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Abstract: I numerically simulate and compare the entanglement of two quanta using the conventional
formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate.
The experimental predictions of the two formulations are identical, but the entanglement predictions
are significantly different. The time-symmetric formulation reveals an experimentally testable
discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests
solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries
in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into
an ’or’?”
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1. Introduction

Smolin says “the second great problem of contemporary physics [is to] resolve the
problems in the foundations of quantum physics” [1]. One of these problems is quantum
entanglement, which is at the heart of both new quantum information technologies [2]
and old paradoxes in the foundations of quantum mechanics [3]. Despite significant effort,
a comprehensive understanding of quantum entanglement remains elusive [4]. In this
paper, I compare how the entanglement of two quanta is explained by the conventional
formulation of quantum mechanics [5–7] and by a time-symmetric formulation that has
no collapse postulate. The time-symmetric formulation and its numerical simulations
can facilitate the development of new insights and physical intuition about entanglement.
There is also always the hope that a different point of view will inspire new ideas for
furthering our understanding of quantum behavior.

Time-symmetric explanations of quantum behavior predate the discovery of the
Schrödinger equation [8] and have been developed many times over the past century [9].
The time-symmetric formulation (TSF) used in this paper has been described in detail and
compared to other TSF’s before [10,11]. Note in particular that the TSF used in this paper is
significantly different than the Two-State Vector Formalism (TSVF) [12]. First, the TSVF
postulates that a particle is completely described by a two-state vector, written as 〈φ| |ψ〉.
This two-state vector is not mathematically defined. In contrast, the TSF postulates that the
transition of a particle is completely described by a complex transition amplitude density
φ∗ψ, which is mathematically defined. The TSF defines this transition amplitude density as
the algebraic product of the two wavefunctions, which is a dynamical function of position
and time. Second, the TSVF postulates that wavefunctions collapse upon measurement [13],
while the TSF postulates that wavefunctions never collapse.

The particular time-symmetric formulation described in this paper is a type IIB model,
in the classification system of Wharton and Argaman [14]. It is called time-symmetric
because (for symmetrical boundary conditions) the complex transition amplitude densities
(defined below) are the same under a 180-degree rotation about the symmetry axes perpen-
dicular to the time axes. The conventional formulation does not have this symmetry. To
the best of my knowledge, this is the first quantitative explanation of entanglement by a
time-symmetric formulation. The closest work appears to be [15–17]. This paper extends
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the time-symmetric formulation described in [10] from a single particle to two entangled
particles. Preliminary results were presented at the 2019 Annual Meeting of the APS Far
West Section.

Identical quanta have the same intrinsic physical properties, e.g., mass, electric charge,
and spin. However, identical quanta are not necessarily indistinguishable: an electron in
your finger and an electron in a rock on the moon are distinguishable by their location.
Identical quanta can become indistinguishable when their wavefunctions overlap such that
it becomes impossible, even in principle, to tell them apart.

Entanglement is usually taught using spin or polarization degrees of freedom. But
entanglement also occurs in the spatial wavefunctions of systems with more than one
degree of freedom [18]. For one quantum in two or more dimensions, two different
parts of the spatial wavefunction can be entangled with each other, resulting in spatial
amplitude interference, as in Young’s double-slit experiment. For two quanta in one or
more dimensions, the spatial wavefunctions of the two quanta can be entangled with
each other, resulting in spatial intensity interference, as in the Hanbury Brown–Twiss
effect [19–21]. This paper will consider only the latter type of entanglement.

Finally, these results may have potential applications in parity-time symmetry quan-
tum control devices [22].

2. The Gedankenexperimental Setup

Figure 1 shows a (1 + 1)-dimensional spacetime diagram of the Gedankenexperi-
mental setup. In this paper “spacetime” always means Galilean spacetime [3]. This is a
lower-dimensional version of the Hanbury Brown–Twiss experiment [19–21], allowing
direct visualization of the two-quanta wavefunctions and transition amplitude densities in
(2 + 1)-dimensional configuration spacetime. If the two detectors are both moved to the
outside of the two sources, the experimental topology becomes equivalent to that of the
Einstein–Podolsky–Rosen experiment [23]. Configuration spacetime is the usual quantum
configuration space with a time axis added. The two sources Sa and Sb are at fixed locations
xa and xb, and can each emit a single quantum on command. Let us assume we always
know when a quantum is emitted. The two detectors Dc and Dd are at variable locations xc
and xd, and can each either absorb quanta or let them pass through undisturbed.

For the one-quantum cases, a single run of the Gedankenexperiment will consist of
source Sa emitting a single quantum at the initial time ti, then this quantum either passing
through both detectors, or being absorbed by one detector, or being absorbed by the other
detector. Let us assume the single quantum is produced by spontaneous emission and
absorbed by the time-reverse of spontaneous emission. We will do many runs, but analyze
only the subset of runs where the detector Dc absorbs the quantum at the final time t f .
There will only be one or no quanta in the apparatus at any time. The probability for all
other experimental results is then one minus the probability that we will calculate.

For the two-quanta cases, a single run of the Gedankenexperiment will consist of
each source emitting a single quantum, then the two quanta either passing through both
detectors, or only one quantum being absorbed by one detector, or both quanta being
absorbed by one detector, or one quantum being absorbed by one detector and the other
quantum being absorbed by the other detector. We will do many runs, but analyze only
the subset of runs where the sources each emit one quantum at the same initial time ti, and
the detectors each absorb one quantum at the same final time t f . There will only be two
or fewer quanta in the apparatus at any time. The probability for all other experimental
results is then one minus the probability that we will calculate.

This Gedankenexperiment might be experimentally realized using existing single-
photon sources and semitransparent single-photon detectors.
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Figure 1. A (1 + 1)-dimensional spacetime diagram of the Gedankenexperimental setup. The sources
Sa and Sb are at fixed locations xa and xb, while the detectors Dc and Dd are at variable locations
xc and xd. The sources and detectors are colinear in space. The sources each emit one quantum on
command at the initial time ti. The locations of these quanta are x1 and x2. We analyze only those
runs where the detectors each absorb one quantum at the final time t f . The red (solid) and blue
(dashed) lines between the sources and detectors show two possible ways this can happen. This
is a lower dimensional version of the Hanbury Brown–Twiss effect experiment [19–21]. If the two
detectors are both moved to the outside of the two sources, the experimental topology becomes
equivalent to that of the Einstein–Podolsky–Rosen experiment [23].

3. One Quantum

The conventional formulation assumes that a wavefunction which lives in configura-
tion space and evolves in time gives the most complete description of a quantum that is in
principle possible. Let us assume that a quantum is created in source Sa as a normalized
Gaussian wavefunction ψ of initial width σ = 1:

ψ(x1, t; xa, ti) ≡
(

2
π

)1/4( 1
i(t− ti) + 2

)1/2
exp
[
− (x1 − xa)2

2i(t− ti) + 4

]
, (1)

where x1 is the location of the quantum, (xa, ti) = (10, 0) are the emission location and
time, all quantum masses are set to 1, and natural units are used: h̄ = c = 1.

The conventional formulation assumes that upon measurement by a detector a wave-
function abruptly collapses onto a different wavefunction localized at the detector. Let
us assume that at (xc, t f ) = (7, 60), the wavefunction ψ collapses onto the normalized
gaussian wavefunction φ of width σ = 1:

φ(x1, t; xc, t f ) ≡
(

2
π

)1/4
(

1
i(t− t f ) + 2

)1/2

exp

[
− (x1 − xc)2

2i(t− t f ) + 4

]
, (2)

and is absorbed by detector Dc. I chose the fixed locations of all sources and detectors
in this paper to show the symmetry of the complex transition amplitude density, to give
about the same values of Pc for bosons and fermions, and to give a relatively large value for
Pc. Figure 2a shows the real parts of ψ and φ during the run. The imaginary parts are not
shown because they do not contribute much more of interest. The conventional formulation
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assumes the probability for this transition is Pc = A∗c Ac, where the subscript c denotes the
conventional formulation, and the conventional amplitude Ac for the transition is:

Ac =
∫ ∞

−∞
φ∗(x1, 60; xc, t f )ψ(x1, 60; xa, ti)dx1, (3)

where the time t = 60 is the time of wavefunction collapse. Plugging in numbers
gives a transition probability Pc = 6.59× 10−2 for this particular choice of source and
detector locations.

Figure 2. (a) The conventional explanation of a Gedankenexperiment with one quantum: the one-quantum wavefunction ψ

is emitted by source Sa at (xa, ti) = (10, 0), evolves in time, then abruptly collapses onto the wavefunction φ and is absorbed
by detector Dc at (xc, t f ) = (7, 60). The conventional formulation assumes the wavefunction is a 1-dimensional object which
lives in configuration space, evolves in time, and gives the most complete description of the quantum that is in principle
possible. (b) The time-symmetric explanation of the same Gedankenexperiment: the one-quantum complex transition
amplitude density φ∗ψ (where φ∗ is the complex conjugate of the φ in the conventional explanation) is emitted by source Sa

and absorbed by detector Dc. There is no abrupt collapse. The time-symmetric formulation assumes the complex transition
amplitude density is a (1 + 1)-dimensional object which lives in configuration spacetime and gives the most complete
description of the quantum that is in principle possible. Configuration spacetime is the usual quantum configuration space
with a time axis added. The transition amplitude density φ∗ψ is normalized to give a transition probability of one, and only
the real parts of ψ, φ, and φ∗ψ are shown.

The collapse of the wavefunction at t f = 60 must be instantaneous, to prevent the
possibility of the particle being detected in two different locations simultaneously. This
instantaneous collapse violates the principle of relativistic local causality. This is the
quantum nonlocality problem. One part of the quantum measurement problem is how (or
whether) wavefunction collapse occurs. Another part is why the wavefunction collapses
stochastically at one location and not at a different location.

The time-symmetric formulation assumes that a complex transition amplitude density
which lives in configuration spacetime gives the most complete description of a quantum
that is in principle possible. Using the same initial and final wavefunctions given above,
the transition amplitude density φ∗ψ for the same transition is defined as:

φ∗ψ(x1, t; xc, xa, t f , ti) ≡ φ∗(x1, t; xc, t f )ψ(x1, t; xa, ti), (4)

where φ∗ψ varies continuously and smoothly, with no abrupt collapse, between emission
at the source and absorption at the detector. The transition amplitude is the quantum
amplitude for a particular transition between an initial condition and a final condition.
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The transition amplitude density is the quantity that is integrated over a spatial volume
of configuration spacetime to get the transition amplitude. Figure 2b shows the real part
of φ∗ψ for this transition, where the probability for the transition is normalized to one.
The time-symmetric formulation assumes the probability for the transition is Pt = A∗t At,
where the subscript t denotes the time-symmetric formulation, and the time-symmetric
amplitude At is given by:

At =
∫ ∞

−∞
φ∗ψ(x1, t; xc, xa, t f , ti)dx1. (5)

This has the same integrand as the conventional formulation Equation (3), except the
time t is now a variable. Plugging in numbers gives a transition probability Pt = 6.59× 10−2

for this particular choice of source and detector locations, the same predicted experimental
result as the conventional formulation. The results are the same because the integral is
independent of time. This implies the time-symmetric formulation has more time symmetry
than the conventional formulation.

The transition amplitude density diverges from the source and converges to the
detector, with no instantaneous collapse. This is consistent with the principle of relativistic
local causality. This solves the quantum nonlocality problem and one part of the quantum
measurement problem.

4. Two Distinguishable Quanta

Let us assume two distinguishable quanta (quanta 1 and 2) are emitted simultaneously
from sources Sa and Sb, with quantum 1 having the same initial wavefunction as in the
prior one-quantum case, while quantum 2 has the similar normalized initial wavefunction:

ψ(x2, t; xb, ti) ≡
(

2
π

)1/4( 1
i(t− ti) + 2

)1/2
exp
[
− (x2 − xb)

2

2i(t− ti) + 4

]
, (6)

where x2 is the location of quantum 2, and (xb, ti) = (−10, 0) are the emission location
and time at source Sb. We will also assume that the two initial wavefunctions abruptly
collapse onto two normalized final wavefunctions (similar to the final wavefunction in the
prior one-quantum case) and are absorbed by the two detectors at (xc, t f ) = (7, 60) and
(xd, t f ) = (−7, 60). There are four possible distinguishable path permutations: (1) quantum
1 goes from Sa to Dc, while concurrently quantum 2 goes from Sb to Dd; (2) quantum 2
goes from Sa to Dc, while concurrently quantum 1 goes from Sb to Dd; (3) quantum 1 goes
from Sa to Dd, while concurrently quantum 2 goes from Sb to Dc; and (4) quantum 2 goes
from Sa to Dd, while concurrently quantum 1 goes from Sb to Dc. The probability for all
other experimental results is then one minus the probability of these four runs.

The conventional formulation assumes the two-quanta wavefunctions are the products
of the two one-quantum wavefunctions. For the first path permutation, the two-quanta
initial wavefunction is then:

ψ(x1, x2, t; xa, xb, ti) ≡ ψ(x1, t; xa, ti)ψ(x2, t; xb, ti), (7)

where ψ(x, t; xi, ti) is defined by Equation (1), and the two-quanta collapsed wavefunction is:

φ(x1, x2, t; xc, xd, t f ) ≡ φ(x1, t; xc, t f )φ(x2, t; xd, t f ), (8)

where φ(x, t; x f , t f ) is defined by Equation (2). Figure 3a shows the real parts of the
conventional initial and collapsed two-quanta wavefunctions for the first distinguishable
path permutation. The imaginary parts are not shown because they do not contribute much
more of interest.
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Figure 3. (a) The conventional explanation of a Gedankenexperiment with two distinguishable quanta: only the first of
the four possible distinguishable path permutations is shown. The two-quanta wavefunction ψ is emitted by sources Sa at
(xa, ti) = (10, 0) and Sb at (xb, ti) = (−10, 0), evolves in time, then abruptly collapses onto the two-quanta wavefunction φ

and is absorbed by detectors Dc at (xc, t f ) = (7, 60) and Dd at (xd, t f ) = (−7, 60). The conventional formulation assumes
the two-quanta wavefunction is a 2-dimensional object which lives in configuration space, evolves in time, and gives the
most complete description of the two quanta that is in principle possible. (b) The time-symmetric explanation of the same
Gedankenexperiment: only the first of the four possible distinguishable path permutations is shown. The two-quanta
transition amplitude density φ∗ψ (where φ∗ is the complex conjugate of φ in the conventional explanation) is emitted by
sources Sa and Sb and absorbed by detectors Dc and Dd. There is no abrupt collapse. The time-symmetric formulation
assumes the complex transition amplitude density is a (2 + 1)-dimensional object which lives in configuration spacetime
and gives the most complete description of the two quanta that is in principle possible. The transition amplitude density
φ∗ψ is normalized to give a transition probability of one, only the real parts of ψ, φ, and φ∗ψ are shown, and half of the
plots are cut away to show the interiors.

The conventional formulation assumes the probability for the first distinguishable
path permutation is Pc1 = A∗c1 Ac1, where the conventional amplitude Ac1 is:

Ac1 =
∫∫ ∞

−∞
φ∗(x1, x2, 60; xc, xd, t f )ψ(x1, x2, 60; xa, xb, ti)dx1dx2, (9)

where t = 60 is the time of wavefunction collapse. The conventional formulation assumes
the total probability for any of these four events to happen is given by calculating the
probability for each of these amplitudes and then adding these probabilities:

Pc = A∗c1 Ac1 + A∗c2 Ac2 + A∗c3 Ac3 + A∗c4 Ac4. (10)

Plugging in numbers gives Pc = 1.33 × 10−2 for this particular choice of source and
detector locations.

The time-symmetric formulation assumes the two-quanta transition amplitude den-
sities are the products of the two one-quantum transition amplitude densities. For the
first distinguishable path permutation, the two-quanta transition amplitude density φ∗ψ is
defined as:

φ∗ψ(x1, x2, t; xc, xa, xd, xb, t f , ti) ≡ φ∗(x1, t; xc, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xd, t f )ψ(x2, t; xb, ti). (11)

Figure 3b shows the time-symmetric two-quanta transition amplitude density for the
first distinguishable path permutation. Note that φ∗ψ varies continuously and smoothly,
with no abrupt collapse, between emission at the sources and absorption at the detectors.



Entropy 2021, 23, 179 7 of 16

The time-symmetric formulation assumes the probability for the first distinguishable
path permutation is Pt1 = A∗t1 At1, where the time-symmetric amplitude At1 is given by the
integral of the two-quanta transition amplitude density:

At1 =
∫∫ ∞

−∞
φ∗ψ(x1, x2, t; xc, xa, xd, xb, t f , ti)dx1dx2. (12)

This has the same integrand as the conventional formulation Equation (9), except the
time t is now a variable. Plugging in numbers gives Pc = 1.33× 10−2 for this particular
choice of source and detector locations, the same predicted experimental result as the
conventional formulation. The results are the same because the integral is independent
of time. This implies the time-symmetric formulation has more time symmetry than the
conventional formulation. Figure 4 shows the conventional and time-symmetric predictions
for how the experimentally measurable probability of a two-quanta transition will vary as a
function of the positions of the two detectors, for all four distinguishable path permutations.
The conventional and time-symmetric predictions are the same. There is no two-quanta
interference pattern since the two quanta are distinguishable and not entangled.

Figure 4. (a) The conventional prediction for the Gedankenexperiment with two distinguishable quanta for all four possible
distinguishable results: the probability Pc that the two quanta emitted from the sources are absorbed in the two detectors as
the locations of the two detectors are varied, averaged over many runs. Since the two quanta are distinguishable, there is no
interference. (b) The time-symmetric prediction for the same Gedankenexperiment. The predictions are identical.

5. Two Indistinguishable Bosons

Let us assume two indistinguishable, noninteracting bosons (bosons 1 and 2) are
emitted simultaneously from sources Sa and Sb, with the same initial and collapsed two-
quanta wavefunctions as in the prior distinguishable two-quanta case.

The conventional formulation assumes these two-quanta wavefunctions must be
symmetrized by quantum exchange and added if they are indistinguishable bosons. The
symmetrized and normalized initial two-quanta wavefunction is:

ψs(x1, x2, t; xa, xb, ti) = [ψ(x1, t; xa, ti)ψ(x2, t; xb, ti) + ψ(x2, t; xa, ti)ψ(x1, t; xb, ti)]/
√

2, (13)

where the subscript s denotes symmetrization. The symmetrized and normalized two-
quanta collapsed wavefunction is:

φs(x1, x2, t; xc, xd, t f ) = [φ(x1, t; xc, t f )φ(x2, t; xd, t f ) + φ(x2, t; xc, t f )φ(x1, t; xd, t f )]/
√

2. (14)
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Figure 5a shows the real parts of the symmetrized initial wavefunction
ψs(x1, x2, t; xa, xb, ti) and the symmetrized collapsed wavefunction φs(x1, x2, 60; xc, xd, t f ).
The imaginary parts are not shown because they do not contribute much more of in-
terest. The conventional formulation assumes the amplitude for this transition is the
overlap integral:

Ac =
∫∫ ∞

−∞
φ∗s (x1, x2, 60; xc, xd, t f )ψs(x1, x2, 60; xa, xb, ti)dx1dx2. (15)

where t = 60 is the time of wavefunction collapse. The conventional probability is
Pc = A∗c Ac. Plugging in numbers gives Pc = 6.25× 10−3 for this particular choice of
source and detector locations.

Figure 5. (a) The conventional explanation of a Gedankenexperiment with two indistinguishable bosons: the symmetrized
two-quanta wavefunction ψs is emitted by sources Sa at (xa, ti) = (10, 0) and Sb at (xb, ti) = (−10, 0), evolves in time, then
abruptly collapses onto the symmetrized two-quanta wavefunction φs and is absorbed by detectors Dc at (xc, t f ) = (7, 60)
and Dd at (xd, t f ) = (−7, 60). The conventional formulation assumes the two-quanta wavefunction is a 2-dimensional
object which lives in configuration space, evolves in time, and gives the most complete description of the two quanta that is
in principle possible. (b) The time-symmetric explanation of the same Gedankenexperiment: the symmetrized two-quanta
transition amplitude density φ∗s ψs (where φ∗s is the complex conjugate of the φs in the conventional explanation) is emitted
by sources Sa and Sb, and the quanta are absorbed by detectors Dc and Dd. There is no abrupt collapse. The time-symmetric
formulation assumes the symmetrized complex transition amplitude density is a (2 + 1)-dimensional object which lives
in configuration spacetime and gives the most complete description of the two quanta that is in principle possible. The
transition amplitude density φ∗ψ is normalized to give a transition probability of one, only the real parts of ψ, φ, and φ∗ψ

are shown, and half of the plots are cut away to show the interiors.

The time-symmetric formulation assumes the two-quanta transition amplitude densi-
ties must be symmetrized by path exchange and added if they are indistinguishable bosons.
There are four possible indistinguishable path permutations: (1) quantum 1 goes from Sa
to Dc, while concurrently quantum 2 goes from Sb to Dd; (2) quantum 2 goes from Sa to Dc,
while concurrently quantum 1 goes from Sb to Dd; (3) quantum 1 goes from Sa to Dd, while
concurrently quantum 2 goes from Sb to Dc; and (4) quantum 2 goes from Sa to Dd, while
concurrently quantum 1 goes from Sb to Dc. The sign of each permutation is positive for
bosons, giving a symmetrized and normalized transition amplitude density of:
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φ∗s ψs(x1, x2, t; xc, xa, xd, xb, t f , ti) =

[φ∗(x1, t; xc, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xd, t f )ψ(x2, t; xb, ti)

+ φ∗(x2, t; xc, t f )ψ(x2, t; xa, ti)φ
∗(x1, t; xd, t f )ψ(x1, t; xb, ti) (16)

+ φ∗(x1, t; xd, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xc, t f )ψ(x2, t; xb, ti)

+ φ∗(x2, t; xd, t f )ψ(x2, t; xa, ti)φ
∗(x1, t; xc, t f )ψ(x1, t; xb, ti)]/2.

Note that the time-symmetric normalization constant is 1/2, because there are four
terms. Figure 5b shows the symmetrized transition amplitude density φ∗s ψs. It varies
continuously and smoothly, with no abrupt collapse, between emission at the sources and
absorption at the detectors. The time-symmetric formulation assumes the probability of
the transition is Pt = A∗t At, where the amplitude At is the integral:

At =
∫∫ ∞

−∞
φ∗s ψs(x1, x2, t; xc, xa, xd, xb, t f , ti)dx1dx2. (17)

This has the same integrand as the conventional formulation Equation (15), except the
time t is now a variable. Plugging in numbers gives Pt = 6.25× 10−3 for this particular
choice of source and detector locations, the same predicted experimental result as the
conventional formulation. The results are the same because the integral is independent
of time. This implies the time-symmetric formulation has more time symmetry than the
conventional formulation.

Figure 6 shows the conventional and time-symmetric predictions for how the experi-
mentally measurable probability of a two-quanta transition will vary as a function of the
positions of the two detectors. The conventional and time-symmetric predictions are the
same. The two-quanta interference pattern has a maximum when the two detectors are
located at (xc, xd) = (0, 0), as expected for indistinguishable bosons.

Figure 6. (a) The conventional formulation prediction for the interference pattern for two indistinguishable bosons:
the probability Pc that the two quanta emitted from the sources are absorbed in the two detectors, as the locations of
the two detectors are varied, averaged over many runs. (b) The time-symmetric formulation prediction for the same
Gedankenexperiment: the probability Pt that the two quanta emitted from the sources are absorbed in the two detectors, as
the locations of the two detectors are varied, averaged over many runs. The interference patterns are identical, and have a
maximum when the two detectors are located at (xc, xd) = (0, 0), as expected for indistinguishable bosons. The interference
patterns are normalized to give a transition probability of one.
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6. Two Indistinguishable Fermions

Let us assume two indistinguishable, noninteracting fermions (fermions 1 and 2)
are emitted simultaneously from sources Sa and Sb, with the same initial and collapsed
two-quanta wavefunctions as in the earlier distinguishable two-quanta case.

The conventional formulation assumes these two-quanta wavefunctions must be
antisymmetrized by quantum exchange if they are indistinguishable fermions. The anti-
symmetrized and normalized initial two-quanta wavefunction is:

ψa(x1, x2, t; xa, xb, ti) = [ψ(x1, t; xa, ti)ψ(x2, t; xb, ti)− ψ(x2, t; xa, ti)ψ(x1, t; xb, ti)]/
√

2, (18)

where the subscript a denotes antisymmetrization. The antisymmetrized and normalized
two-quanta collapsed wavefunction is:

φa(x1, x2, t; xc, xd, t f ) = [φ(x1, t; xc, t f )φ(x2, t; xd, t f )− φ(x2, t; xc, t f )φ(x1, t; xd, t f )]/
√

2. (19)

Figure 7a shows the real parts of the antisymmetrized initial wavefunction
ψa(x1, x2, t; xa, xb, ti) and the antisymmetrized collapsed wavefunction φa(x1, x2, t; xc, xd, t f ).
The imaginary parts are not shown because they do not contribute much more of interest.
The conventional formulation assumes the probability for this transition is Pc = A∗c Ac,
where the amplitude Ac is given by the overlap integral:

Ac =
∫∫ ∞

−∞
φ∗a (x1, x2, 60; xc, xd, t f )ψa(x1, x2, 60; xa, xb, ti)dx1dx2, (20)

where the time t = 60 is the time of wavefunction collapse. Plugging in numbers gives
Pc = 7.09× 10−3 for this particular choice of source and detector locations.

Figure 7. (a) The conventional explanation of a Gedankenexperiment with two indistinguishable fermions: the antisym-
metrized two-quanta wavefunction ψa is emitted by sources Sa at (xa, ti) = (10, 0) and Sb at (xb, ti) = (−10, 0), evolves in
time, then abruptly collapses onto the antisymmetrized two-quanta wavefunction φa and is absorbed by detectors Dc at
(xc, t f ) = (7, 60) and Dd at (xd, t f ) = (−7, 60). The conventional formulation assumes the antisymmetrized wavefunction
is a 2-dimensional object which lives in configuration space, evolves in time, and gives the most complete description
of the two quanta that is in principle possible. (b) The time-symmetric explanation of the same Gedankenexperiment:
the antisymmetrized two-quanta transition amplitude density φ∗a ψa (where φ∗a is the complex conjugate of the φa in the
conventional explanation) is emitted by sources Sa and Sb, and the quanta are absorbed by detectors Dc and Dd. There is no
abrupt collapse. The time-symmetric formulation assumes the antisymmetrized complex transition amplitude density is
a (2 + 1)-dimensional object which lives in configuration spacetime and gives the most complete description of the two
quanta that is in principle possible. The transition amplitude density φ∗ψ is normalized to give a transition probability of
one, only the real parts of ψ, φ, and φ∗ψ are shown, and half of the plots are cut away to show the interiors.
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The time-symmetric formulation assumes the two-quanta transition amplitude den-
sities must be antisymmetrized by path exchange if they are indistinguishable fermions.
There are four possible indistinguishable path permutations: (1) quantum 1 goes from Sa
to Dc, while concurrently quantum 2 goes from Sb to Dd; (2) quantum 2 goes from Sa to Dc,
while concurrently quantum 1 goes from Sb to Dd; (3) quantum 1 goes from Sa to Dd, while
concurrently quantum 2 goes from Sb to Dc; and (4) quantum 2 goes from Sa to Dd, while
concurrently quantum 1 goes from Sb to Dc. The sign of each permutation is determined
by the number of path termini pairs that are exchanged: using the first transition as the
reference, the first permutation has zero termini pairs swapped; the second permutation
has two termini pairs swapped; the third permutation has one termini pair swapped; and
the fourth permutation has one termini pair swapped. Assigning positive signs to even
termini swap permutations and negative signs to odd termini swap permutations gives an
antisymmetrized and normalized transition amplitude density of:

φ∗a ψa(x1, x2, t; xc, xa, xd, xb, t f , ti) =

[φ∗(x1, t; xc, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xd, t f )ψ(x2, t; xb, ti)

+ φ∗(x2, t; xc, t f )ψ(x2, t; xa, ti)φ
∗(x1, t; xd, t f )ψ(x1, t; xb, ti) (21)

− φ∗(x1, t; xd, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xc, t f )ψ(x2, t; xb, ti)

− φ∗(x2, t; xd, t f )ψ(x2, t; xa, ti)φ
∗(x1, t; xc, t f )ψ(x1, t; xb, ti)]/2.

Note that the time-symmetric normalization constant is 1/2, because there are four
terms. Figure 7b shows the antisymmetrized transition amplitude density φ∗a ψa. It varies
continuously and smoothly, with no abrupt collapse, between emission at the sources and
absorption at the detectors. The time-symmetric formulation assumes the probability of
the transition is Pt = A∗t At, where the amplitude At is the integral:

At =
∫∫ ∞

−∞
φ∗a ψa(x1, x2, t; xc, xa, xd, xb, t f , ti)dx1dx2. (22)

This has the same integrand as the conventional formulation Equation (20), except the
time t is now a variable. Plugging in numbers gives Pt = 7.09× 10−3 for this particular
choice of source and detector locations, the same predicted experimental result as the
conventional formulation. The results are the same because the integral is independent
of time. This implies the time-symmetric formulation has more time symmetry than the
conventional formulation.

Figure 8 shows the conventional and time-symmetric predictions for how the experi-
mentally measurable probability of a two-quanta transition will vary as a function of the
positions of the two detectors. The conventional and time-symmetric predictions are the
same. The two-quanta interference pattern has a minimum when the two detectors are
located at (xc, xd) = (0, 0), as expected for indistinguishable fermions.
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Figure 8. (a) The conventional formulation prediction for the interference pattern for two indistinguishable fermions:
the probability Pc that the two quanta emitted from the sources are absorbed in the two detectors, as the locations of
the two detectors are varied, averaged over many runs. (b) The time-symmetric formulation prediction for the same
Gedankenexperiment: the probability Pt that the two quanta emitted from the sources are absorbed in the two detectors,
as the locations of the two detectors are varied, averaged over many runs. The interference patterns are identical, and
have a minimum when the two detectors are located at (xc, xd) = (0, 0), as expected for indistinguishable fermions. The
interference patterns are normalized to give a transition probability of one.

7. The Original Quantum Analysis of the Hanbury Brown–Twiss Effect

The Hanbury Brown–Twiss effect was initially demonstrated with radio waves and
explained using classical electromagnetic theory [19–21]. When Hanbury Brown and
Twiss proposed using their effect to measure stellar diameters with optical photons, most
physicists believed it would not work because optical photons were much more like
particles than waves. In response to Feynman’s telling him “It will never work!”, Hanbury
Brown replied “Yes, I know. We were told so. But we built it anyway, and it did work [24].”

The Hanbury Brown–Twiss work started a new and important branch of physics:
quantum optics. People discovered that light did not always obey Maxwell’s equations: it
became necessary to understand the quantum nature of light. This was done largely by
Klauder, Sudarshan, Glauber, and Mandel in the 50’s and 60’s. This led to the “coherent
state” theory of light which explained the differences between thermal light, laser light,
squeezed light, and other types of light. Later developments led to Raman spectroscopy,
optical traps, Doppler cooling, Bose–Einstein condensation, and quantum information
technologies [25].

Fano [26] gave the first completely quantum explanation of the Hanbury Brown–Twiss
effect. Fano described two excited atoms, a and b, each emitting one photon, followed by
two ground-state atoms, c and d, each absorbing one photon. He drew two diagrams for the
indistinguishable ways this could happen: (1) photon 1 goes from a to c, while concurrently
photon 2 goes from b to d; and (2) photon 1 goes from a to d, while concurrently photon
2 goes from b to c. He then added these two alternatives to get the unnormalized total
amplitude AΣ for the transition:

AΣ = [Aca Adb + Ada Acb], (23)

where Aij is the amplitude for a photon to go from j to i. Feynman [27] and Mandel [28]
later gave the same quantum explanation as Fano. In the time-symmetric formulation of
this paper, this corresponds to the unnormalized transition amplitude density:



Entropy 2021, 23, 179 13 of 16

φ∗s ψs(x1, x2, t; xc, xa, xd, xb, t f , ti) =

[φ∗(x1, t; xc, t f )ψ(x1, t; xa, ti)φ
∗(x2, t; xd, t f )ψ(x2, t; xb, ti) (24)

+φ∗(x2, t; xd, t f )ψ(x2, t; xa, ti)φ
∗(x1, t; xc, t f )ψ(x1, t; xb, ti)].

Figure 9a shows a plot of the real parts of the Fano, Feynman, and Mandel transition
amplitude density φ∗s ψs, normalized to give a transition probability of one. The imaginary
parts are not shown because they do not contribute much more of interest. Note that the
transition amplitude density has one terminus on the t = 0 plane, at (xa, xb) = (10,−10),
and two termini on the t = 60 plane, at (xa, xb) = (7,−7) and (−7, 7). It obviously does
not have the time symmetry of Figure 5b, suggesting the analyses of Fano, Feynman,
and Mandel are incomplete. This could also be inferred from Figure 5a. In essence, they
symmetrized the final state φs but not the initial state ψ.

Figure 9. The (1 + 1)-dimensional predictions of Fano, Feynman, and Mandel’s analyses of the Hanbury Brown–Twiss
experiment, for the same locations of sources and detectors used earlier. They assumed only two possible indistinguishable
path permutations: quantum 1 goes from Sa to Dc, while concurrently quantum 2 goes from Sb to Dd; and quantum 1 goes
from Sa to Dd, while concurrently quantum 2 goes from Sb to Dc. (a) The two-quanta transition amplitude density φ∗s ψ is
time asymmetric: compare to Figure 5b. This is because two other possible indistinguishable path permutations are missing.
The complex transition amplitude density φ∗s ψ is normalized to give a transition probability of one, only the real part of
φ∗s ψ is shown, and half of the φ∗s ψ plot is cut away to show the interior. (b) The predicted probability of the transition as a
function of the detector locations. It is identical to the time-symmetric experimental prediction because it is normalized to
give a transition probability of one.

If we normalize Equation (7) and calculate the probability for the transition, we get
Pt = 3.125× 10−3, which is half the predicted experimental result of the conventional and
time-symmetric formulations described in Section 5. Figure 9b shows their predictions
for how the experimentally measurable probability of a two-quanta transition will vary
as a function of the positions of the two detectors. This is identical to Figure 6a,b. The
differences in the predicted probability of the transition do not show up in Figure 9a,b
because the factors of two differences are absorbed into the normalization constants. But
a comparison of experimental data with the predicted transition probabilities should
distinguish between their analyses and my analysis.
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8. Discussion

Bell asked [A.J. Leggett, private communication] “How do you convert an ’and’ into
an ’or’?” He wondered how a quantum superposition of several possible final states turns
into only one final state upon measurement. The conventional formulation postulates
abrupt collapse of the wavefunction upon measurement onto only one of the possible final
states, while the time-symmetric formulation postulates the smoothly varying existence
of only one actual transition amplitude density out of a statistical ensemble of possible
transition amplitude densities, with no change in the actual one after information about it is
gained from the experimental results. Note that the continuous localization of the transition
amplitude density inside the detector allows the quantum to be locally absorbed by the
detector, which is a well-understood process that is qualitatively different than the nonlocal
wavefunction collapse of the conventional formulation, which must be instantaneous
in all reference frames to obey the conservation laws. The conventional formulations
“quantum indeterminacy” about the outcome of an experiment is replaced by the time-
symmetric formulations classical uncertainty about which possible transition amplitude
density actually exists. The time-symmetric formulations answer to Bell’s question is that
there was never an “and,” there was only an “or.” The question of how nature chooses
one transition amplitude density out of a statistical ensemble is answered by the stochastic
nature of the spontaneous emission and absorption processes.

The conventional formulation has several asymmetries in time: only the initial con-
ditions of the wavefunction are specified, the wavefunction is evolved only forward in
time, the transition probability is calculated only at the time of measurement, wavefunction
collapse happens only at the time of measurement, and wavefunction collapse happens
only forwards in time. This seems unphysical: shouldn’t the fundamental laws of nature be
time-symmetric? Consider the details of a specific example: according to the conventional
formulation, Equation (3) must be evaluated only at the time of the collapse. In contrast,
according to the time-symmetric formulation, the transition amplitude of Equation (5) can
be evaluated at any time. But the two transition amplitudes give the same results. The fact
that the transition amplitude need not be evaluated at a special time shows that quantum
mechanics has more intrinsic symmetry than allowed by the conventional formulation.
Heisenberg said, “Since the symmetry properties always constitute the most essential
features of a theory, it is difficult to see what would be gained by omitting them in the
corresponding language [29].” The intrinsic time symmetry of a quantum transition is
represented in the time-symmetric formulation, but not in the conventional formulation.

More generally, the conventional formulation implicitly assumes that quantum me-
chanics is only a predictive theory. As Dyson pointed out [30], “statements about the
past cannot in general be made in [the conventional formulation of] quantum-mechanical
language. For example, we can describe a uranium nucleus by a wavefunction including
an outgoing alpha particle wave which determines the probability that the nucleus will
decay tomorrow. But we cannot describe by means of a wavefunction the statement, “This
nucleus decayed yesterday at 9 a.m. Greenwich time.” Feynman also believed that the
conventional formulation could not account for history [31]. When the conventional for-
mulation is used retrodictively, attempting to determine what happened in the past given
the present wavefunction, it usually does not work. Penrose [3] used an interferometer
Gedankenexperiment to show that using the conventional formulation retrodictively gives
us “completely the wrong answer!” Hartle [32] proved that in the conventional formulation
“correct probabilities for the past cannot generally be constructed simply by running the
Schrödinger equation backwards in time from the present state.” This inability of the
conventional formulation to describe or retrodict the past seems like a serious shortcoming
for a theory that claims to be our best description of nature. Since the time-symmetric
formulation is intrinsically time-symmetric, it describes the future and past equally well
and makes correct predictions and retrodictions. For example, consider the single-quantum
Gedankenexperiment shown in Figure 2. Given the wavefunction ψ at ti = 0 for Figure 2a,
the conventional formulation can correctly predict the wavefunction up until t < 60, but
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not later. Given the collapsed wavefunction φ at t ≥ 60, the conventional formulation can-
not retrodict the earlier wavefunction. In contrast, given the complex transition amplitude
density of Figure 2b at any time, the time-symmetric formulation can predict and retrodict
the complex transition amplitude density at any other time.

Finally, the longstanding conceptual problems in the foundations of the conventional
formulation suggest that something is fundamentally wrong. This paper proposes what
might be wrong: the conventional formulation assumes the most complete description of a
quantum system that is in principle possible is a wavefunction, which is an n-dimensional
object which lives in configuration space and evolves only forwards in time. It is ingrained
in human experience and intuition that nature is composed of 3-dimensional objects and
has an intrinsic arrow of time, which leads us to implicitly extrapolate these concepts
to the quantum level. These questionable extrapolations seem to be the cause of many
conceptual problems in the conventional formulation. The time-symmetric formulation
assumes the most complete description of a quantum system that is in principle possible is
a complex transition amplitude density, which is an (n + 1)-dimensional object which lives
in configuration spacetime, and does not have many of these conceptual problems.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I thank John F. Clauser, Anthony J. Leggett, Roderick I. Sutherland, Kenneth B.
Wharton, Alexandra M. Liguori, and David A. Fotland for many helpful conversations.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Smolin, L. The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next; Houghton Mifflin Company:

New York, NY, USA, 2006; pp. 3–17.
2. Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY, USA, 2000.
3. Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe; Jonathan Cape: London, UK, 2004.
4. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [CrossRef]
5. Commins, E.D. Quantum Mechanics: An Experimentalist’s Approach; Cambridge University Press: New York, NY, USA, 2014.
6. Cohen-Tannoudji, C.; Laloë, F.; Diu, B. Quantum Mechanics; John Wiley & Sons: New York, NY, USA, 1977; Volume I.
7. Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005.
8. Tetrode, H.M. Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Z. Phys. 1922, 10,

317–328. Available online: http://www.mpseevinck.ruhosting.nl/seevinck/Translation_Tetrode.pdf (accessed on 16 July 2019).
[CrossRef]

9. Friederich, S.; Evans, P.W. Retrocausality in Quantum Mechanics. Stanford Encyclopedia of Philosophy. (Summer 2019 Ed.); Zalta,
E.N., Ed., Stanford University, US. Available online: https://plato.stanford.edu/archives/sum2019/entries/qm-retrocausality
(accessed on 15 July 2019).

10. Heaney, M.B. A symmetrical interpretation of the Klein-Gordon equation. Found. Phys. 2013, 43, 733–746.
11. Heaney, M.B. A symmetrical theory of nonrelativistic quantum mechanics. arXiv 2013, arXiv:1310.5348.
12. Aharonov, Y.; Vaidman, L. The Two-State Vector Formalism: An Updated Review. In Time in Quantum Mechanics; Muga, G., Sala

Mayato, R., Egusquiza, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 399–447.
13. Aharonov, Y.; Cohen, E.; Elitzur, A.C. Broadening the scope of weak quantum measurements II: Past and future measurement

effects within a double Mach–Zehnder-interferometer setting. arXiv 2012, arXiv:1207.0667.
14. Wharton, K.B.; Argaman, N. Colloquium: Bell’s theorem and locally mediated reformulations of quantum mechanics. Rev. Mod.

Phys. 2020, 92, 021002. [CrossRef]
15. Sutherland, R.I. Density formalism for quantum theory. Found. Phys. 1998, 28, 1157–1190.
16. Sinha, S.; Sorkin, R.D. A Sum-over-histories Account of an EPR (B) Experiment. Found. Phys. Lett. 1991, 4, 303–335;
17. Qureshi, T.; Rizwan, U. Hanbury Brown–Twiss Effect with Wave Packets. Quanta 2017, 6, 61–69.
18. Schroeder, D.V. Entanglement isn’t just for spin. Am. J. Phys. 2017, 85, 812–820. [CrossRef]
19. Brown, R.H.; Twiss, R.Q. A new type of interferometer for use in radio astronomy. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954,

45, 663–682. [CrossRef]
20. Brown, R.H.; Twiss, R.Q. Correlation between photons in two coherent beams of light. Nature 1956, 177, 27–29. [CrossRef]

http://dx.doi.org/10.1103/RevModPhys.81.865
http://www.mpseevinck.ruhosting.nl/seevinck/Translation_Tetrode.pdf
http://dx.doi.org/10.1007/BF01332574
https://plato.stanford.edu/archives/sum2019/entries/qm-retrocausality
http://dx.doi.org/10.1007/s10701-013-9713-9
http://dx.doi.org/10.1103/RevModPhys.92.021002
http://dx.doi.org/10.1023/A:1018850120826
http://dx.doi.org/10.1007/BF00665892


Entropy 2021, 23, 179 16 of 16

21. Brown, R.H.; Twiss, R.Q. Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in
coherent beams of radiation. Proc. R. Soc. A 1957, 242, 300–324. [CrossRef]

22. Zhang, Z.; Zhang, Y.; Sheng, J.; Yang, L.; Miri, M.A.; Christodoulides, D.N.; He, B.; Zhang, Y.; Xiao, M. Observation of parity-time
symmetry in optically induced atomic lattices. Phys. Rev. Lett. 2016, 117, 123601-1–123601-5. [CrossRef]

23. Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys.
Rev. 1935, 47, 777–780. [CrossRef]

24. Radhakrishnan, V. Robert Hanbury Brown Obituary. Phys. Today 2002, 55, 75. [CrossRef]
25. Wikipedia Entry on Quantum Optics. Available online: https://en.wikipedia.org/wiki/Quantum_optics (accessed on

23 January 2021).
26. Fano, U. Quantum theory of interference effects in the mixing of light from phase-independent sources. Am. J. Phys. 1961,

29, 539–545. [CrossRef] [PubMed]
27. Feynman, R.P.; Leighton, R.B. Exercises for the Feynman Lectures on Physics; Basic Books: New York, NY, USA, 2014. [CrossRef]
28. Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 1999, 71, S274–S282. [CrossRef]
29. Heisenberg, W. Physics and Philosophy; Prometheus Books: Amherst, NY, USA, 1999; p. 133.
30. Dyson, F. Thought-experiments in honor of John Archibald Wheeler. In Science and Ultimate Reality: Quantum Theory, Cosmology,

and Complexity; Barrow, J.D., Davies, P.C., Harper, C.L., Jr., Eds.; Cambridge University Press: New York, NY, USA, 2004; pp. 72–89.
[CrossRef]

31. Bernstein, J. A Chorus of Bells and Other Scientific Inquiries; World Scientific: Singapore, 2014.
32. Hartle, J.B. Quantum pasts and the utility of history. Phys. Scr. 1998, T76, 67. [CrossRef]

http://dx.doi.org/10.12743/quanta.v6i1.66
http://dx.doi.org/10.1119/1.5003808
http://dx.doi.org/10.1080/14786440708520475
http://dx.doi.org/10.1038/177027a0
https://en.wikipedia.org/wiki/Quantum_optics
http://dx.doi.org/10.1103/PhysRevLett.117.123601
http://www.ncbi.nlm.nih.gov/pubmed/27689270
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1063/1.1506758
http://dx.doi.org/10.1119/1.1937827
http://dx.doi.org/10.1103/RevModPhys.71.S274

	Introduction
	The Gedankenexperimental Setup
	One Quantum
	Two Distinguishable Quanta
	Two Indistinguishable Bosons
	Two Indistinguishable Fermions
	The Original Quantum Analysis of the Hanbury Brown–Twiss Effect
	Discussion
	References

