Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine
Abstract
:1. Introduction
2. Modeling of Irreversible Combined Thermal Brownian Heat Engine
3. Main Performance Parameters
4. Optimal Performance Characteristics without External Load
4.1. Performance Analysis without External Load
4.2. Optimal Performance without External Load
5. The Performance Characteristics with External Load
6. Performance Comparison with Single Cycle
- The irreversible combined TBHE is connected by intermediate reservoir, which leads to the increased overall heat resistance increase.
- The TBHE exchange energy through particle moves, which is different from macro heat engine. The energy releasing from upper heat engine can’t be absorbed completely by lower heat engine and as a result the efficiency decreases.
- Because the intermediate reservoir is considered, the temperature of the reservoirs of upper heat engine changes and the velocity of particle motion changes. The upper heat engine absorbs less energy from the hot reservoir . As a result, the total power output decreases.
7. Conclusions
- When the temperature ratio is fixed, there is a specific optimal temperature ratio which maximize power or efficiency. Reducing the heat leakage coefficient and enhancing the heat transfer between the thermal Brownian heat engines and reservoir can improve the performance. There are suitable barrier height and the ratio of barrier height to make the combined thermal Brownian heat engine work at optimum power and efficiency whether the potential field is affected by the external load or not.
- When the potential field is free from external load, considering heat leakage and kinetic energy loss, the curves of are loop-shaped ones and the optimal working regions are and . The maximum power and efficiency decrease first and then increase versus asymmetry of the potential.
- When the potential field is influenced by external load, the steady current decreases with the increase of external load. The maximum power and efficiency monotonically increase versus the asymmetry of the potential. The power and efficiency are monotonically increasing versus external load.
- The overall heat resistance of combined thermal Brownian heat engine is bigger than that of single thermal Brownian heat engine, the power or efficiency of combined thermal Brownian heat engine are lower than that of single thermal Brownian heat engine.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
self-defined function | |
self-defined function | |
self-defined function | |
self-defined function | |
self-defined function | |
heat leakage coefficient () | |
self-defined function | |
external load | |
dimensionless external load | |
, | some defined functions |
steady current | |
temperature ratio | |
Boltzmann constant () | |
length of potential field () | |
the ratio of barrier height | |
power output () | |
heat flow rate () | |
kinetic energy () | |
heat leakage rate () | |
temperature ( ) | |
barrier height () | |
drift velocity of particle | |
, | self-defined functions |
the position of particle | |
Greek symbols | |
friction coefficient | |
efficiency | |
asymmetry of the potential | |
, | temperature ratio |
dimensionless heat leakage coefficient | |
Abbreviations | |
CR | cold reservoir |
FTT | Finite time thermodynamics |
HE | heat engine |
HR | hot reservoir |
TBHE | thermal Brownian heat engine |
VM | viscous medium |
References
- Parrondo, J.M.R.; de Cisneros, B.J. Energetics of Brownian motors: A review. Appl. Phys. A 2002, 75, 179–191. [Google Scholar] [CrossRef]
- Hänggi, P.; Marchesoni, F. Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 2009, 81, 387–442. [Google Scholar] [CrossRef] [Green Version]
- Mugnai, M.L.; Hyeon, C.; Hinczewski, M.; Thirumalai, D. Theoretical perspectives on biological machines. Rev. Mod. Phys. 2020, 92, 025001. [Google Scholar] [CrossRef] [Green Version]
- Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P. Thermodynamics for processes in finite time. Acc. Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non Equilib. Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal process paths for endoreversible systems. J. Non Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Zaeva, M.A.; Tsirlin, A.M.; Didina, O.V. Finite time thermodynamics: Realizability domain of heat to work converters. J. Non Equilib. Thermodyn. 2019, 44, 181–191. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Endoreversible modeling of a hydraulic recuperation system. Entropy 2020, 22, 383. [Google Scholar] [CrossRef] [Green Version]
- Kushner, A.; Lychagin, V.; Roop, M. Optimal thermodynamic processes for gases. Entropy 2020, 22, 448. [Google Scholar] [CrossRef] [PubMed]
- De Vos, A. Endoreversible models for the thermodynamics of computing. Entropy 2020, 22, 660. [Google Scholar] [CrossRef]
- Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized piston motion for an alpha-type Stirling engine. Entropy 2020, 22, 700. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Ma, K.; Ge, Y.L.; Feng, H.J. Re-optimization of expansion work of a heated working fluid with generalized radiative heat transfer law. Entropy 2020, 22, 720. [Google Scholar] [CrossRef] [PubMed]
- Tsirlin, A.; Gagarina, L. Finite-time thermodynamics in economics. Entropy 2020, 22, 891. [Google Scholar] [CrossRef]
- Tsirlin, A.; Sukin, I. Averaged optimization and finite-time thermodynamics. Entropy 2020, 22, 912. [Google Scholar] [CrossRef] [PubMed]
- Muschik, W.; Hoffmann, K.H. Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time thermodynamics. Entropy 2020, 22, 997. [Google Scholar] [CrossRef]
- Insinga, A.R. The quantum friction and optimal finite-time performance of the quantum Otto cycle. Entropy 2020, 22, 1060. [Google Scholar] [CrossRef]
- Schön, J.C. Optimal control of hydrogen atom-like systems as thermodynamic engines in finite time. Entropy 2020, 22, 1066. [Google Scholar] [CrossRef]
- Andresen, B.; Essex, C. Thermodynamics at very long time and space scales. Entropy 2020, 22, 1090. [Google Scholar] [CrossRef]
- Chen, L.G.; Ma, K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer law. Energies 2020, 13, 3229. [Google Scholar] [CrossRef]
- Scheunert, M.; Masser, R.; Khodja, A.; Paul, R.; Schwalbe, K.; Fischer, A.; Hoffmann, K.H. Power-optimized sinusoidal piston motion and its performance gain for an Alpha-type Stirling engine with limited regeneration. Energies 2020, 13, 4564. [Google Scholar] [CrossRef]
- Boikov, S.Y.; Andresen, B.; Akhremenkov, A.A.; Tsirlin, A.M. Evaluation of irreversibility and optimal organization of an integrated multi-stream heat exchange system. J. Non Equilib. Thermodyn. 2020, 45, 155–171. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Ge, Y.L. Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs. Energy Convers. Manag. 2020, 223, 113261. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Wagner, K.; Hoffmann, K.H. Endoreversible modeling of a PEM fuel cell. J. Non Equilib. Thermodyn. 2015, 40, 283–294. [Google Scholar] [CrossRef]
- Muschik, W. Concepts of phenominological irreversible quantum thermodynamics I: Closed undecomposed Schottky systems in semi-classical description. J. Non Equilib. Thermodyn. 2019, 44, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ponmurugan, M. Attainability of maximum work and the reversible efficiency of minimally nonlinear irreversible heat engines. J. Non Equilib. Thermodyn. 2019, 44, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Raman, R.; Kumar, N. Performance analysis of Diesel cycle under efficient power density condition with variable specific heat of working fluid. J. Non Equilib. Thermodyn. 2019, 44, 405–416. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with Fourier heat transport. J. Non Equilib. Thermodyn. 2019, 44, 417–424. [Google Scholar] [CrossRef]
- Morisaki, T.; Ikegami, Y. Maximum power of a multistage Rankine cycle in low-grade thermal energy conversion. Appl. Therm. Eng. 2014, 69, 78–85. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Application of finite time thermodynamics for evaluation method of heat engines. Energy Procedia 2017, 129, 995–1001. [Google Scholar] [CrossRef]
- Yasunaga, T.; Fontaine, K.; Morisaki, T.; Ikegami, Y. Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Ocean Therm. Energy Convers. 2017, 22, 65–75. [Google Scholar]
- Yasunaga, T.; Koyama, N.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Thermodynamical optimum heat source mean velocity in heat exchangers on OTEC. In Proceedings of the Grand Renewable Energy 2018 Proceedings, Yokohama, Japan, 17–22 June 2018. [Google Scholar]
- Yasunaga, T.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Basic heat exchanger performance evaluation method on OTEC. J. Mar. Sci. Eng. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, K.; Yasunaga, T.; Ikegami, Y. OTEC maximum net power output using Carnot cycle and application to simplify heat exchanger selection. Entropy 2019, 21, 1143. [Google Scholar] [CrossRef] [Green Version]
- Yasunaga, T.; Ikegami, Y. Finite-time thermodynamic model for evaluating heat engines in ocean thermal energy conversion. Entropy 2020, 22, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasunaga, T.; Ikegami, Y. Fundamental characteristics in power generation by heat engines on ocean thermal energy conversion (Construction of finite-time thermodynamic model and effect of heat source flow rate). Trans. JSME 2021. in press (In Japanese) [Google Scholar] [CrossRef]
- Feidt, M. Carnot cycle and heat engine: Fundamentals and applications. Entropy 2020, 22, 348. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M. Effect of machine entropy production on the optimal performance of a refrigerator. Entropy 2020, 22, 913. [Google Scholar] [CrossRef]
- Rogolino, P.; Cimmelli, V.A. Thermoelectric efficiency of Silicon–Germanium alloys in finite-time thermodynamics. Entropy 2020, 22, 1116. [Google Scholar] [CrossRef] [PubMed]
- Essex, C.; Das, I. Radiative transfer and generalized wind. Entropy 2020, 22, 1153. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum finite time thermodynamics: Insight from a single qubit engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Feng, H.J.; Ge, Y.L. Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 2020, 22, 677. [Google Scholar] [CrossRef]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Wang, W.H.; Ge, Y.L. Power optimization of a closed binary Brayton cycle with isothermal heating processes and coupled to variable-temperature reservoirs. Energies 2020, 13, 3212. [Google Scholar] [CrossRef]
- Chen, L.G.; Shen, J.F.; Ge, Y.L.; Wu, Z.X.; Wang, W.H.; Zhu, F.L.; Feng, H.J. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers. Manag. 2020, 217, 113001. [Google Scholar] [CrossRef]
- Chen, L.G.; Yang, B.; Feng, H.J.; Ge, Y.L.; Xia, S.J. Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China’s steelmaking plants. Energy 2020, 203, 117791. [Google Scholar] [CrossRef]
- Feng, H.J.; Chen, W.J.; Chen, L.G.; Tang, W. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Convers. Manag. 2020, 220, 113079. [Google Scholar] [CrossRef]
- Feng, H.J.; Wu, Z.X.; Chen, L.G.; Ge, Y.L. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers. Manag. 2021, 227, 113585. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Feng, H.J. Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 2021, 136, 198. [Google Scholar] [CrossRef]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Ge, Y.L. Four-objective optimization for an irreversible closed modified simple Brayton cycle. Entropy 2021, 23, 282. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Chen, L.G.; Ge, Y.L.; Feng, H.J.; Wu, F.; Lorenzini, G. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems. J. Non Equilib. Thermodyn. 2021, 46, 61–76. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Tang, W.; Shi, J.Z.; Ge, Y.L. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers. Manag. 2020, 210, 112727. [Google Scholar] [CrossRef]
- Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424. [Google Scholar] [CrossRef]
- Qiu, S.S.; Ding, Z.M.; Chen, L.G. Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers. Manag. 2020, 225, 113360. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J.; Xia, S.J. Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 2020, 63, 2640–2648. [Google Scholar] [CrossRef]
- Chen, L.G.; Ge, Y.L.; Liu, C.; Feng, H.J.; Lorenzini, G. Performance of universal reciprocating heat-engine cycle with variable specific heats ratio of working fluid. Entropy 2020, 22, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, S.S.; Ge, Y.L.; Chen, L.G.; Feng, H.J. Four-objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 2020, 22, 1150. [Google Scholar] [CrossRef]
- Wu, H.; Ge, Y.L.; Chen, L.G.; Feng, H.J. Power, efficiency, ecological function and ecological coefficient of performance optimizations of an irreversible Diesel cycle based on finite piston speed. Energy 2021, 216, 119235. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Pourkiaei, S.M.; Ghazvini, M.; Pourfayaz, F. Thermodynamic assessment and optimization of performance of irreversible Atkinson cycle. Iran. J. Chem. Chem. Eng. 2020, 39, 267–280. [Google Scholar]
- Ahmadi, M.H.; Mohammadi, A.H.; Dehghani, S.; Barranco-Jimenez, M.A. Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy Convers. Manag. 2013, 75, 438–445. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Mohammadi, A.H.; Feidt, M.; Pourkiaei, S.M. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Convers. Manag. 2014, 82, 351–360. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Jokar, M.A.; Ming, T.Z.; Feidt, M.; Pourfayaz, F.; Astaraei, F.R. Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy 2018, 144, 707–722. [Google Scholar] [CrossRef]
- Jokar, M.A.; Ahmadi, M.H.; Sharifpur, M.; Meyer, J.P.; Pourfayaz, F.; Ming, T.Z. Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system. Energy Convers. Manag. 2017, 153, 538–556. [Google Scholar] [CrossRef]
- Ghasemkhani, A.; Farahat, S.; Naserian, M.M. Multi-objective optimization and decision making of endoreversible combined cycles with consideration of different heat exchangers by finite time thermodynamics. Energy Convers. Manag. 2018, 171, 1052–1062. [Google Scholar] [CrossRef]
- Chen, L.G.; Tang, C.Q.; Feng, H.J.; Ge, Y.L. Power, efficiency, power density and ecological function optimizations for an irreversible modified closed variable-temperature reservoir regenerative Brayton cycle with one isothermal heating process. Energies 2020, 13, 5133. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.G.; Xia, S.J.; Ge, Y.L.; Wang, C.; Feng, H.J. Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II. Int. J. Heat Mass Transf. 2020, 148, 119025. [Google Scholar] [CrossRef]
- Sun, M.; Xia, S.J.; Chen, L.G.; Wang, C.; Tang, C.Q. Minimum entropy generation rate and maximum yield optimization of sulfuric acid decomposition process using NSGA-II. Entropy 2020, 22, 1065. [Google Scholar] [CrossRef]
- Asfaw, M.; Bekele, M. Current, maximum power and optimized efficiency of a Brownian heat engine. Eur. Phys. J. B 2004, 38, 457–461. [Google Scholar] [CrossRef]
- Asfaw, M.; Bekele, M. Energetics of a simple microscopic heat engine. Phys. Rev. E 2005, 72, 056109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asfaw, M.; Bekele, M. Exploring the operation of a tiny heat engine. Phys. A 2007, 384, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeck, C.; Kawai, R. Brownian refrigerator. Phys. Rev. Lett. 2006, 96, 210601. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.M.; Chen, L.G.; Sun, F.R. Generalized model and optimum performance of an irreversible thermal Brownian microscopic heat pump. Math. Comput. Model. 2011, 53, 780–792. [Google Scholar] [CrossRef]
- Van den Broek, M.; Van den Broeck, C. Chiral Brownian heat pump. Phys. Rev. Lett. 2008, 100, 130601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; He, J.Z. Thermodynamic performance characteristics of an irreversible micro-Brownian heat engine driven by temperature difference. Chin. Phys. Lett. 2010, 27, 090502. [Google Scholar]
- Zhang, Y.; Lin, B.H.; Chen, J.C. Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine. Eur. Phys. J. B 2006, 53, 481–485. [Google Scholar] [CrossRef]
- Ai, B.Q.; Xie, H.Z.; Wen, D.H.; Liu, L.G. Heat flow and efficiency in a microscopic engine. Eur. Phys. J. B 2005, 48, 101–106. [Google Scholar] [CrossRef]
- Ai, B.Q.; Wang, L.; Liu, L.G. Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances. Phys. Lett. A 2006, 352, 286–290. [Google Scholar] [CrossRef]
- Asfaw, M. Effect of thermal inhomogeneity on the performance of a Brownian heat engine. Eur. Phys. J. B 2013, 86, 189. [Google Scholar] [CrossRef]
- Gao, T.F.; Zhang, Y.; Chen, J.C. The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor. Chin. Phys. B 2009, 18, 3279–3286. [Google Scholar]
- Asfaw, M. Modeling an efficient Brownian heat engine. Eur. Phys. J. B 2008, 65, 109–116. [Google Scholar] [CrossRef]
- Gao, T.F.; Chen, J.C. Non-equilibrium thermodynamic analysis on the performance of an irreversible thermally driven Brownian motor. Mod. Phys. Lett. B 2010, 24, 325–333. [Google Scholar] [CrossRef]
- Machura, L.; Kostur, M.; Talkner, P.; Luczka, J.; Marchesoni, F.; Hanggi, P. Brownian motors: Current fluctuations and rectification efficiency. Phys. Rev. E 2004, 70, 061105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Broeck, C.; Kawai, R.; Meurs, P. Microscopic analysis of a thermal Brownian motor. Phys. Rev. Lett. 2004, 93, 090601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feito, M.; Cao, F.J. Information and maximum power in a feedback controlled Brownian ratchet. Euro. Phys. J. B 2007, 59, 63–68. [Google Scholar] [CrossRef]
- Qian, M.; Zhang, X.; Wilson, R.J.; Feng, J. Efficiency of Brownian motors in terms of entropy production rate. EPL 2008, 84, 10014. [Google Scholar] [CrossRef] [Green Version]
- Schönborn, J.B.; Herges, R.; Hartke, B. Brownian molecular rotors: Theoretical design principles and predicted realizations. J. Chem. Phys. 2009, 130, 234906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santillan, M.; Mackey, M.C. Dynamic stability versus thermodynamic performance in a simple model for a Brownian motor. Phys. Rev. E 2008, 78, 061122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.G.; Liu, N.; He, J.Z. Optimum analysis of a Brownian refrigerator. Phys. Rev. E 2013, 87, 022139. [Google Scholar] [CrossRef]
- Rozenbaum, V.M.; Makhnovskii, Y.A.; Shapochkina, I.V.; Sheu, S.Y.; Yang, D.Y.; Lin, S.H. Adiabatically driven Brownian pumps. Phys. Rev. E 2013, 87, 012104. [Google Scholar] [CrossRef]
- Asfaw, M. Thermodynamic feature of a Brownian heat engine operating between two heat baths. Phys. Rev. E 2014, 89, 012143. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Hänggi, P.; Łuczka, J. Brownian motors in the microscale domain: Enhancement of efficiency by noise. Phys. Rev. E 2014, 90, 032104. [Google Scholar] [CrossRef] [Green Version]
- Taye, M.A. Exact analytical thermodynamic expressions for a Brownian heat engine. Phys. Rev. E 2015, 92, 032126. [Google Scholar] [CrossRef]
- Dinis, L.; Martínez, I.A.; Roldán, É.; Parrondo, J.M.R.; Rica, R.A. Thermodynamics at the microscale: From effective heating to the Brownian Carnot engine. J. Stat. Mech. Theor. Exp. 2016, 19, 054003. [Google Scholar] [CrossRef] [Green Version]
- Martinez, I.A.; Roldan, E.; Dinis, L.; Petrov, D.; Parrondo, J.M.R.; Rica, R.A. Brownian Carnot engine. Nat. Phys. 2016, 12, 67–70. [Google Scholar] [CrossRef]
- Park, J.M.; Chun, H.M.; Noh, J.D. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Phys. Rev. E 2016, 94, 012127. [Google Scholar]
- Açıkkalp, E. Analysis of a Brownian heat engine with ecological criteria. Eur. Phys. J. Plus 2016, 131, 426. [Google Scholar] [CrossRef]
- Tutu, H.; Ouchi, K.; Horita, T. Performance optimization in two-dimensional Brownian rotary ratchet models. Phys. Rev. E 2017, 95, 062103. [Google Scholar] [CrossRef] [Green Version]
- Nicolis, G.; De Decker, Y. Stochastic thermodynamics of Brownian motion. Entropy 2017, 19, 434. [Google Scholar] [CrossRef] [Green Version]
- Defaveri, L.A.; Morgado, W.A.; Queirós, S.M. Power output for a nonlinear Brownian machine. Phys. Rev. E 2017, 96, 052115. [Google Scholar] [CrossRef]
- Kanada, R.; Shinagawa, R.; Sasaki, K. Diffusion enhancement of Brownian motors revealed by a solvable model. Phys. Rev. E 2018, 98, 062110. [Google Scholar] [CrossRef] [Green Version]
- Herpich, T.; Shayanfard, K.; Esposito, M. Effective thermodynamics of two interacting underdamped Brownian particles. Phys. Rev. E 2020, 101, 022116. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Park, J.M.; Park, H. Brownian heat engine with active reservoirs. Phys. Rev. E 2020, 102, 032116. [Google Scholar] [CrossRef]
- Holubec, V.; Steffenoni, S.; Falasco, G.; Kroy, K. Active Brownian heat engines. Phys. Rev. Res. 2020, 2, 043262. [Google Scholar] [CrossRef]
- Holubec, V.; Marathe, R. Underdamped active Brownian heat engine. Phys. Rev. E 2020, 102, 060101(R). [Google Scholar] [CrossRef] [PubMed]
- Chimal-Eguia, J.C.; Paez-Hernández, R.T.; Pacheco-Paez, J.C. Comparative performance analysis of a Brownian Carnot cycle from the perspective of a stochastic model against the linear irreversible thermodynamics theory. Phys. A Stat. Mech. Appl. 2021, 570, 125743. [Google Scholar] [CrossRef]
- Rubin, M.H.; Andresen, B. Optimal staging of endoreversible heat engines. J. Appl. Phys. 1982, 53, 1–7. [Google Scholar] [CrossRef]
- Wu, C. Power performance of a cascade endoreversible cycle. Energy Convers. Manag. 1990, 30, 261–266. [Google Scholar] [CrossRef]
- Chen, J.C. A universal model of an irreversible combined Carnot cycle system and its general performance characteristics. J. Phys. A Math. Gen. 1998, 31, 3383–3394. [Google Scholar] [CrossRef]
- Ozkaynak, S. The theoretical efficiency limits for a combined cycle under the condition of maximum power output. J. Phys. D Appl. Phys. 1995, 28, 2024–2028. [Google Scholar] [CrossRef]
- Sahin, B.; Kodal, A. Steady-state thermodynamic analysis of a combined Carnot cycle with internal irreversibility. Energy 1995, 20, 1285–1289. [Google Scholar] [CrossRef]
- De Vos, A.; Chen, J.C.; Andresen, B. Analysis of combined systems of two endoreversible engines. Open Syst. Inf. Dyn. 1997, 4, 3–13. [Google Scholar] [CrossRef]
- El Haj Assad, M. Finite-time thermodynamic analysis of combined heat engines. Int. J. Mech. Eng. Educ. 1997, 25, 281–289. [Google Scholar] [CrossRef]
- Lewins, J.D. Optimizing cascades of endo-reversible heat engines. Int. J. Mech. Eng. Educ. 1999, 27, 91–101. [Google Scholar] [CrossRef]
- Cheng, X.T.; Liang, X.G. Optimization of combined endoreversible Carnot heat engines with different objectives. Chin. Phys. B 2015, 24, 60510. [Google Scholar] [CrossRef]
- Wu, J. A new approach to determining the intermediate temperatures of endoreversible combined cycle power plant corresponding to maximum power. Int. J. Heat Mass Transf. 2015, 91, 150–161. [Google Scholar] [CrossRef]
- Iyyappan, I.; Johal, R.S. Efficiency of a two-stage heat engine at optimal power. EPL 2019, 128, 50004. [Google Scholar] [CrossRef] [Green Version]
- Levario-Medina, S.; Valencia-Ortega, G.; Barranco-Jimenez, M.A. Energetic optimization considering a generalization of the ecological criterion in traditional simple-cycle and combined cycle power plants. J. Non Equilib. Thermodyn. 2020, 45, 269–290. [Google Scholar] [CrossRef]
- Meng, Z.W.; Chen, L.G.; Wu, F. Optimal power and efficiency of multi-stage endoreversible quantum carnot heat engine with Harmonic oscillators at the classical limit. Entropy 2020, 22, 457. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Meng, Z.W.; Ge, Y.L.; Wu, F. Performance analysis and optimization for irreversible combined Carnot heat engine working with ideal quantum gases. Entropy 2021, in press. [Google Scholar]
- Cheng, H.T.; He, J.Z.; Xiao, Y.L. Brownian heat engine driven by temperature difference in a periodic double-barrier sawtooth potential. Acta Phys. Sin. 2012, 61, 010502. (In Chinese) [Google Scholar]
- Zhang, Y.P.; He, J.Z.; He, X.; Xiao, Y.L. Thermodynamic performance characteristics of a Brownian microscopic heat engine driven by discrete and periodic temperature field. Commun. Theor. Phys. 2010, 54, 857–862. [Google Scholar] [CrossRef]
- Lin, B.H.; Chen, J.C. Performance characteristics and parametric optimum criteria of a Brownian micro-refrigerator in a spatially periodic temperature field. J. Phys. A Math. Theor. 2009, 42, 075006. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Theory of heat transfer-irreversible power plant. Int. J. Heat Mass Transf. 1988, 31, 1211–1219. [Google Scholar] [CrossRef]
- Bejan, A. Theory of heat transfer-irreversible power plants. II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transf. 1995, 38, 433–444. [Google Scholar] [CrossRef]
External Load | |||
---|---|---|---|
Single TBHE | 0.768 | 0.812 | 0.857 |
Combined TBHE | 0.408 | 0.513 | 0.62 |
Increasement of | −46.9% | −36.8% | −27.7% |
External Load | |||
---|---|---|---|
Single TBHE | 0.208 | 0.219 | 0.23 |
Combined TBHE | 0.122 | 0.154 | 0.186 |
Increasement of | −41.3% | −29.7% | −19.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, C.; Ding, Z.; Chen, L.; Ge, Y.; Feng, H. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Entropy 2021, 23, 419. https://doi.org/10.3390/e23040419
Qi C, Ding Z, Chen L, Ge Y, Feng H. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Entropy. 2021; 23(4):419. https://doi.org/10.3390/e23040419
Chicago/Turabian StyleQi, Congzheng, Zemin Ding, Lingen Chen, Yanlin Ge, and Huijun Feng. 2021. "Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine" Entropy 23, no. 4: 419. https://doi.org/10.3390/e23040419
APA StyleQi, C., Ding, Z., Chen, L., Ge, Y., & Feng, H. (2021). Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Entropy, 23(4), 419. https://doi.org/10.3390/e23040419