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Abstract: This paper proposes a U-Model-Based Two-Degree-of-Freedom Internal Model Control
(UTDF-IMC) structure with strength in nonlinear dynamic inversion, and separation of tracking
design and robustness design. This approach can effectively accommodate modeling error and distur-
bance while removing those widely used linearization techniques for nonlinear plants/processes. To
assure the expansion and applications, it analyses the key properties associated with the UTDF-IMC.
For initial benchmark testing, computational experiments are conducted using MATLAB/Simulink
for two mismatched linear and nonlinear plants. Further tests consider an industrial system, in
which the IMC of a Permanent Magnet Synchronous Motor (PMSM) is simulated to demonstrate the
effectiveness of the design procedure for potential industrial applications.

Keywords: Internal Model Control (IMC); U-model; U-model-based control (U-control); Two-Degree-
of-Freedom IMC (TDF-IMC); dynamic inversion; invariance entropy

1. Introduction

With the development of science and technology, the scale of industrial production in
almost all fields, such as petrochemical, metallurgy, electric power, machinery, aerospace,
etc. continues to expand, and the corresponding operational systems have had a demand for
high quality and better quantity [1], which is inevitably at the cost of bringing complexity
to the control system design. These challenges have motivated academic research and
industrial development.

The classical Proportional Integral Derivative (PID) control and its integrations with
various control strategies such as fuzzy PID [2], and neural PID [3] have been widely used
in industrial systems. Although these control strategies can cope with complexities such
as uncertainty, nonlinear dynamics, and large time delays, it is still worthwhile seeking
other effective control system design methodologies to further upgrade control system
performance while improving the design effectiveness. For example, a commonly observed
practical situation, is that the success of tuning PID controller parameters often depends on
a combination of the applicant’s engineering experience and tedious effort on trial and error.
Although this is workable, this unsystematically experienced approach often causes largely
inefficient use of human resource and equipment to obtain satisfactory tuning results.

For this paper’s interest, model validity is a fundamental basis for model-based con-
trol system design. A better model makes control system design and tuning easier/more
efficient. However, for most engineering systems, there can be difficulties in obtaining
accurate plant/process models, primarily due to equipment diversity and environment
complexity; such as internal uncertainties and external disturbances. Even though a mathe-
matical model can be established from physical principles (such as energy conservation
law) and/or data driven (identification), it is usually taken as nominal reference (nominal
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model is an approximate description to accurate model). There are two main streams in
dealing with such model uncertainties, i.e., adaptive control and robust control. This paper
will follow the route of robust control.

The other practical topic is digital control, which has been used in almost all modern
control engineering systems. To deal with a digital channel between the sensor and the
controller, entropy [4], the concepts, terminologies, and techniques, has been adopted
in digital control systems. The invariance entropy [5] has been used to determine the
smallest average rate of information transmission to guarantee a considered subset of the
state-space invariant to achieve the integrated control system performance. Accordingly
control system design in connection to online applications, with potential contribution to
this field, is probably making the controllers more efficient in online computation, so that
reduces the burden to the communication capacity or at least does not increase significantly
the information processing complexity.

Internal Model Control (IMC) [6,7] has been widely accepted as an efficient robust
control approach. IMC selects the model inverse as the controller and integrates a robust
filter to control an explicit plant/process model. The IMC structure is characterized with (1)
capable robustness to overcome model uncertainties and system disturbances, (2) effective
procedures for designing and tuning, (3) successful application across different indus-
tries [8–10]. However, the control performance of classical IMC is not desirable, because the
adjustable parameters only exist in the filter. At the same time, higher robustness demand
could degrade tracking performance [11], which must compromise with some of the other
performances. Although a Two-Degree-of-Freedom IMC (TDF-IMC) structure can solve
the aforementioned problems with the classical IMC structure, its control performance still
cannot be separately designed [12–14].

When a linear model is completely reversible, the design of linear IMC is straightfor-
ward to take the controller as the inverse of the model and select a suitable filter. Even
though when the model is not completely reversible, the model can be decomposed into
reversible parts and irreversible parts, in which the inverse of the reversible part is taken
as the controller. Appropriate filter selection can then also ensure that the control system
has the smallest output variance for both stabilization and tracking control. However, for
controlling nonlinear plants/processes, these approaches are not applicable, and effective
algorithms for nonlinear dynamic inversion are very limited [15].

To deal with nonlinear control plants/processes, the approaches used by most of
the IMC structures can be divided into (1) linearizing the controlled plants/processes
and using linear method to invert [16]; (2) using PID [17], neural network [18,19] and
fuzzy control-based [20,21] dynamic inversion; (3) using some numerical tools, such as
the Newton–Raphson method [22]. However, the linearized and the other approximating
modeling methods could lose accurate representation of input-output relationship and
degrade the performance of the designed systems. Therefore, deriving the nonlinear model
inversion and enabling the two performance indicators (i.e., tracking and robustness) of
the IMC structure to be independently designed are the main challenges and focuses in
this paper. Accordingly, this study proposes a framework of U-Model-Based Two-Degree-
of-Freedom Internal Model Control (U-TDF-IMC) of nonlinear dynamic systems

U-model is a derived control-oriented model set to map almost all classical models
into their U-model realization, and converts classical models into controller output u-based
with time-varying parameters [23] expressions. U-model establishes a platform for solution
of dynamic inversion by solving roots of polynomial equations, which is more generally
attractive compared to the other ad hoc approaches/algorithms [24]. U-model-based
control [25] (denoted as ‘U-control’ thereafter), takes advantages of U-model in dynamic
inversion with the following characteristics:

1. Design control systems in a universal procedure, separate two dynamic inversions,
invariant controller implementation by inversing specified system performance in a
feedback configuration and plant utilization by plant inversion. These two designs
are parallel and separable;
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2. The difference in U-control between linear models and nonlinear models is the so-
lution with the first-order or higher-order polynomial root-solving. The difference
in U-control between polynomial models and state-space models is the one-layer or
multi-layer polynomial root-solving;

3. U-control is seamlessly supplemented to the other exist control schemes, for example
U-Pole Placement Control (UPPC) [26], U-General Predictive Control (UGPC) [27],
U-Neuro-Control (UNC) [28], U-Total Nonlinear Control (UNLC) [23], and U-Internal
Model Control (UIMC) [29].

This paper is aimed at using U-control, an enhanced tool supplemented to classi-
cal approaches, to integrate the strengths exhibited in U-control and IMC to provide an
enhanced version of IMC with strength in system configuration and nonlinear dynamic
inversion. To further improve TDF-IMC, this study expands the previous IMC work [29,30]
by effectively introducing U-model-based dynamic inversion within a revised system
structure configuration. By doing so, the new framework presents a new U-model-based
Two-Degree-of-Freedom IMC (UTDF-IMC) structure to achieve the completely indepen-
dent design in rejecting disturbance and tracking operational set-point. Compared with
the classical IMC and TDF-IMC, this proposed structure has better control performance
and more convenient tuning methods without introducing additional design work and
maintaining the same hardware configuration. Accordingly, the major impacts of this paper
are outlined below:

1. Propose a general U-model-based Two-Degree-of-Freedom IMC (UTDF-IMC) struc-
ture for controlling a class of open-loop stable polynomial/state-space modeled linear
and nonlinear dynamic plants. The new control system structure accommodates both
linear and nonlinear plants consistently and separate the tracking control filter design
from robust control filter design.

2. Tailor the UM-dynamic inversion platform [31] in conjunction with IMC, which
removes the necessity of either linearizing the nonlinear model, or converting it to
a quasi-linear parameter-varying (quasi-LPV) model in advance. This UM-dynamic
inversion platform directly provides algorithms dealing with all types of inversions
in IMC structured systems.

3. Analyze the designed UTDF-IMC control system properties to provide a valid refer-
ence for future study expansions and applications.

4. Verify the control system performance through benchmark tests of simulated case
studies and illustrate application procedure from an industrial case demonstration.

For the remainder of the paper, Section 2 presents the basis of using IMC and U-
control for the next step development of the new UTDF-IMC system structure. Section 3
elaborates on the principle of TDF-IMC structure and establishes the U-model-based TDF-
IMC (UTDF-IMC) framework; consequently, it analyses the control system properties.
Section 4 showcases two computational investigations to benchmark test/demonstrate the
proposed UTDF-IMC system performance. Then an industrial backgrounded permanent
magnet synchronous motors (PMSM) system is added to demonstrate the application
procedure and the comparative studies. Section 5 concludes this study with key findings
and observations.

2. Preliminaries
2.1. Internal Model Control (IMC)

A classical IMC control scheme [7] is shown in Figure 1a, in which the plants/process
P is approximated by model P0 (specifically known as internal model) and the controller
Q. Figure 1b shows the equivalently rearranged IMC structure, which the controller is
expressed in the inner loop

C =
Q

1−QP0
(1)
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Figure 1. IMC method structure (a) Internal model control structure; (b) Equivalent IMC structure.

For a given set-point reference r, the control system is designed to keep the output y
following a pre-specified output response ym (Figure 1a) with the desired transient and
steady-state performance. With reference to Figure 1a,

Plant output:

y =
QP

1 + Q(P− P0)
r +

1−QP0

1 + Q(P− P0)
d (2)

Error output:

e =
1

1 + Q(P− P0)
(r− d) (3)

Controller output:

u =
Q

1 + Q(P− P0)
(r− d) (4)

Remark 1. (2) can also be rewritten as:

y = αr + βd (5)

where α = QP
1+Q(P−P0)

specifies tracking performance and β = 1−QP0
1+Q(P−P0)

denotes the contribution
to robustness. These two weights meet the condition of α + β = 1.

The main features of IMC [7] include:

1. Dual stability: For P = P0 and d = 0, and y = ym, the feedback error signal e is
obviously zero. IMC system becomes an open-loop structure and both controller Q
and plant P stable.

2. Perfect control: This requests plant P = P0 minimum-phase and invertible and
controller as the model inverse Q = P0

−1. Accordingly (2) becomes:

y =
P0
−1P

1 + P0−1P− P0−1P0
r +

1− P0
−1P0

1 + P0−1(P− P0)
d = r, and α = 1, β = 0 (6)

3. Augmented robust IMC is shown in Figure 2. It decomposes model and dynamic
inversion by factorizing P0 into P0+ and P0−, namely: P0 = P0+P0−, where P0+ is
the part containing pure delay and uncertain zero, and P0− is the minimum-phase
part. There are certain factorization techniques, such as simple factorization, all-pass
factorization [32]. Hence, the controller is kept as the inverse of the plant/process
model with invertible portion, i.e.,

Q1 =
1

P0−
(7)
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Figure 2. Robust IMC structure.

Filter: When designing the IMC controller, it should add a low-pass filter for the
inverse of the factorized minimum-phase model to ensure the controller be proper and
robust to against the model mismatching and disturbance. Define the IMC controller and
the filter as:

Q = f Q1 (8)

f =
1

(1 + λs)ρ (9)

where ρ is the order of the filter, normally assigned with a large value to ensure Q1 be
proper or semi-proper; λ is the time constant, the sole design parameter of the controller
and is inversely proportional to the closed-loop response speed. Therefore, λ is a trade-off
between the performances.

Remark 2. Substituting (7) and (8) into (2) obtains the plant output:

y =

f
P0−

P

1 + f
P0−

P− f
P0−

P0
r +

1− f
P0−

P0

1 + f
P0−

P− f
P0−

P0
d =

f
P0−

P

(1− f P0+) +
f

P0−
P

r +
1− f P0+

(1− f P0+) +
f

P0−
P

d (10)

To track the reference signal with a faster speed and effectively reject the modeling
errors and system disturbance, it requires output (10) satisfying f P0+ = 1 necessarily,
which is achieved by selecting λ in the filter.

2.2. U-Model-Based Control (U-Control)
2.2.1. U-Models

A general U-polynomial-model of GP [33], with a triplet of (y(t), u(t), α(t)), y(t) ∈ R,
u(t) ∈ R α(t) ∈ RJ for the output, input, and time-varying parameter vector respectively
at time t ∈ R+, is defined for Single-Input and Single-Output (SISO) dynamic processes as

(M)
y

= ATU =
J

∑
j=0

αj f j

(
(N)

u

j
)

, M ≥ N (11)

where
(M)

y
and

(N)
u

are the Mth and Nth order derivatives of the plant output y and

the plant input u respectively. The time-varying parameter αj ∈ R+ absorbing all other out-

put terms such as
[

(m− 1)
y

, . . . ,
y

]
∈ RM and input terms

[
(n− 1)

u
, . . . ,

u

]
∈ RN .

Function f j(∗) is associated with the input
(

(N)
u

)j

. AT =
[

α0 , . . . , αJ
]

and

U =
[

f0 , . . . , f J
]

are the operators mapping the underlying input, output, and param-
eters into the condensed vector expressions. To illustrate the U-representation of classical
models, consider a general polynomial model:

..
y =

(
1− e−|y|

) .
y +

(
1 + y2

)
sin(u) +

(
1 +

.
y2
)

u2 + y +
(

y +
.
y2
)

u3 (12)
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Its U-model is transformed with the U-mappings of A and U

..
y = α0 f0(u) + α1 f1(u) + α2 f2(u)

2 + α3 f3(u)
3

α0 =
(

1− e−|y|
) .

y + y, f0
(
u0) = 1

α1 = 1 + y2, f1(u) = sin(u)
α2 = 1 +

.
y2, f2

(
u2) = u2

α3 = y +
.
y2, f3

(
u3) = u3

(13)

Remark 3. For representation to classical linear models, assign degree J = 1 and function
f0(u) = 1, f1(u) = u, then the linear U-model is expressed with

(M)
y

= α0 + α1
(N)

u
, M ≥ N (14)

Remark 4. For U-stats space-models, expand the single layer U-polynomial model (11) into
multi-layer systems of polynomials [31].

2.2.2. UM-Dynamic Inversion

For determining the output u of G−1
p , a general UM-dynamic inversion algorithm

is developed [19] to determine one of the solutions of
(N)

u
from solving the following

general polynomial equation

G−1
P ⇔ (N)

u
∈ (M)

y
−

J

∑
j=0

αj f j

(
(N)j

u

)
= 0, M ≥ N (15)

For the solution exist, the systems must be Bounded Input and Bounded Output
(BIBO) stable and no unstable zero dynamic (nonminimum phase). The solution platform
has been expanded including the root-solving algorithms for continuous/discrete time,
linear/nonlinear, polynomial/state-space models [31]. For online root-solving, Zhu [34]
has proposed Newton–Raphson iterative algorithm.

2.2.3. U-Control

Let Gp be a general representation of both polynomial and state-space-based linear
and nonlinear models for dynamic plants. In assumption, the plant has most properties as
those requested in the other classical works [35]. Consequently,

a. Model of Gp is invertible, i.e., G−1
P exists

b. Meet the continuity of Lipschitz, Gp and its inverse G−1
P are globally unified and

diffeomorphic in Rn, i.e.,

‖Gp(x1)− P(x2)‖ ≤ γ1Gp‖x1 − x2‖, ∀x1, x2 ∈ Rn‖G−1
P (x1)− G−1

P (x2)‖ ≤ γ2 G−1
P ‖x1 − x2‖, ∀x1, x2 ∈ Rn (16)

where x1, x2 are the states while Gp in the expression of state-space equation, γ1 and γ2
are the Lipschitz coefficients. This study takes SISO (input u ∈ R1 and output y ∈ R1)
prototype in consideration. U-control system framework [25] is shown in Figure 3, in
which F is for U-control system structure, Gc1 is a linear invariant controller to be designed,
and G−1

P is the inverter of the controlled plant GP to be designed as well. It is noted that
U-control framework is applicable to various plants/processes when the dynamic inverse
G−1

P exist.
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Figure 3. U-control system framework.

The U-control system is structured

∑ =
(
F , C

(
Gc1, G−1

P

)
, Gp

)
⇔∑ =

(
F , Gc1, Gip

)
(17)

where C(∗) is a set to be designed and Gip = G−1
P GP.

In general, the design of U-control system can be divided into two separate designs:

1. Designed dynamic inverter G−1
P to achieve G−1

P GP = 1. This gives ∑ = (F, Gc1)
2. Design invariant controller Gc1, which is a typically linear controller. Let the specified

closed-loop performance in transfer function G, in form of G = Gc1
1+Gc1

, which can be
comfortably assigned using damping ratio ζ and undamped natural frequency ωn for
linear system dynamic/steady-state response.

3. U-Model-Based Two-Degree-of-Freedom IMC (UTDF-IMC)
3.1. Classical Two-Degree-of-Freedom IMC (TDF-IMC) Structure

Figure 4 shows a TDF-IMC structure to be incorporated with U-control, which com-
prises feedback controller F added in the external loop within the classical IMC structure.
Clearly, if the feedback filter F is a unit constant, this structure is the same as that in
Figure 1a.

Figure 4. IMC structure with the feedback filter.

From Figure 4, the system output y = ym + ye. Therefore,

y = (r− yeF)QP0 + ye = rQP0 + ye(1− FQP0) (18)

In the TDF-IMC system, if the controlled plant is a minimum-phase system, then the
controller Q(s) = f (s)/P0(s). The output of (18) can be re-organised as:

y = r f + ye(1− F f ) (19)

The explicit input/output relationships from Figure 4 can be written as follows:

u =
Q

1 + (P− P0)FQ
(r− dF) (20)

y =
QP

1 + (P− P0)FQ
r +

1−QFP0

1 + (P− P0)FQ
d (21)
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If the controlled system does not contain uncertain parameters or control disturbance,
then ye = 0, otherwise, |ye| > 0. From (19), r f determines the system tracking performance,
while ye(1− F) f determines the system robustness.

To achieve desired control performance, a condition must hold true below:

lim
t→∞

f (t) = 1, lim
t→∞
L−1(F(s) f (s)) = 1 (22)

where L−1(∗) is the inverse Laplace transform operator, F(s) and f (s) are the Laplace
functions of filters F and f respectively. Thus, output y equals to the reference r eventually,
and the system disturbance and modeling errors will be eliminated. The performance of
the IMC control system will depend on these two filters F and f . The setting time and rise
time of these two filters should be as short as possible. However, response speed which are
too fast will cause the amplitude of the controller output signal to increase sharply.

From Figure 4, the controller Q(s) output u is:

u = (r− yeF)Q (23)

From (20), when controller Q is determined, the faster the response of the filter F,
the larger value the initial controller output u. In general, this can be observed from (19)
that the tracking ability and robustness of IMC system cannot be separately designed, as
well as its design flexibility is relatively limited. Therefore, this is one of paper aims, to
separate IMC’s designing of tracking ability control and robustness and improve its design
effectiveness without affecting its desired control performance.

3.2. U-Model-Based Two-Degree-of-Freedom IMC (UTDF-IMC) Structure

Based on the IMC problem stated in introduction and TDF-IMC analysis in Section 3.1,
this paper changes the classical TDF-IMC structure in Figure 4 to a UTDF-IMC structure as
shown in Figure 5.

Figure 5. U-model-based Two-Degree-of-Freedom IMC structure.

In Figure 5, the original controller Q in classical TDF-IMC shown in Figure 4 has been
split into two parts: the feedforward filter f and the inversion Pu

−1 of the U-realization
controlled plant model Pu, where the original IMC’s controller Q = f P0

−1. In contrast
to the classical IMC structure, feedforward filter f appears outside the system feedback
loop. However, generally the plant model inversion P0

−1 cannot exist alone because of its
irrationality and unrealizable property. For polynomial-based modeling of the controlled
plant expressed by Laplace transfer function, its inversion will make the order of the
numerator higher than the order of the denominator, which cannot be achieved in the
actual control system. Therefore, this paper introduces UM-dynamic inversion algorithm
to design the plant’s inversion part in UTDF-IMC structure.

From Figure 5, the system output y = ym + ye. Therefore,

y = (r f − yeF)Pu
−1Pu + ye = r f + ye(1− F f ) (24)
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3.3. UTDF-IMC Design Procedures

Figure 5 presents the U-model-based Two-Degree-of-Freedom IMC system framework,
where f and F are the designed feedforward and feedback filters, respectively. P is the
controlled plant or process, which is allowed to be linear or nonlinear. Pu is U-model-based
approximation to the controlled plant P. Pu

−1 is the inverter designed by the U-model-
based root-solving algorithm. From (15), the parameters absorbed by αj can be obtained
from the output signal ym of the plant model Pu(s) and controller output u. In general,
similar to the classical IMC design, UTDF-IMC system design has the following two steps:

1. Assume the controlled plant or process P is stable and bounded, and its inverse P−1

exists. Use U-model to describe P or convert the plant model P0 into its U-realization
Pu. The specific U-modeling process can refer to Section 2.1. In contrast to the classical
IMC or classical TDF-IMC, U-realization of the original model P0 can comfortably
cover nonlinear dynamics, therefore, remove linearization restrictions.

2. Design filters f and F according to system control performance requirements, then
re-optimize the parameters of the filters according to the controller output limit. The
feedforward filter determines the system’s set-point tracking ability (response time)
while the feedback filter determines the system’s robustness. Because the control
system performance is completely designed according to the two filters independently,
designers can select the appropriate filters according to performance requirements,
hardware limitations, controller output limitations, etc.

3.4. Property Analysis

1. Property 1 (Dual stability): Assume the plant model is perfectly matched (Pu = P)
and system disturbance is absent d = 0, then from Table 1, the closed-loop stability is
characterized by the stability of the plant P(P−1) and the feedforward filter f . In this
case, the system output signal will be: y = r f .

2. Property 2 (Perfect control): Assume that the dynamic inverter Pu
−1 is satisfied with

Pu = P and P stable, then the closed-loop system is stable and perfectly controlled.
In this case, the system output is y = r f + (1− F)d. The faster the response speed of
feedback filter F, the better the system robustness.

3. Property 3 (Zero offset): Assume that the steady-state gain of the controller equals to
steady-state gain of the inverse model, and this closed-loop system is input-output
stable with this controller, then offset free control is obtained asymptotically to step
or ramp type inputs and disturbances.

4. Property 4: Separability of designing the tracking filter and the robust filter: This is
shown in the tables, which UTDF-IMC has no product of the two filters F f .

Table 1. Input/output comparison of IMC, TDF-IMC, and UTDF-IMC against disturbance.

Controller Output u System Output y

IMC u = 1
P0+(P−P0) f (r f − d f ) y =

f P
P0+(P−P0) f r + P0(1− f )

P0+ f (P−P0)
d

TDF-IMC u = 1
P0+(P−P0)F f (r f − dF f ) y =

f P
P0+(P−P0)F f r + P0(1− f F)

P0+(P−P0)F f d

UTDF-IMC
u = 1

Pu+(P−Pu)F (r f − dF) y =
f P

Pu+(P−Pu)F r + Pu(1−F)
Pu+(P−Pu)F d

where Pu is the U-realization of P0

Comparison with IMC and TDF-IMC, Tables 1 and 2 list the three IMC types of
control system configurations against disturbance and model mismatching, respectively.
For UTDF-IMC the typical properties are analyzed below.
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Table 2. Output comparison of IMC, TDF-IMC, and UTDF-IMC against model mismatching.

System Output y

IMC y = r f − (1− f )ye
TDF-IMC y = r f − (1− F f )ye

UTDF-IMC y = r f + (1− F)ye

From Table 1, the factor associated with d is called the disturbance rejection designed.
It is clear that this rejection part only depends on the feedforward filter f in IMC, depends
on two filters F and f in TDF-IMC but only depends on the feedback filter F in UTDF-IMC
structure. In case of model mismatch, it can also use the output error signal ye to analyze
the system performance in Table 2:

From Table 2, regarding UTDF-IMC, the function associated with ye is robustness
designed, where ye absorbs all whole modeling error and system disturbance; the function
associated with signal r is for tracking designed. Obviously, when the controller equals
to plant model inversion, all the tracking design only depends on the feedforward filter f
and robustness designed is the same as previously discussed. In summary, compared with
the classical IMC and TDF-IMC structure, the main differences of UTDF-IMC structure are
as follows:

1. Classical TDF-IMC structure can make tracking ability and robustness be designed
separately but not wholly independent due to the product of Ff in robustness spec-
ification. The UTDF-IMC overcomes this shortcoming without resorting to a more
complex structure. Therefore, when the robustness performance of the system is
determined, UTDF-IMC structure will have a faster response speed than the classical
TDF-IMC structure.

2. U-model is used to facilitate control system design, which can be easily to form
an inversion of the plants to cancel both dynamic and nonlinearities. Accordingly,
it converts the nonlinear control system into a linear model-based control with a
nonlinear dynamic inverter.

3. UM-dynamic inversion algorithm is used to design the inversion part in UTDF-IMC
structure, which has a faster convergence speed and allows the inversion part exists
alone properly without the feedforward filter.

4. This structure where feedforward filter f from outside the control loop allows the
tracking ability and robustness performance to be completely independently de-
signed.

5. The improved control performance is not complicating the system structure and/or
increasing the additional computation burden throughout the design process.

4. Simulation Demonstrations

This simulation demonstration selects three plants to test the proposed U-model-based
TDF-IMC structure. Both plants will be controlled by IMC, TDF-IMC, and UTDF-IMC structure.

4.1. Linear Internal Model (Also Called Nominal Model in the Study)

P0(s) =
ωn

2

s2 + 2ζωns + ωn2 =
1

s2 + 3s + 1
(25)

This is characterized with the damping ratio ζ = 1.5 and the undamped natural
frequency ωn = 1.

For designing the UTDF-IMC system:

1. Convert plant model (25) into its corresponding U-model:
Pu(s) :

..
y = u− 3

.
y− y = α0 f0(u) + α1 f1(u)

α0 = −3
..
y 1

s −
..
y 1

s2 , f0
(
u0) = 1

α1 = 1, f1(u) = u
(26)
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2. Design the inverter of the plant model Pu(s):

u =
..
y + 3

..
y

1
s
+

..
y

1
s2 (27)

3. Design feedforward filter f (s) and feedback filter F(s)
In this paper, based on the UTDF-IMC system design procedure in Section 3.2,

to make the system achieve a fast response speed and no overshoot, f (s) = 1
(0.2s+1)2

and F(s) = 1
(0.1s+1)2 . To compare control performance fairly, TDF-IMC system uses the

same filters as UTDF-IMC. To ensure the same robustness, the classical IMC system uses
f ′(s) = 1

(0.1s+1)2 .

To test the performance of the designed control system, assume the plant a 2nd order
dynamic with ζ = 1 and ωn = 0.5, and an external disturbance added at the system
output, i.e.,

P(s) =
1

4s2 + 1s + 1
+ D(s) (28)

The system disturbance is a band-limit white noise with changing rate of 1hz, system
signal-noise ratio (SNR) of 26.9db. The noise sequence is shown in Figure 6.

Figure 6. System disturbance noise.

Figure 7 shows the simulation results under the three different IMC schemes. From
Figure 7a,b, UTDF-IMC and IMC have better robustness performance in rejection of system
disturbance and modeling error. IMC system has a faster tracking speed because of
its fast respond-speed filter; however due to modeling errors, stronger tracking ability
brings larger overshoot. The simulation results also demonstrate the analysis in Section 3.4.
From Figure 7c, UTDF-IMC structure does not increase the maximum peak output of the
controller compared with TDF-IMC structure. However, fast tracking speed also brings
a large controller output peak in the IMC system, which may cause the controller to
overload in real-time applications. Consider the control performance and controller load,
in case of selecting the same filters (control parameters), UTDF-IMC system shows better
control performance.
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Figure 7. Simulation results of plant1 (a) System outputs; (b) Tracking errors; (c) Controller outputs.

4.2. Nonlinear Internal Model

P0 :
.
y = a

.
u3

+ b
.
u2 − c

.
u− ky + eu (29)

where the coefficients a = b = c = 1, k = 0.5, then P0(s) =
.
u3

+
.
u2 − .

u− 0.5y + eu.
For designing the UTDF-IMC system,

1. Convert plant model (29) into its corresponding U-model:

Pu(s) :
.
y = α0 f0

( .
u
)
+ α1 f1

( .
u
)
+ α2 f2

( .
u
)
+ α3 f3

( .
u
)

α0 = −0.5
.
y 1

s + eu, f0

( .
u0
)
= 1

α1 = 1, f1
( .
u
)
= − .

u
α2 = 1, f1

( .
u2
)
=

.
u2

α3 = 1, f1

( .
u3
)
=

.
u3

(30)

2. Design the inverter of the plant model Pu(s):

u = root
(
α0 f0

( .
u
)
+ α1 f1

( .
u
)
+ α2 f2

( .
u
)
+ α3 f3

( .
u
)
− .

y = 0
)

(31)
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It should be noted that because Equation (32) is a cubic equation of one variable about
.
u, to ensure that the controller output is rational, the real root of Equation (32) is selected
as the output of the controller.

3. Design feedforward filter f (s) and feedback filter F(s)

Same as previous work, to make the system achieve a fast response speed and no
overshoot, this paper chooses f (s) = 1

(0.1s+1)2 and F(s) = 1
(0.2s+1)2 for the plant 2. To

compare control performance fairly, TDF-IMC system uses the same filters as UTDF-IMC.
To ensure the same tracking speed, the classical IMC system uses f ′(s) = 1

(0.2s+1)2 .

To demonstrate the performance of the designed control system, assume plant with
the same structure as the IM, but c = 1.4 and k = 0.8, and an external noise added at the
system output, i.e.,

P(s) :
.
y =

.
u3

+ 1.4
.
u2 − .

u− 0.8y + eu + d (32)

The system noise is a band-limit white noise with changing rate of 1 hz and SNR of
20.9 db. The noise sequence is shown in Figure 8.

Figure 8. System noise.

Figure 9a–c show the simulation results under the three IMC schemes, Figure 9d shows
the tracking reference signal. From Figure 9a,b, UTDF-IMC both has a better robustness
performance in rejection of system disturbance and modeling error and faster tracking
speed. When the reference signal suddenly jumps sharply, the response of TDF-IMC system
also shakes sharply although it has the same filters as UTDF-IMC’s. These simulation
results demonstrate the analysis in Section 3.4. From Figure 9c, UTDF-IMC structure does
not increase the burden on the controller, although it has a better control performance. The
outputs of controller show that the UTDF-IMC is not overloaded. Once again, consider
the control performance and controller load, in case of selecting the same filters (control
parameters), UTDF-IMC system shows better control performance.

4.3. Control of PMSM System

In the past few decades, Permanent Magnet Synchronous Motors (PMSM) have been
widely used in industry because of their high-power density, high efficiency, and large
torque inertia ratio. PMSM is essentially a nonlinear Multiple-Input-Multiple-Output
(MIMO) system, so parameter uncertainty and interference acting on torque will make
it difficult for PMSM control systems to obtain higher control performance [36]. Most
advanced control strategies [37–39] for PMSM servo system position control ignore the
nonlinear term in the speed equation, assuming that A=B and load torque disturbance
does not change. Therefore, it is still a challenge to provide an efficient set-point value
tracking control strategy for a general PMSM system affected by time-varying system
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disturbance and uncertain parameters. Therefore, this section applies the proposed UTDF-
IMC structure combined with the U-modeling of the PMSM system to achieve high-
precision set-point robust tracking control of the PMSM operation.
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4.3.1. Modeling of PMSM System

It should be noted that the permanent magnets used in the PMSM are a type of
modern rare-earth varieties with high resistivity, so the induced current in the rotor can be
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negligible. The model of the PMSM is based on s number of equations in the d-q reference
frame [40].

The electric torque of the PMSM is:

Te = 3p
[
Φviq +

(
Ld − Lq

)
idiq
]
/2 (33)

And its motor dynamics can be modeling as:

Te = TL + Bωr + J∆ωr (34)

The relationship between voltages and currents in motor are:[
Vd
Vq

]
=

[
Rs + Ld∆ −pωrLq

pωrLd Rs + Lq∆

][
id
iq

]
+

[
0

pωrΦv

]
(35)

The rotor flux rotates at rotor speed ωr and is positioned by the rotor angular position:

θr =
∫

ωrdt (36)

Therefore, the PMSM in the rotating d-q reference frame can be modeled in the follow-
ing state-space equation [41],

dθr
dt = ωr

dωr
dt = 3pΦv

2J iq +
3p
2J
(

Ld − Lq
)
idiq − B

J ωr − 1
J TL

did
dt = − Rs

Ld
id +

pLq
Ld

iqωr +
1

Ld
Vd

diq
dt = − Rs

Ld
iq − pLd

Lq
idωr − pΦv

Lq
ωr +

1
Lq

Vq

(37)

where
∆: differential operator ( d∗

dt )
θr and ωr: the rotor angular position and rotor speed
id, iq and Vd, Vq: stator currents and voltages in d-q reference frame
Ld and Lq : axes inductances in d-q reference frame
TL: load torque, Φv:rotor flux, J: inertia, Rs: stator resistance, B: viscous friction

coefficient and p: number of pole pairs.
The design aim is controlling voltages Vd and Vq in (37) to make rotor position θr track a

desired constant reference position θd and the current id is regulated to zero asymptotically,
concretely, this PMSM control system is two-input two-output with u = [u1 u2] =

[
Vd Vq

]
and y = [y1 y2] = [θr id]. The same as used [41], the commonly used nonlinear load torque
disturbance to test the system performance is generated by the following disturbance
dynamic model: { .

v1 = v2.
v2 = −av1 + b

(
1− v1

2)v2
(38)

where v1 = TL is the solution of this Van der Pol oscillator.
Let 

x1 = θr, x2 = ωr, x3 = id, x4 = iq

a1 = 3pΦv
2J , a2 = 3p

2J
(

Ld − Lq
)
, a3 = B

J , a4 = 1
J

b1 = Rs
Ld

id, b2 =
pLq
Ld

, b3 = 1
Ld

c1 = Rs
Ld

, c2 = pLd
Lq

, c3 = pΦv
Lq

, c4 = 1
Lq

(39)
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Then system (37) can be rewritten into standard state-space equation of:
.
x1 = x2.

x2 = a1x4 + a2x3x4 − a3x2 − a4v1.
x3 = −b1x3 + b2x3x2 + b3u1.

x4 = −c1x4 − c2x3x2 − c3x2 + c4u2

and
{

y1 = x1 + d
y2 = x3

(40)

where d is the system disturbance. Linearize system (40) gives:

.
x = Ax + Bu, y = Cx + d (41)

where A =


0
0
0
0

1
−a3
−b3

0

0
a1
−b1

0

0
0
0
−c1

, B =


0 0
0 0
b4
0

0
c3

 and

C =

[
1 0 0 0
0 0 1 0

]
.

4.3.2. Simulation Test

In this section, the following three controllers are compared with simulation tests.

a. IMC: The filter time parameter shown in equation (9) is chosen as λ = 0.01, use
linearization to approximate the inverse of PMSM.

b. TDF-IMC: Based on the structure in Figure 4, the feedforward filter and feedback
filter are chosen as f = 1

(1+0.1s)γ , F = 1
(1+0.01s)γ , use UM-dynamic inversion to design

the inverse of PMSM.
c. UTPF-IMC: To test the performance of UTDF-IMC fairly, based on the structure

in Figure 5, the feed forward filter and feedback filter are chosen as f = 1
(1+0.1s)γ ,

F = 1
(1+0.01s)γ , use UM-dynamic inversion to design the inverse of PMSM.

Comparison test of controller a and controller c is to demonstrate the superiority of
UM-dynamic inversion algorithm for modeling nonlinear controlled plants/processed
and inversion calculation, and comparison test of controller b and controller c is to
show the efficiency of the proposed UTPF-IMC structure under the same modeling
and calculation accuracy. The nominal values of PMSM parameters [41] for the sim-
ulations are p = 3, Rs = 1.2 Ω, Φv = 0.18 Vs/rad, Ld = 0.011 H, Lq = 0.015 H,
B = 0.0001 Nms/rad J = 0.006 kgm2. Choose a = 9, b = 1. The initial values are chosen
as follows: θr(0) = 0 rad, ωr(0) = 0 rad/s, id(0) = 0 A, iq(0) = 0 A.

4.3.3. Matched Model with System Disturbance

To test the property 2 in Section 3.4 while the process model is perfectly matched, i.e.,
P0 = P, assign the step reference signal with tracking positions θd = π rad and current
id = 0, plus a squared disturbance shown in Figure 10 is added.

Figure 10. System disturbance.
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Figure 11 shows the simulation results. Clearly, all the controllers can track the desired
set-point and reject the system disturbance but the robustness of TDF-IMC system is worse
than others. IMC system has a faster response speed; however, it has overshoot due to
linearization error. From Figure 11b, when θr reaches the designated angular position,
rotor speed ωr is stabilized at zero. From Figure 11c, all control systems current id can stay
at 0, but its peak value in IMC system is much larger than the others obviously. These
simulation results demonstrate properties justified in Section 3.4. From Figure 11d,e, the
controller outputs have large peak values at initial phase in the IMC system, especially
output voltage Vd.
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4.3.4. Mismatched Model with System Disturbance

In this part, three controllers under a more actual situation (with modeling error)
will be tested to investigate property 3 in Section 3.4. The parameters of PMSM become:
Ld = 0.5Ld, Lq = 1.3Lq, B = 1.45B, J = 0.75J. The load torque disturbance generated by
(38) with initial values of v1(0) = 0 and v2(0) = 0.1 is also added in PMSM system, which
is shown in Figure 12. System disturbance is the same as previous experiment shown in
Figures 10a and 13 shows the comparative simulation results.

Figure 12. Load torque disturbance.
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From Figure 13a, IMC system has tracking error due to the accuracy limitation of
linearization, which makes IMC unable to reject strong nonlinear load torque disturbance.
Both TDF-IMC and UTDF-IMC systems can achieve the prescribed set-point tracking
performance because UM-dynamic inversion does not lose any nonlinear features. UTDF-
IMC system has better robustness than TDF-IMC system due to the difference in their
structures. From Figure 13b, when θr reaches the designated angular position, rotor speed
ωr in UTDF-IMC and TDF-IMC systems is stabilized at zero; however, the rotor revolves
slightly in IMC system. From Figure 13c, all current id staying at zero but its peak value
with IMC is larger than the others, this is because of the cost of faster response speed in
IMC system. From Figure 13d,e, the controller outputs also have large peak values at initial
phase in the IMC system, especially output voltage Vd.

In summary, from all simulation results, the control system using the linearization
method does degrade the control performance while there is a strong nonlinear disturbance.
Additionally, by using UM-dynamic inversion, UTDF-IMC and TDF-IMC systems can
achieve reasonably good set-point tracking performance, and UTDF-IMC system has better
robustness than classical TDF-IMC system with the same parameters chosen in the filters.

5. Conclusions

This paper introduces an effective U-model-based Two-Degree-of-Freedom IMC frame-
work. Consistently with the simulation test results of linear and nonlinear controlled plants,
the proposed UTDF-IMC framework shows its strong robustness and effectiveness in con-
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trol system design compared with the classical IMC and TDF-IMC approaches. It is believed
that UTDF-IMC, enhanced with nonlinear dynamic inverter, could be applied more ef-
fectively to a wide range of industrial control system design. Therefore, this study has
established a platform for possible further expansion, for example controlling Multi-Input
and Multi-Output (MIMO) systems, which involves solution challenges with nonlinear set
equation in case of under, full, and over actuated control system design. Another research
direction is to expand the UTDF-IMC to deal with nonminimum phase/unstable zero
dynamic systems.
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