Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure
Abstract
:1. Introduction
2. System and Method
2.1. Data Collection
2.2. Preprocess
2.3. Indices Calculation
2.3.1. Frequency Domain Analysis
2.3.2. Similarity Change Analysis
2.4. Indice Validation
3. Results
3.1. HRV Analysis of the Difference between the Control and CHF Group
3.2. CHF Sreening
- (1)
- K Nearest Neighbor (KNN): KNN is a type of instance-based learning. New cases are classified based on a similarity measure in the vector space model. Here the neighbor number is defined as 5 [46].
- (2)
- Random forest classifier (RF): RF is an ensemble learning method that consists of a multitude of decision trees. The result is determined by the output model of a single tree [47].
- (3)
- Support Vector Machine (SVM): SVM is a supervised clustering method that maps data points to high-dimensional space through kernel functions for classification. In this paper, we select polynomial kernel function to classify data points [48].
3.3. Parameter Selection
4. Discussion
4.1. Comparison and Summary
4.2. Comparison with Previous Studies
4.3. Method Propsed and Parameter Selection
4.4. Physiological Significance
4.4.1. Why Does ANS Balance Differ Significantly between the Two Groups?
4.4.2. Why Does the Similarity of HR Fluctuations Change Significantly between the Two Groups?
4.4.3. Why Does the Complexity of HR Fluctuations Differ between the Two Groups?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dougherty, A.H.; Naccarelli, G.V.; Gray, E.L.; Hicks, C.H.; Goldstein, R.A. Congestive heart failure with normal systolic function. Am. J. Cardiol. 1984, 54, 778–782. [Google Scholar] [CrossRef]
- Garg, R.; Packer, M.; Pitt, B.; Yusuf, S. Heart failure in the 1990s: Evolutions of a major public health problem in cardio-vascular medicine. J. Am. Coll. Cardiol. 1993, 22, A3–A5. [Google Scholar] [CrossRef] [Green Version]
- Mårtensson, J.; Karlsson, J.E.; Fridlund, B. Male patients with congestive heart failure and their conception of the life situation. J. Adv. Nurs. 2010, 25, 579–586. [Google Scholar] [CrossRef]
- Poppas, A.; Rounds, S. Congestive Heart Failure. Am. J. Respir. Crit. Care Med. 2002, 165, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, G.D.; Hayes, P.; Breen, K.J.; Schenker, S. The liver in congestive heart failure: A review. Am. J. Med. Sci. 1973, 265, 174–189. [Google Scholar] [CrossRef]
- Ogawa, M.; Zhou, S.; Tan, A.Y.; Song, J.; Gholmieh, G.; Fishbein, M.C.; Luo, H.; Siegel, R.J.; Karagueuzian, H.S.; Chen, L.S.; et al. Left Stellate Ganglion and Vagal Nerve Activity and Cardiac Arrhythmias in Ambulatory Dogs With Pacing-Induced Congestive Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zheng, L.; Li, K.; Wang, Q.; Liu, G.; Jiang, Q. A Novel and Effective Method for Congestive Heart Failure Detection and Quantification Using Dynamic Heart Rate Variability Measurement. PLoS ONE 2016, 11, e0165304. [Google Scholar] [CrossRef] [PubMed]
- Ravenswaaij-Arts, V.; Conny, M.A. Heart rate variability. Ann. Intern. Med. 1993, 118, 436. [Google Scholar] [CrossRef]
- Takase, B.; Kurita, A.; Noritake, M.; Uehata, A.; Maruyama, T.; Nagayoshi, H.; Nishioka, T.; Mizuno, K.; Nakamura, H. Heart rate variability in patients with diabetes mellitus, ischemic heart disease, and congestive heart failure. J. Electrocardiol. 1992, 25, 79–88. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Mortara, A.; Capomolla, S.; Febo, O.; Ferrari, R.; Franchini, M.; Gnemmi, M.; Opasich, C.; et al. Short-Term Heart Rate Variability Strongly Predicts Sudden Cardiac Death in Chronic Heart Failure Patients. Circulation 2003, 107, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.T.; Tsai, P.H.; Lin, P.F.; Lin, C.; Hsin, Y.L. The nonlinear and nonstationary properties in EEG signals: Probing the complex fluctuations by Hilbert–Huang transform. Adv. Adapt. Data Anal. 2011, 1, 461–482. [Google Scholar] [CrossRef]
- Peng, C.-K.; Costa, M.; Goldberger, A.L. Adaptive data analysis of complex fluctuations in physiologic time series. Adv. Adapt. Data Anal. 2009, 1, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology: Alteraions with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. 1), 2466–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckers, F.; Verheyden, B.; Couckuyt, K.; Aubert, A.E. Fractal dimension in health and heart failure. Biomed. Tech. Eng. 2006, 51, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do Existing Measures of Poincare Plot Geometry Reflect Nonlinear Features of Heart Rate Variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Khandoker, A.H.; Jelinek, H.F.; Palaniswami, M. Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. Biomed. Eng. Online 2009, 8, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, S.; Yang, Q.; Liu, G.; Ge, L. Application of the Variance Delay Fuzzy Approximate Entropy for Autonomic Nervous System Fluctuation Analysis in Obstructive Sleep Apnea Patients. Entropy 2020, 22, 915. [Google Scholar] [CrossRef]
- Peng, C.K.; Yang, C.C.; Goldberger, A.L. Statistical physics approach to categorize biologic signals: From heart rate dynamics to DNA sequences. Chaos 2007, 17, 88–433. [Google Scholar] [CrossRef]
- Yang, C.C.; Hseu, S.S.; Yien, H.W.; Goldberger, A.L.; Peng, C.K. Linguistic Analysis of the Human Heartbeat Using Fre-quency and Rank Order Statistics. Phys. Rev. Lett. 2003, 90, 108103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Chang, E.; Yang, W.-H.; Jiang, B.C.; Yang, A.C.; Peng, C.-K. Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach. Entropy 2017, 19, 677. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.C.; Tsai, S.-J.; Hong, C.-J.; Wang, C.; Chen, T.-J.; Liou, Y.-J.; Peng, C.-K. Clustering Heart Rate Dynamics Is Associated with β-Adrenergic Receptor Polymorphisms: Analysis by Information-Based Similarity Index. PLoS ONE 2011, 6, e19232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. Circ. Physiol. 1994, 266, H1643–H1656. [Google Scholar] [CrossRef] [PubMed]
- Richman, S.; Joshua, M.; Randall, J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, W.; He, A.; Feng, K.; Li, Y.; Wu, D.; Liu, G. Multi-Frequency Components Entropy as Novel Heart Rate Variability Indices in Congestive Heart Failure Assessment. IEEE Access 2019, 7, 37708–37717. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Li, Y.; Pan, W.; Li, K.; Jiang, Q.; Liu, G. Sliding Trend Fuzzy Approximate Entropy as a Novel De-scriptor of Heart Rate Variability in Obstructive Sleep Apnea. IEEE J. Biomed. Health Inform. 2019, 23, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sokunbi, M.O.; Cameron, G.G.; Ahearn, T.S.; Murray, A.D.; Staff, R.T. Fuzzy approximate entropy analysis of resting state fMRI signal complexity across the adult life span. Med. Eng. Phys. 2015, 37, 1082–1090. [Google Scholar] [CrossRef]
- Melillo, P.; Fusco, R.; Sansone, M.; Bracale, M.; Pecchia, L. Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med. Biol. Eng. Comput. 2011, 49, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leandro, P.; Paolo, M.; Marcello, B. Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans. Biomed. Eng. 2010, 58, 800–804. [Google Scholar]
- İşler, Y.; Kuntalp, M. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput. Biol. Med. 2007, 37, 1502–1510. [Google Scholar] [CrossRef]
- Krum, H.; Bigger, T.; Goldsmith, R.L.; Packer, M. Effect of long-term digoxin therapy on autonomic function in patients with chronic heart failure. J. Am. Coll. Cardiol. 1995, 25, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, R.L.; Bigger, J.T.; Bloomfield, D.M.; Krum, H.; Steinman, R.C.; Sackner-Bernstein, J.; Packer, M. Long-term carve-dilol therapy increases parasympathetic nervous system activity in chronic congestive heart failure. Am. J. Cardiol. 1997, 80, 1101–1104. [Google Scholar] [CrossRef]
- E Mietus, J.; Peng, C.-K.; Henry, I.; Goldsmith, R.L.; Goldberger, A.L. The pNNx files: Re-examining a widely used heart rate variability measure. Heart 2002, 88, 378–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Singh, J.; Sharma, R.K.; Gupta, A.K. A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring. Comput. Biol. Med. 2016, 78, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Jay, O.; Halaki, M.; Graham, K.; Davis, G.M. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 116, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef] [PubMed]
- Saboul, D.; Pialoux, V.; Hautier, C. The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. Eur. J. Sport Sci. 2011, 14, S282–S288. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liang, D.; Yang, Q.; Liu, G. Regularity of heart rate fluctuations analysis in obstructive sleep apnea patients using information-based similarity. Biomed. Signal Process. Control. 2020, 65, 102370. [Google Scholar] [CrossRef]
- Kumar, Y.; Dewal, M.; Anand, R. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014, 133, 271–279. [Google Scholar] [CrossRef]
- Ramírez, J.; Monasterio, V.; Mincholé, A.; Llamedo, M.; Lenis, G.; Cygankiewicz, I.; de Luna, A.B.; Malik, M.; Martínez, J.P.; Laguna, P.; et al. Automatic SVM classification of sudden cardiac death and pump failure death from autonomic and repolarization ECG markers. J. Electrocardiol. 2015, 48, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, L.; Wang, Q.; Zhou, G.; Wang, Y.; Jiang, Q. A New Approach to Detect Congestive Heart Failure Using Short-Term Heart Rate Variability Measures. PLoS ONE 2014, 9, e93399. [Google Scholar] [CrossRef]
- Masetic, Z.; Subasi, A. Congestive heart failure detection using random forest classifier. Comput. Methods Programs Biomed. 2016, 130, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, K.Y.; Khor, W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, e262–e273. [Google Scholar] [CrossRef]
- Poddar, M.G.; Birajdar, A.C.; Virmani, J. Automated Classification of Hypertension and Coronary Artery Disease Patients by PNN, KNN, and SVM Classifiers Using HRV Analysis; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Alarsan, F.I.; Younes, M. Mamoon, Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. J. Big Data 2019, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lameski, P.; Zdravevski, E.; Koceski, S.; Kulakov, A.; Trajkovik, V. Vladimir, Suppression of intensive care unit false alarms based on the arterial blood pressure signal. IEEE Access 2017, 5, 5829–5836. [Google Scholar]
- Wang, Y.; Wei, S.; Zhang, S.; Zhang, Y.; Zhao, L.; Liu, C.; Murray, A. Comparison of time-domain, frequency-domain and non-linear analysis for distinguishing congestive heart failure patients from normal sinus rhythm subjects. Biomed. Signal Process. Control. 2018, 42, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Pecchia, L.; Melillo, P.; Sansone, M.; Bracale, M. Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 40–46. [Google Scholar] [CrossRef]
- Luo, D.; Pan, W.; Li, Y.; Feng, K.; Liu, G. The Interaction Analysis between the Sympathetic and Parasympathetic Systems in CHF by Using Transfer Entropy Method. Entropy 2018, 20, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornforth, D.; Jelinek, H.F. Detection of Congestive Heart Failure using Renyi Entropy. In 2016 Computing in Cardiology Conference (CinC); IEEE: Manhattan, NY, USA, 2016. [Google Scholar] [CrossRef]
- Chen, W.; Liu, G.; Su, S.; Jiang, Q.; Nguyen, H. A CHF detection method based on deep learning with RR intervals. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 3369–3372. [Google Scholar]
- Wang, L.; Zhou, W.; Liu, N.; Xing, Y.; Zhou, X. CHF Detection with LSTM Neural Network. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Iyengar, N.; Peng, C.-K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. Integr. Comp. Physiol. 1996, 271, R1078–R1084. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.K.; Hausdorff, J.M.; Havlin, S.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Multiple-time scales analysis of physiological time series under neural control. Phys. A Stat. Mech. Appl. 1998, 249, 491–500. [Google Scholar] [CrossRef]
- Hoyer, D.; Schmidt, K.; Bauer, R.; Zwiener, U.; Kohler, M.; Luthke, B.; Eiselt, M. Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng. Med. Biol. Mag. 1997, 16, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.; Choi, K.-J.; Huh, S.-J. Prediction of spontaneous ventricular tachyarrhythmia by an artificial neural network using parameters gleaned from short-term heart rate variability. Expert Syst. Appl. 2011, 39, 3862–3866. [Google Scholar] [CrossRef]
- Batchinsky, A.I.; Cancio, L.C.; Salinas, J.; Kuusela, T.; Cooke, W.H.; Wang, J.J.; Boehme, M.; Convertino, V.A.; Holcomb, J.B. Prehospital Loss of R-to-R Interval Complexity is Associated with Mortality in Trauma Patients. J. Trauma: Inj. Infect. Crit. Care 2007, 63, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Ao, D.; Sun, R.; Song, R. Comparison of complexity of EMG signals between a normal subject and a patient after stroke—A case study. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4965–4968. [Google Scholar] [CrossRef]
- Zheng, L.; Pan, W.; Li, Y.; Luo, D.; Wang, Q.; Liu, G. Use of mutual information and transfer entropy to assess interaction between parasympathetic and sympathetic activities of nervous system from HRV. Entropy 2017, 19, 489. [Google Scholar] [CrossRef] [Green Version]
- Valenza, G.; Citi, L.; Saul, P.; Barbieri, R. ECG-Derived Sympathetic and Parasympathetic Nervous System Dynamics: A Congestive Heart Failure Study. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar] [CrossRef]
- Kishi, T. Heart failure as an autonomic nervous system dysfunction. J. Cardiol. 2012, 59, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Hasking, G.J.; Esler, M.D.; Jennings, G.L.; Burton, D.; Johns, J.A.; Korner, P.I. Norepinephrine spillover to plasma in patients with congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986, 73, 615–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahko, P.S.; Shaver, J.A.; Salerni, R.; Uretsky, B.F. Noninvasive evaluation of systolic and diastolic function in severe congestive heart failure secondary to coronary artery disease or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1986, 57, 1315–1322. [Google Scholar] [CrossRef]
- Böhm, M.; Perez, A.-C.; Jhund, P.S.; Reil, J.C.; Komajda, M.; Zile, M.R.; McKelvie, R.S.; Anand, I.S.; Massie, B.M.; Carson, P.E.; et al. Relationship between heart rate and mortality and morbidity in the irbesartan patients with heart failure and preserved systolic function trial (I-Preserve). Eur. J. Heart Fail. 2014, 16, 778–787. [Google Scholar] [CrossRef] [PubMed]
- A Mulieri, L.; Hasenfuss, G.; Leavitt, B.; Allen, P.D.; Alpert, N.R. Altered myocardial force-frequency relation in human heart failure. Circulation 1992, 85, 1743–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houle, M.S.; Billman, G.E. Low-frequency component of the heart rate variability spectrum: A poor marker of sympathetic activity. Am. J. Physiol. Heart Circ. Physiol. 1999, 276, H215–H223. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Takahashi, M.; Hosaka, Y.; Ito, M.; Ito, E.; Suzuki, K. Prolonged recovery of cardiac output after maximal exercise in patients with chronic heart failure. J. Am. Coll. Cardiol. 2000, 35, 1228–1236. [Google Scholar] [CrossRef] [Green Version]
- Kemp, C.D.; Conte, J.V. The pathophysiology of heart failure. Cardiovasc. Pathol. 2012, 21, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Gargani, L.; Gheorghiade, M. Why, when, and how to assess pulmonary congestion in heart failure: Patho-physiological, clinical, and methodological implications. Heart Fail. Rev. 2010, 15, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Saul, J.P.; Arai, Y.; Berger, R.D.; Lilly, L.S.; Colucci, W.S.; Cohen, R.J. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am. J. Cardiol. 1988, 61, 1292–1299. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, S.; Zhang, C.; Zhang, Y.; Jiang, X.; Liu, F.; Liu, C. Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects. Entropy 2015, 17, 6270–6288. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Xiao, P.; Li, J.; Liu, Y.; Yan, C.; Zhang, Y. Parameters Analysis of Sample Entropy, Permutation Entropy and Permutation Ratio Entropy for RR Interval Time Series. Inf. Process. Manag. 2020, 57, 102283. [Google Scholar] [CrossRef]
- Qin, F.; Shite, J.; Liang, C.-S. Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: Association with changes in MAPK pathways. Am. J. Physiol. Circ. Physiol. 2003, 285, H822–H832. [Google Scholar] [CrossRef] [PubMed]
When m = 2; s = 2 | |||
---|---|---|---|
Indices | CHF | Normal | p-Value |
LF/HF | 1.2408 ± 0.57942 | 2.6092 ± 1.06902 | 0.000 *** |
IBS | 0.1770 ± 0.03744 | 0.2273 ± 0.01874 | 0.000 *** |
fApEn_IBS | 1.5710 ± 0.14279 | 1.7229 ± 0.03511 | 0.000 *** |
Indices | TN | TP | FN | FP | Acc (%) | Sen (%) | Spe (%) |
---|---|---|---|---|---|---|---|
LF/HF | 38 | 38 | 6 | 16 | 77.55 | 86.36 | 70.37 |
IBS | 49 | 33 | 11 | 5 | 83.67 | 75 | 90.74 |
fApEn_IBS | 53 | 30 | 14 | 1 | 84.69 | 68.18 | 98.15 |
Indices | Classifier | TN | TP | FN | FP | Acc (%) | Sen (%) | Spe (%) |
---|---|---|---|---|---|---|---|---|
LF/HF | RF | 54 | 43 | 1 | 0 | 98.98 | 97.73 | 100 |
IBS | KNN | 48 | 43 | 1 | 6 | 92.86 | 97.73 | 88.89 |
fApEn_IBS | SVM | 48 | 36 | 8 | 6 | 85.71 | 81.82 | 88.89 |
Reference | Feature | Number of Recordings | Length of RR Segment | Classifier | Classification Result |
---|---|---|---|---|---|
Pan et al. [25] | Single-feature—MFCN (Multi-Frequency Components Entropy) | 98 | 5 min | Fisher Discriminant | Acc = 86.7% Sen = 79.5% Spe = 92.6% |
Luo et al. [51] | Multi-feature—LF/HF+TE(LF→HF)+TE(HF→LF) Transfer Entropy (TE) | 98 | 5 min | Fisher Discriminant | Acc = 83.7% Sen = 86.4% Spe = 81.5% |
David et al. [52] | Multi-feature—Renyi Entropy+SDNN+RMSSD | 33 | 13 min | Nearest Neighbor | Acc = 87.9% Sen = 80.0% Spe = 94.4% |
Chen et al. [53] | Multi-feature—50 features | 116 | 5 min | A two-layer deep neural network model based on an SAE-based DL algorithm | Acc = 72.4% Sen = - Spe = - |
Wang et al. [54] | No need | 101 | 73.9 s | Long Short-Term Memory | Acc = 85.1% Sen = 73.6% Spe = 91.8% |
Other method | Multi-feature—fApEn_IBS+IBS+LF/HF | 98 | 1 min | Random Forces | Acc = 99.0% Sen = 97.8% Spe = 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, T.; Wei, K.; Liu, G.; Liu, B. Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure. Entropy 2021, 23, 1669. https://doi.org/10.3390/e23121669
Liu Z, Chen T, Wei K, Liu G, Liu B. Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure. Entropy. 2021; 23(12):1669. https://doi.org/10.3390/e23121669
Chicago/Turabian StyleLiu, Zeming, Tian Chen, Keming Wei, Guanzheng Liu, and Bin Liu. 2021. "Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure" Entropy 23, no. 12: 1669. https://doi.org/10.3390/e23121669
APA StyleLiu, Z., Chen, T., Wei, K., Liu, G., & Liu, B. (2021). Similarity Changes Analysis for Heart Rate Fluctuation Regularity as a New Screening Method for Congestive Heart Failure. Entropy, 23(12), 1669. https://doi.org/10.3390/e23121669