Complexity of Body Movements during Sleep in Children with Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants, Measurements, and Data Preprocessing
2.2. Surrogate Analysis
2.3. Raw and Thresholded Data
2.4. Complexity Analyses
2.4.1. Determinism Detection
2.4.2. Information-Theoretic Analyses
2.4.3. Fluctuation Analysis
2.5. Statistical Analyses
3. Results
3.1. Stationarity of Body Movements Overnight
3.2. Deterministic Chaos
3.3. Information-Theoretic Measures
3.4. DFA
4. Discussion
4.1. Complex Dynamics in Body Movements
4.2. Group Differences (TD vs. ASD) in Complexity of Body Movement
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADOS-G | Autism Diagnostic Observation Schedule–Generic |
ApEn | approximate entropy |
ASD | autism spectrum disorder |
CAP | cyclic alternation pattern |
DFA | detrended fluctuation analysis |
DI | digital integration |
DISCO | Diagnostic Interview for Social and Communication Disorders |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders (5th edition) |
expSampEn | expanded sample entropy |
FNN | false nearest neighbor |
IAAFT | iterative amplitude-adjusted Fourier transform |
K-ABC | Kaufman Assessment Battery for Children |
PSD | power spectral density |
PSG | Polysomnography |
REM | rapid eye movement |
RMS | root mean square |
SampEn | sample entropy |
SD | standard deviation |
SWS | Slow-wave sleep |
TAT | time above threshold |
TD | typically developing children |
ZC | number of zero crossings |
References
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Elrod, M.G.; Hood, B.S. Sleep differences among children with autism spectrum disorders and typically developing peers: A Meta-analysis. J. Dev. Behav. Pediatr. 2015, 36, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Souders, M.C.; Zavodny, S.; Eriksen, W.; Sinko, R.; Connell, J.; Kerns, C.; Schaaf, R.; Pinto-Martin, J. Sleep in Children with Autism Spectrum Disorder. Curr. Psychiatry Rep. 2017, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Palagini, L.; Caruso, D.; Masci, I.; Nobili, L.; Vita, A.; Dell’Osso, L. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: Toward an integrative model of a self-reinforcing loop. Front. Psychiatry 2019, 10, 366. [Google Scholar] [CrossRef]
- Hodge, D.; Carollo, T.M.; Lewin, M.; Hoffman, C.D.; Sweeney, D.P. Sleep patterns in children with and without autism spectrum disorders: Developmental comparisons. Res. Dev. Disabil. 2014, 35, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.E.; Richdale, A.L.; Clemons, T.; Malow, B.A. Parental sleep concerns in autism spectrum disorders: Variations from childhood to adolescence. J. Autism Dev. Disord. 2012, 42, 531–538. [Google Scholar] [CrossRef]
- May, T.; Cornish, K.; Conduit, R.; Rajaratnam, S.M.W.; Rinehart, N.J. Sleep in High-Functioning Children With Autism: Longitudinal Developmental Change and Associations With Behavior Problems. Behav. Sleep Med. 2015, 13, 2–18. [Google Scholar] [CrossRef]
- Humphreys, J.S.; Gringras, P.; Blair, P.S.; Scott, N.; Henderson, J.; Fleming, P.J.; Emond, A.M. Sleep patterns in children with autistic spectrum disorders: A prospective cohort study. Arch. Dis. Child. 2014, 99, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Verhoeff, M.E.; Blanken, L.M.E.; Kocevska, D.; Mileva-Seitz, V.R.; Jaddoe, V.W.V.; White, T.; Verhulst, F.; Luijk, M.P.C.M.; Tiemeier, H. The bidirectional association between sleep problems and autism spectrum disorder: A population-based cohort study. Mol. Autism 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Veatch, O.J.; Sutcliffe, J.S.; Warren, Z.E.; Keenan, B.T.; Potter, M.H.; Malow, B.A. Shorter sleep duration is associated with social impairment and comorbidities in ASD. Autism Res. 2017, 10, 1221–1238. [Google Scholar] [CrossRef]
- Schreck, K.A.; Mulick, J.A.; Smith, A.F. Sleep problems as possible predictors of intensified symptoms of autism. Res. Dev. Disabil. 2004, 25, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Mayes, S.D.; Calhoun, S.L. Variables related to sleep problems in children with autism. Res. Autism Spectr. Disord. 2009, 3, 931–941. [Google Scholar] [CrossRef]
- Hollway, J.A.; Aman, M.G.; Butter, E. Correlates and risk markers for sleep disturbance in participants of the autism treatment network. J. Autism Dev. Disord. 2013, 43, 2830–2843. [Google Scholar] [CrossRef]
- Bangerter, A.; Chatterjee, M.; Manyakov, N.V.; Ness, S.; Lewin, D.; Skalkin, A.; Boice, M.; Goodwin, M.S.; Dawson, G.; Hendren, R.; et al. Relationship Between Sleep and Behavior in Autism Spectrum Disorder: Exploring the Impact of Sleep Variability. Front. Neurosci. 2020, 14, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, S.E.; McGrew, S.; Johnson, K.P.; Richdale, A.L.; Clemons, T.; Malow, B.A. Sleep is associated with problem behaviors in children and adolescents with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2011, 5, 1223–1229. [Google Scholar] [CrossRef]
- Cohen, S.; Conduit, R.; Lockley, S.W.; Rajaratnam, S.M.; Cornish, K.M. The relationship between sleep and behavior in autism spectrum disorder (ASD): A review. J. Neurodev. Disord. 2014, 6, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, S.E.; Surdyka, K.; Cuevas, R.; Adkins, K.; Wang, L.; Malow, B.A. Defining the sleep phenotype in children with autism. Dev. Neuropsychol. 2009, 34, 560–573. [Google Scholar] [CrossRef] [Green Version]
- Lindor, E.; Sivaratnam, C.; May, T.; Stefanac, N.; Howells, K.; Rinehart, N. Problem behavior in autism spectrum disorder: Considering core symptom severity and accompanying sleep disturbance. Front. Psychiatry 2019, 10, 487. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, M.O.; Petroski, G.F. Sleep problems in children with autism spectrum disorder: Examining the contributions of sensory over-responsivity and anxiety. Sleep Med. 2015, 16, 270–279. [Google Scholar] [CrossRef]
- Aathira, R.; Gulati, S.; Tripathi, M.; Shukla, G.; Chakrabarty, B.; Sapra, S.; Dang, N.; Gupta, A.; Kabra, M.; Pandey, R.M. Prevalence of Sleep Abnormalities in Indian Children With Autism Spectrum Disorder: A Cross-Sectional Study. Pediatr. Neurol. 2017, 74, 62–67. [Google Scholar] [CrossRef]
- Yavuz-Kodat, E.; Reynaud, E.; Geoffray, M.-M.; Limousin, N.; Franco, P.; Bonnet-Brilhault, F.; Bourgin, P.; Schroder, C.M. Disturbances of Continuous Sleep and Circadian Rhythms Account for Behavioral Difficulties in Children with Autism Spectrum Disorder. J. Clin. Med. 2020, 9, 1978. [Google Scholar] [CrossRef]
- Mazurek, M.O.; Sohl, K. Sleep and Behavioral Problems in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 46, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Allik, H.; Larsson, J.O.; Smedje, H. Insomnia in school-age children with Asperger syndrome or high-functioning autism. BMC Psychiatry 2006, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.; Evans, V.; Hanvey, G.; Johnson, C. Assessment of Sleep in Children with Autism Spectrum Disorder. Children 2017, 4, 72. [Google Scholar] [CrossRef] [PubMed]
- Yavuz-Kodat, E.; Reynaud, E.; Geoffray, M.-M.; Limousin, N.; Franco, P.; Bourgin, P.; Schroder, C.M. Validity of Actigraphy Compared to Polysomnography for Sleep Assessment in Children With Autism Spectrum Disorder. Front. Psychiatry 2019, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Malow, B.A.; Marzec, M.L.; McGrew, S.G.; Wang, L.; Henderson, L.M.; Stone, W.L. Characterizing sleep in children with autism spectrum disorders: A multidimensional approach. Sleep 2006, 29, 1563–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miano, S.; Bruni, O.; Elia, M.; Trovato, A.; Smerieri, A.; Verrillo, E.; Roccella, M.; Terzano, M.G.; Ferri, R. Sleep in children with autistic spectrum disorder: A questionnaire and polysomnographic study. Sleep Med. 2007, 9, 64–70. [Google Scholar] [CrossRef]
- Fuster-Garcia, E.; Bresó, A.; Miranda, J.M.; García-Gómez, J.M. Actigraphy pattern analysis for outpatient monitoring. Methods Mol. Biol. 2015, 1246, 3–17. [Google Scholar] [CrossRef]
- Knapen, S.E.; Li, P.; Der Lek, R.F.R.-V.; Verkooijen, S.; Boks, M.P.M.; Schoevers, R.A.; Scheer, F.A.J.L.; Hu, K. Fractal biomarker of activity in patients with bipolar disorder. Psychol. Med. 2020, 1–8. [Google Scholar] [CrossRef]
- Krane-Gartiser, K.; Henriksen, T.E.G.; Morken, G.; Vaaler, A.; Fasmer, O.B. Actigraphic assessment of motor activity in acutely admitted inpatients with bipolar disorder. PLoS ONE 2014, 9, e89574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krane-Gartiser, K.; Asheim, A.; Fasmer, O.B.; Morken, G.; Vaaler, A.E.; Scott, J. Actigraphy as an objective intra-individual marker of activity patterns in acute-phase bipolar disorder: A case series. Int. J. Bipolar Disord. 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Frau, D.; Schneider, J.; Bakštein, E.; Vostatek, P.; Spaniel, F.; Novák, D. Classification of actigraphy records from bipolar disorder patients using slope entropy: A feasibility study. Entropy 2020, 22, 1243. [Google Scholar] [CrossRef]
- Scott, J.; Vaaler, A.E.; Fasmer, O.B.; Morken, G.; Krane-Gartiser, K. A pilot study to determine whether combinations of objectively measured activity parameters can be used to differentiate between mixed states, mania, and bipolar depression. Int. J. Bipolar Disord. 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Van Someren, E.J.W.; Shea, S.A.; Scheer, F.A.J.L. Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: Involvement of the circadian pacemaker. Proc. Natl. Acad. Sci. USA 2009, 106, 2490–2494. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.E.; Sachse, P.; Mauracher, A.; Marksteiner, J.; Pohl, W.; Weiss, E.M.; Canazei, M. Assessment of Fractal Characteristics of Locomotor Activity of Geriatric In-Patients With Alzheimer’s Dementia. Front. Aging Neurosci. 2019, 11, 272. [Google Scholar] [CrossRef]
- Holloway, P.M.; Angelova, M.; Lombardo, S.; St. Clair Gibson, A.; Lee, D.; Ellis, J. Complexity analysis of sleep and alterations with insomnia based on non-invasive techniques. J. R. Soc. Interface 2014, 11, 20131112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Mannattil, M.; Gupta, H.; Chakraborty, S. Revisiting Evidence of Chaos in X-ray Light Curves: The Case of GRS 1915+105. Astrophys. J. 2016, 833, 208. [Google Scholar] [CrossRef] [Green Version]
- Burggren, W.W.; Monticino, M.G. Assessing physiological complexity. J. Exp. Biol. 2005, 208, 3221–3232. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate and sample entropy. Am. J. Physiol. Hear. Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Furutani, N.; Nariya, Y.; Takahashi, T.; Ito, H.; Yoshimura, Y.; Hiraishi, H.; Hasegawa, C.; Ikeda, T.; Kikuchi, M. Neural Decoding of Multi-Modal Imagery Behavior Focusing on Temporal Complexity. Front. Psychiatry 2020, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H.E. Long-range correlations in nucleotide sequences. Nature 1992, 356, 168–170. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Naito, N.; Kikuchi, M.; Yoshimura, Y.; Kumazaki, H.; Kitagawa, S.; Ikeda, T.; Hasegawa, C.; Saito, D.N.; Tomiyama, S.; Minabe, Y. Atypical body movements during night in young children with autism spectrum disorder: A pilot study. Sci. Rep. 2019, 9, 6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, L.; Leekam, S.R.; Libby, S.J.; Gould, J.; Larcombe, M. The Diagnostic Interview for Social and Communication Disorders: Background, inter-rater reliability and clinical use. J. Child Psychol. Psychiatry Allied Discip. 2002, 43, 307–325. [Google Scholar] [CrossRef] [Green Version]
- Wing, L. Diagnostic Interview for Social and Communication Disorders 11th edition. (T. Uchiyama et al., Trans.); Spectrum Publishing: Tokyo, Japan, 2007. [Google Scholar]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H.; Leventhal, B.L.; Dilavore, P.C.; Pickles, A.; Rutter, M. The Autism Diagnostic Observation Schedule-Generic: A standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; Dilavore, P.C.; Risi, S.; Gotham, K.; Bishop, S.L. Autism Diagnostic Observation Schedule, 2nd ed.; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Lord, C.; Rutter, M.; Dilavore, P.C.; Risi, S.; Gotham, K.; Bishop, S.L.; Luyster, R.J.; Guthrie, W. Autism Diagnostic Observation Schedule Second Edition. (M. Kuroda et al., Trans.); Kanekoshobo: Tokyo, Japan, 2015. [Google Scholar]
- Sheehan, D.V.; Sheehan, K.H.; Shytle, R.D.; Janavs, J.; Bannon, Y.; Rogers, J.E.; Milo, K.M.; Stock, S.L.; Wilkinson, B. Reliability and validity of the mini international neuropsychiatric interview for children and adolescents (MINI-KID). J. Clin. Psychiatry 2010, 71, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.S. K-ABC: Kaufman Assessment Battery for Children: Interpretive Manual; American Guidance Service: Circle Pines, MN, USA, 1983. [Google Scholar]
- Matsubara, T.; Fujita, K.; Maekawa, H.; Ishikuma, T.; Kaufman, A.S.; Kaufman, N.L. Interpretive Manual for the Japanese K-ABC.; Maruzen Mates: Tokyo, Japan, 1994. [Google Scholar]
- Schreiber, T.; Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 1996, 77, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D Nonlinear Phenom. 2000, 142, 346–382. [Google Scholar] [CrossRef] [Green Version]
- Lüdtke, S.; Hermann, W.; Kirste, T.; Beneš, H.; Teipel, S. An algorithm for actigraphy-based sleep/wake scoring: Comparison with polysomnography. Clin. Neurophysiol. 2021, 132, 137–145. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [Green Version]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos 1995, 5, 110–117. [Google Scholar] [CrossRef]
- Porta, A.; Bari, V.; De Maria, B.; Cairo, B.; Vaini, E.; Malacarne, M.; Pagani, M.; Lucini, D. On the Relevance of Computing a Local Version of Sample Entropy in Cardiovascular Control Analysis. IEEE Trans. Biomed. Eng. 2019, 66, 623–631. [Google Scholar] [CrossRef]
- Lizier, J.T. Measuring the Dynamics of Information Processing on a Local Scale in Time and Space. In Directed Information Measures in Neuroscience; Springer: Berlin/Heidelberg, Germany, 2014; pp. 161–193. [Google Scholar]
- Martinez-Cancino, R.; Heng, J.; Delorme, A.; Kreutz-Delgado, K.; Sotero, R.C.; Makeig, S. Measuring transient phase-amplitude coupling using local mutual information. Neuroimage 2018, 185, 361–378. [Google Scholar] [CrossRef]
- Furutani, N.; Nariya, Y.; Takahashi, T.; Noto, S.; Yang, A.C.; Hirosawa, T.; Kameya, M.; Minabe, Y.; Kikuchi, M. Decomposed Temporal Complexity Analysis of Neural Oscillations and Machine Learning Applied to Alzheimer’s Disease Diagnosis. Front. Psychiatry 2020, 11, 531801. [Google Scholar] [CrossRef]
- Isliker, H.; Kurths, J. A test for stationarity: Finding parts in time series APT for correlation dimension estimates. Int. J. Bifurc. Chaos 1993, 03, 1573–1579. [Google Scholar] [CrossRef]
- Osipov, M.; Behzadi, Y.; Kane, J.M.; Petrides, G.; Clifford, G.D. Objective identification and analysis of physiological and behavioral signs of schizophrenia. J. Ment. Health 2015, 24, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Hauge, E.R.; Berle, J.Ø.; Oedegaard, K.J.; Holsten, F.; Fasmer, O.B. Nonlinear analysis of motor activity shows differences between schizophrenia and depression: A study using fourier analysis and sample entropy. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raichlen, D.A.; Klimentidis, Y.C.; Hsu, C.H.; Alexander, G.E.; Newman, A. Fractal Complexity of Daily Physical Activity Patterns Differs with Age over the Life Span and Is Associated with Mortality in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1461–1467. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. 1991, 7, 335–345. [Google Scholar] [CrossRef]
- Hu, K.; Ivanov, P.C.; Chen, Z.; Hilton, M.F.; Stanley, H.E.; Shea, S.A. Non-random fluctuations and multi-scale dynamics regulation of human activity. Phys. A Stat. Mech. Appl. 2004, 337, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Maski, K.; Holbrook, H.; Manoach, D.; Hanson, E.; Kapur, K.; Stickgold, R. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder. Sleep 2015, 38, 1955–1963. [Google Scholar] [CrossRef] [Green Version]
- Lázár, A.S.; Lázár, Z.I.; Bíró, A.; Gyori, M.; Tárnok, Z.; Prekop, C.; Keszei, A.; Stefanik, K.; Gádoros, J.; Halász, P.; et al. Reduced fronto-cortical brain connectivity during NREM sleep in Asperger syndrome: An EEG spectral and phase coherence study. Clin. Neurophysiol. 2010, 121, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Limoges, É.; Mottron, L.; Bolduc, C.; Berthiaume, C.; Godbout, R. Atypical sleep architecture and the autism phenotype. Brain 2005, 128, 1049–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, B.; Nageye, F.; Masi, G.; Cortese, S. Sleep in adults with Autism Spectrum Disorder: A systematic review and meta-analysis of subjective and objective studies. Sleep Med. 2020, 65, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, F.; Giannotti, F.; Ivanenko, A.; Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 2010, 11, 659–664. [Google Scholar] [CrossRef]
- Devnani, P.A.; Hegde, A.U. Autism and sleep disorders. J. Pediatr. Neurosci. 2015, 10, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Elia, M.; Ferri, R.; Musumeci, S.A.; Del Gracco, S.; Bottitta, M.; Scuderi, C.; Miano, G.; Panerai, S.; Bertrand, T.; Grubar, J.C. Sleep in subjects with autistic disorder: A neurophysiological and psychological study. Brain Dev. 2000, 22, 88–92. [Google Scholar] [CrossRef]
- Buckley, A.W.; Rodriguez, A.J.; Jennison, K.; Buckley, J.; Thurm, A.; Sato, S.; Swedo, S. Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development. Arch. Pediatr. Adolesc. Med. 2010, 164, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of Seven Consumer Sleep-Tracking Devices Compared with Polysomnography. Sleep 2020. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, K.; Georgievska, S.; te Lindert, B.H.W.; Gehrman, P.R.; Ramautar, J.; Mazzotti, D.R.; Sabia, S.; Weedon, M.N.; van Someren, E.J.W.; Ridder, L.; et al. Sleep classification from wrist-worn accelerometer data using random forests. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Kalkbrenner, C.; Brucher, R.; Kesztyüs, T.; Eichenlaub, M.; Rottbauer, W.; Scharnbeck, D. Automated sleep stage classification based on tracheal body sound and actigraphy. GMS Ger. Med. Sci. 2019, 17. [Google Scholar] [CrossRef]
- Nakagawa, M.; Ohta, H.; Nagaoki, Y.; Shimabukuro, R.; Asaka, Y.; Takahashi, N.; Nakazawa, T.; Kaneshi, Y.; Morioka, K.; Oishi, Y.; et al. Daytime nap controls toddlers’ nighttime sleep. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Adkins, K.W.; Goldman, S.E.; Fawkes, D.; Surdyka, K.; Wang, L.; Song, Y.; Malow, B.A. A Pilot Study of Shoulder Placement for Actigraphy in Children. Behav. Sleep Med. 2012, 10, 138–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littner, M.; Kushida, C.A.; Anderson, W.M.D.; Bailey, D.; Berry, R.B.; Davila, D.G.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; Loube, D.; et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: An update for 2002. Sleep 2003, 26, 337–341. [Google Scholar] [CrossRef]
- Van Hilten, J.J.; Middelkoop, H.A.M.; Kuiper, S.I.R.; Kramer, C.G.S.; Roos, R.A.C. Where to record motor activity: An evaluation of commonly used sites of placement for activity monitors. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials 1993, 89, 359–362. [Google Scholar] [CrossRef]
Score (Mean ± SD) | ASD Cut-Off | |
---|---|---|
ADOS-G, Module 1 (N = 2) | ||
Communication | 4.5 ± 0.7 | 2 |
Reciprocal Social Interaction | 8.0 ± 4.2 | 4 |
Communication + Social Interaction | 12.5 ± 3.5 | 7 |
Play | 2.5 ± 2.1 | |
Stereotyped Behaviors and Restricted Interests | 1.5 ± 0.7 | |
ADOS-G, Module 2 (N = 6) | ||
Communication | 4.7 ± 2.2 | 3 |
Reciprocal Social Interaction | 8.8 ± 1.9 | 4 |
Communication + Social Interaction | 13.5 ± 3.9 | 8 |
Imagination/Creativity | 1.0 ± 0.6 | |
Stereotyped Behaviors and Restricted Interests | 1.5 ± 0.8 | |
ADOS-G, Module 3 (N = 1) | ||
Communication | 4 | 2 |
Reciprocal Social Interaction | 9 | 4 |
Communication + Social Interaction | 13 | 7 |
Imagination/Creativity | 0 | |
Stereotyped Behaviors and Restricted Interests | 1 | |
ADOS-2, Module 2 (N = 6) | ||
Social Affect | 9.0 ± 1.4 | |
Restricted and Repetitive Behavior | 1.5 ± 1.2 | |
Total score | 10.5 ± 2.2 | 8 |
ADOS-2, Module 3 (N = 2) | ||
Social Affect | 5.5 ± 2.1 | |
Restricted and Repetitive Behavior | 1.0 ± 0.0 | |
Total score | 6.5 ± 2.1 | 7 |
Data Type–Data Type | Time Scale | ||
---|---|---|---|
30 s | 100 s | 300 s | |
Raw–Thr | 0.88 ± 0.05 | 0.88 ± 0.05 | 0.89 ± 0.06 |
Raw–Raw_expSampEn | 0.89 ± 0.05 | 0.78 ± 0.06 | 0.41 ± 0.13 |
Thr–Thr_expSampEn | 0.46 ± 0.15 | 0.46 ± 0.16 | 0.23 ± 0.17 |
Raw–Thr_expSampEn | 0.22 ± 0.21 | 0.25 ± 0.20 | 0.14 ± 0.20 |
Raw_expSampEn–Thr_expSampEn | 0.33 ± 0.16 | 0.49 ± 0.14 | 0.51 ± 0.14 |
Time Scale | 90th Percentile | 10th Percentile | ||
---|---|---|---|---|
T | p | T | p | |
30 s | 1.52 | 0.069 | 0.97 | 0.17 |
100 s | 2.17 | 0.019 | 0.91 | 0.18 |
300 s | 1.78 | 0.043 | 1.46 | 0.077 |
TD | ASD | p-value | |
---|---|---|---|
Number of participants | 17 | 17 | |
Gender (male/female) | 11/6 | 13/4 | n.s. |
Age in months, mean (range) | 71.1 (61−79) | 77.1 (60−98) | n.s. |
Usual sleep duration (mean ± SD h) | 9.45 ± 0.54 | 9.51 ± 0.59 | n.s. |
Usual sleep quality 1 (mean ± SD h) | 5.0 ± 0.71 | 5.0 ± 0.87 | n.s. |
K-ABC Mental Processing Scale (mean ± SD) | 102.8 ± 10.5 | 93.9 ± 18.9 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furutani, N.; Takahashi, T.; Naito, N.; Maruishi, T.; Yoshimura, Y.; Hasegawa, C.; Hirosawa, T.; Kikuchi, M. Complexity of Body Movements during Sleep in Children with Autism Spectrum Disorder. Entropy 2021, 23, 418. https://doi.org/10.3390/e23040418
Furutani N, Takahashi T, Naito N, Maruishi T, Yoshimura Y, Hasegawa C, Hirosawa T, Kikuchi M. Complexity of Body Movements during Sleep in Children with Autism Spectrum Disorder. Entropy. 2021; 23(4):418. https://doi.org/10.3390/e23040418
Chicago/Turabian StyleFurutani, Naoki, Tetsuya Takahashi, Nobushige Naito, Takafumi Maruishi, Yuko Yoshimura, Chiaki Hasegawa, Tetsu Hirosawa, and Mitsuru Kikuchi. 2021. "Complexity of Body Movements during Sleep in Children with Autism Spectrum Disorder" Entropy 23, no. 4: 418. https://doi.org/10.3390/e23040418
APA StyleFurutani, N., Takahashi, T., Naito, N., Maruishi, T., Yoshimura, Y., Hasegawa, C., Hirosawa, T., & Kikuchi, M. (2021). Complexity of Body Movements during Sleep in Children with Autism Spectrum Disorder. Entropy, 23(4), 418. https://doi.org/10.3390/e23040418