in Figure 7. Bi-LSTM performed well,
achieving a 98% F1-score only in the 1-before case, whereas LSTM in both the 1-before and
3-before cases reached 99%. In Figure 8, the LSTM F1-scores for each class are presented.
All classes were predicted better in the 1-before case and, in general, among all classes, the
motorized media were more difficult to predict accurately—especially in the 2-before case.
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The training times for each algorithm achieving an F1-score of more than 95% are
presented in Table 7. XGBoost was the fastest, followed by the deep learning algorithms—
namely, Bi-LSTM and LSTM—which, despite their complex structures, performed faster
than the others in all three cases.
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Table 7. Training time (in seconds) for the algorithms achieving F1-scores of more than 95% in the 1-,
2-, and 3-before cases.

1-Before 2-Before 3-Before

kNN 128 323 346
ANN 2264

AdaBoost (RF) 172
Bagging 230 453 704
XGBoost 33 53 78

Hard voting 433 761
Bi-LSTM 108

LSTM 107 500
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To reduce the number of input features, two dimensionality reduction techniques
were applied prior to the LSTM model: principal component analysis (PCA), and linear
discriminant analysis (LDA). Several n-components’ values were tested to accomplish the
best performance of the model. According to Figure 9, for the implementation of PCA, four
principal components were selected so as to preserve over 90% of the total variance of the
data, and seven principal components were finally selected for LDA.
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Figure 9. Number of principal components for the (a) PCA algorithm and (b) LDA algorithm.

In Table 8, the results of these two techniques are presented concerning F1-scores
and accuracy metrics. It is clear that PCA had better results than LDA, and made LSTM
perform better in all three cases. PCA worked best in that direction, achieving an increase
in F1-score from 99.5 to 99.8%. In the 3D scatterplot in Figure 10, we see that PCA’s three
components hold more information than LDA’s, especially for specific classes—i.e., still,
walk, run, car—but clearly not enough to set all of them apart.

A plot of learning curves is shown in Figure 11, indicating loss for the 2-before case,
both before and after applying PCA. With PCA, the training and validation loss decreased
to a point of stability, with a minimal generalization gap between the two final loss values,
showing a well-fitted model.

Entropy 2021, 23, x FOR PEER REVIEW 15 of 20 
 

 

To reduce the number of input features, two dimensionality reduction techniques 
were applied prior to the LSTM model: principal component analysis (PCA), and linear 
discriminant analysis (LDA). Several n-components’ values were tested to accomplish the 
best performance of the model. According to Figure 9, for the implementation of PCA, 
four principal components were selected so as to preserve over 90% of the total variance 
of the data, and seven principal components were finally selected for LDA. 

  
(a) (b) 

Figure 9. Number of principal components for the (a) PCA algorithm and (b) LDA algorithm. 

In Table 8, the results of these two techniques are presented concerning F1-scores and 
accuracy metrics. It is clear that PCA had better results than LDA, and made LSTM per-
form better in all three cases. PCA worked best in that direction, achieving an increase in 
F1-score from 99.5 to 99.8%. In the 3D scatterplot in Figure 10, we see that PCA’s three 
components hold more information than LDA’s, especially for specific classes—i.e., still, 
walk, run, car—but clearly not enough to set all of them apart.  

  

Figure 10. Visualization of the first three principal components of PCA in the 1-before case. 

Table 8. F1-score/accuracy metrics and number of n-components in the 1-, 2-, and 3-before cases for 
LSTM after applying PCA and LDA algorithms. 

 PCA-LSTM LDA-LSTM 
1-before 99.8/99.5 (4 n-components)  70/68 (7 n-components) 
2-before 99.7/99.7 (5 n-components) 97/99 (7 n-components) 
3-before 99.5/99.5 (15 n-components) 97/99.7 (7 n-components) 

Figure 10. Visualization of the first three principal components of PCA in the 1-before case.



Entropy 2021, 23, 1457 16 of 20

Entropy 2021, 23, x FOR PEER REVIEW 16 of 20 
 

 

A plot of learning curves is shown in Figure 11, indicating loss for the 2-before case, 
both before and after applying PCA. With PCA, the training and validation loss decreased 
to a point of stability, with a minimal generalization gap between the two final loss values, 
showing a well-fitted model. 

  

Figure 11. Learning curves indicating loss for the 2-before case, before and after applying PCA. 

Figure 12 depicts LSTM’s performance before and after reducing the dimensionality 
of the data. With PCA, the performance was improved in the 2-before and 3-before cases, 
but in 1-before it decreased by ~0.3%.  

 
Figure 12. LSTM’s performance before and after applying PCA for the 1-, 2-, and 3-before cases. 

In Figure 13, the blue line represents the average values of the actual transportation 
media used for all 1-, 2-, and 3-before cases, while the yellow line represents the predicted 
values. It is clear that LSTM was able to capture the overall trend. 

The classes predicted before and after applying PCA are presented in Figure 14. In 
the 1-before case, the train and subway classes were predicted worse after dimensionality 
reduction, whereas with PCA all classes were predicted better in the other two cases. 

Figure 11. Learning curves indicating loss for the 2-before case, before and after applying PCA.

Table 8. F1-score/accuracy metrics and number of n-components in the 1-, 2-, and 3-before cases for
LSTM after applying PCA and LDA algorithms.

PCA-LSTM LDA-LSTM

1-before 99.8/99.5 (4 n-components) 70/68 (7 n-components)
2-before 99.7/99.7 (5 n-components) 97/99 (7 n-components)
3-before 99.5/99.5 (15 n-components) 97/99.7 (7 n-components)

Figure 12 depicts LSTM’s performance before and after reducing the dimensionality
of the data. With PCA, the performance was improved in the 2-before and 3-before cases,
but in 1-before it decreased by ~0.3%.
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Figure 12. LSTM’s performance before and after applying PCA for the 1-, 2-, and 3-before cases.

In Figure 13, the blue line represents the average values of the actual transportation
media used for all 1-, 2-, and 3-before cases, while the yellow line represents the predicted
values. It is clear that LSTM was able to capture the overall trend.

The classes predicted before and after applying PCA are presented in Figure 14. In
the 1-before case, the train and subway classes were predicted worse after dimensionality
reduction, whereas with PCA all classes were predicted better in the other two cases.
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In terms of time, according to Figure 15, LSTM–PCA had an average training time
of 394 s in all three cases, while LSTM without dimensionality reduction had an average
training time of 325 s. Both models’ testing times had similar average values, at 1.23 and
1.15 s, respectively.
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5. Conclusions

In this work, we scrutinized the effectiveness of several machine learning methods
used for transportation mode detection based on multimodal smartphone sensor data. Our
proposed Bayesian-optimized LSTM model can recognize eight transportation modes with
99.7% accuracy, and significantly outperforms other state-of-the-art methods. Apart from
the superior recognition rates attained by our proposed model, a few additional interesting
conclusions can be drawn from our evaluation.

Among traditional ML algorithms, k-NN and ANN (MLP) performed better in all
three cases and in the 3-before case, respectively. The transport media that were predicted
more accurately were the non-motorized rather than the motorized ones. The experiments
also showed that ensemble methods performed better than the traditional ML algorithms—
especially AdaBoost (random forest) in the 3-before case and hard voting (random forest,
SVC, decision trees) in the 1- and 2-before cases. Among these methods, the ones that
performed worse had difficulty in distinguishing cars from bikes, cars from buses, buses
from subway, and still from walking.

Among deep learning models, the best results were obtained by the proposed opti-
mized LSTM only in the 1-before and 3-before cases. LSTM managed to accurately predict
all transport media in the 1-before case, whereas in the 3-before case it did not perform
well for train or subway.

After dimensionality reduction with PCA applied to the dataset, LSTM achieved a
high F1-scores for all three cases, with the highest F1-score of 99.7%. The classes were
predicted with almost 100% accuracy in the 2-before and 3-before cases. On the other hand,
in the 1-before case, there was a better prediction for all classes without applying PCA.
Both LSTM and PCA–LSTM showed an increase in all three cases, but applying PCA before
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LSTM caused a smoother change in time values. In general, the training time was not long,
but it is clear from Figure 15 that PCA–LSTM took less time in the 1-before case and more
in the 3-before case compared to LSTM. Similarly, in terms of prediction time, it took longer
for LSTM to predict the transport media from 3 min before, and less time from 1 min before.
In the 2-before case, both training and prediction times had similar values.

Despite the good results achieved in this study, there were also some limitations.
Firstly, the limited number of annotated data—especially for specific classes—along with
the great computational complexity due to the large number of model parameters, resulted
in the model finding it difficult to distinguish certain classes, such as car and bike. Secondly,
the fact that not all people own a smartphone (e.g., residents of developing countries,
elderly people) would make it impossible to detect the transportation mode they use in
this way; thus, alternative methods should be explored.

The automatic recognition of transportation modes, which was described in this
work using data from the sensors of a modern mobile device, can be further used for
valuable support in various intelligent transportation system (ITS) applications, such as
driving behavior monitoring, human activity monitoring, urban transportation planning,
road environment and traffic prediction, health monitoring, etc. Such an application,
for example, could be particularly useful to internet service providers so as to allocate
their resources effectively and provide a more personalized and enhanced experience to
the citizens.

Future directions of our work include the following: using a larger and more balanced
dataset to improve the model and attain a better and more accurate distinction between all
classes; investigating alternative ways to detect transportation mode without smartphones;
investigating approaches based on transformer neural networks, so as to be immediately
able to process larger datasets without the restriction of processing sequential data and,
secondly, to reduce training time so as to result in a more accurate and efficient model; and
investigating methods for increased explainability of the system outcome (explainable artifi-
cial intelligence—XAI), while maintaining a high level of learning performance/prediction
accuracy, so as to develop models that are both robust in terms of accuracy and notably
interpretable during all of the stages of development.
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