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Abstract: This paper proposes a hybrid Rao-Nelder–Mead (Rao-NM) algorithm for image template
matching is proposed. The developed algorithm incorporates the Rao-1 algorithm and NM algorithm
serially. Thus, the powerful global search capability of the Rao-1 algorithm and local search capability
of NM algorithm is fully exploited. It can quickly and accurately search for the high-quality optimal
solution on the basis of ensuring global convergence. The computing time is highly reduced, while
the matching accuracy is significantly improved. Four commonly applied optimization problems and
three image datasets are employed to assess the performance of the proposed method. Meanwhile,
three commonly used algorithms, including generic Rao-1 algorithm, particle swarm optimization
(PSO), genetic algorithm (GA), are considered as benchmarking algorithms. The experiment results
demonstrate that the proposed method is effective and efficient in solving image matching problems.

Keywords: image matching; Rao algorithm; computational intelligence; optimization

1. Introduction

Image matching is an important topic in image processing, and it has broad application
prospects in the field of computer vision. Image matching typically includes Template
Matching (TM), Feature Matching, and Dynamic Pattern Matching, among which TM is
the most commonly used matching approach. TM is employed to measure whether an
image patch matches a small area of the source image by sliding the template through the
source image, and then use the coordinates of the upper-left corner of the corresponding
window in the two images to determine the matching position [1].

TM is a fundamental problem of pattern recognition and has a wide range of applica-
tions in the field of image processing and computer vision, such as image recognition [2–5],
remote sensing [6,7], social media analytics [8,9], medical image processing [10–12], bio-
metric recognition [13–15], etc. In image analysis, matching technologies play an important
role in image understanding and retrieval [16]. Two main operations, similarity measure-
ment and best matching search [17,18] are often included in TM. Various similarity metrics
are utilized to measure the similarity of two grayscale images, including Mean Absolute
Differences (MAD), Sum of Absolute Differences (SAD), Sum of Squared Differences (SSD),
and Mean Square Differences (MSD). Among these similarity measures, the normalized
cross correlation (NCC) is commonly used for image matching, due to its robustness for
the illumination variance and noise [19–21]. The NCC effectively reduces the influences of
illumination on image comparison results, and it is more suitable for processing images
with slightly deformed objects, blurred or unclear images, and textured images.

The full, exhaustive search algorithm [22] is the simplest TM approach. It can check
each pixel candidate at once and has extremely high accuracy. However, this kind of
exhaustive search has an extremely expensive computation cost because every pixel of
the source image has to be compared with NCC values computed, which severely limits
its use in image processing applications [23]. In this paper, to reduce the time of NCC
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computation and speed up image matching, TM algorithms based on computational
intelligence algorithms were proposed in the literature.

Computational intelligence algorithms were extensively used for different optimiza-
tion problems in previous studies. He et al. [24] developed a robust fuzzy programming
approach to solve the multiple response optimization issues. Chen et al. [25] proposed
an adaptive gradient method to ensure both the convergence and the communication
efficiency of federated learning. Tang et al. [26] proposed an improvement in the stochas-
tic optimization of the imaging inverse problems. Recently, the hybrid computational
intelligence algorithms were developed and applied in various domains [27–29]. Computa-
tional intelligence-based algorithms were also employed in the area of image matching.
Yan et al. [30] introduced the isolation niche technology into the traditional Cultural Al-
gorithm (CA) and applied it to the image matching problem to improve stability and
convergence precision. Liu et al. [31] proposed a Chaotic Quantum-behaved Particle
Swarm Optimization Based on Lateral Inhibition (LI-CQPSO), which utilized the Chaos
theory to ensure the PSO avoids premature convergence. Luo et al. [32] proposed a hybrid
spotted hyena optimizer based on LI, which was applied for image pre-processing to make
an intensity gradient in the image contrast-enhanced and enhanced the characters of the im-
age. Huang et al. [33] discussed a hybrid bio-inspired evolutionary optimization approach
incorporating the lateral inhibition mechanism and Imperialist Competitive Algorithm
(ICA), addressing the limitation that the traditional ICA method is possibly trapped in the
local minimum.

The above-mentioned methods often include algorithm-specific parameters, such as
the cognitive and social factors in PSO, and tuning these parameters introduces additional
computational cost. Meanwhile, they typically employ the correlation value as the fitness
function to find the best matching point in the image through multiple iterations, thereby
reducing the number of explorations and shortening the search time. However, these
methods cannot search the entire solution space efficiently and are easy to converge
prematurely. Therefore, they often fall into the optimal local state and miss the accurate
position, resulting in low search precision and accuracy.

To address these limitations, a hybrid Rao-NM algorithm that combines the Rao-1
algorithm and the Nelder–Mead algorithm is proposed for the TM problem in this paper.
The Rao-1 algorithm does not contain any algorithm-specific parameters, and only simple
mathematical operations, addition, and multiplication, are included. The proposed method
contains two search processes, global search, and local search. The Rao-1 algorithm is
employed for the global search. The Rao-1 algorithm is a metaphor-less swarm intelligence
method introduced by Rao [34] in 2019. The main idea of the Rao-1 algorithm is to
iteratively update candidate solutions with the high probability of approaching the global
best solution and leaving the worst solution. The optimal solution is obtained through the
random interaction between the best and worst solutions. Meanwhile, the Rao-1 algorithm
does not require any algorithm-specific parameters, and the computational cost of tuning
parameters can be avoided. Recent research has proved its capability in solving different
unconstrained and constrained optimization problems. During the local search process,
the NM algorithm is utilized to further improve the search results of the Rao-1 algorithm.
The NM algorithm is a popular nonlinear optimization search method without using
derivative information introduced by Nelder and Mead [35,36]. The NM algorithm only
considers function values to minimize the scalar-valued nonlinear function, without any
derivative information [22]. It rescales the simplex of (n + 1) vertices according to the local
behaviors of the function through four basic processes: Reflection, expansion, contraction,
and shrinkage. After these steps, the simplex can be self-improved and gradually approach
to the optimal solution.

The rest of this paper is organized as follows. In Section 2, an optimization problem for
TM is formulated. Section 3 presents the proposed hybrid Rao-NM algorithm. In Section 4,
experiments and analyses are showed. Finally, the conclusion of this paper is provided in
Section 5.
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2. Problem Formulation

Image matching technologies are important in the field of airplane or missile map
matching and positioning, medical image processing, and other related fields. The image
matching process uses two sensors to get two images of different sizes from the same area.
The image obtained in advance is called the source image, and the image obtained in real
time or online during the matching process is called the template image. In this study, we
use the NCC model [16] as the fitness function to compute the degree of matching between
the template image and the source image and then determine the search position. Under
the guidance of the fitness value, NCC coefficient, the hybrid algorithm can search the
source image quickly until the area with the best similarity is found.

Image TM aims to locate a small area of the source image by searching for a target
similar to the template image by sliding the template through the source image, shown
in Figure 1. To facilitate computation, both the template image and the source image are
transformed to grayscale images. Let the matrix Xm×n and YM×N represent the grayscale
template and source images, respectively, where m and n denote the height and width, and
X[i, j] and Y[i, j] represent the gray values of a certain pixel of images, respectively (X[i, j],
Y[i, j] ∈ [0, 255]).
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The main idea of the TM problem is defined that search a point (x, y) in Ya×b, so
that the similarity between X (1 : m, 1 : n) and Y (x : (x + m− 1), y : (y + n)− 1)) is the
maximum in the feasible search space. The NCC metric can use the grayscale matrices
of two images to compute the degree of matching between them through a normalized
correlation measurement formula. Therefore, the TM problem can be presented as an
optimization problem, depicted in (1).

max F(i, j) =
m
∑

x=1

n
∑

y=1
[temp(i + x− 1, j + y− 1)]× test(i, j)

×
(√

m
∑

x=1

n
∑

y=1
[temp2(i + x− 1, j + y− 1)] ·

√
m
∑

x=1

n
∑

y=1
[test2(i, j)]

)−1 (1)

s.t. 1 ≤ i ≤ A− a + 1, i ∈ Z, 1 ≤ j ≤ B− b + 1, j ∈ Z

where (i, j) is the pixel position of the top-left corner of the grayscale template match-
ing, when the original image matches the same area as the template image at (i*, j*),
NCC (i*, j*) = 1.
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3. The Proposed Hybrid Rao-NM Algorithm

In this paper, we combine the Rao algorithm and the Nelder–Mead simplex method
to efficiently obtain the optimal solution. In the proposed algorithm, the Rao-1 algorithm
is employed for global search, while the NM algorithm is utilized to conduct the local
search. In this section, the Rao-1 and NM algorithms are introduced separately, and then
the hybrid Rao-NM algorithm is described in detail.

3.1. Rao-1 Algorithm

The Rao-1 algorithm is a metaphor-less swarm intelligence-based optimization method
without containing any algorithm-specific parameters [34]. Only two controlling pa-
rameters, population size and the number of iterations, need to be determined for the
Rao-1 algorithm.

The solution updating procedure of the Rao-1 algorithm is illustrated as (2) and (3):

I′ j,k,i = Ij,k,i + r1,j,i

(
Ij,best,i − Ij,worst,i

)
(2)

I′m,n =

{
I′m,n i f F(I′m,n) ≤ F(Im,n)
Im,n i f F(I′m,n) > F(Im,n)

(3)

where Ij,best,i is the value of the variable j for the best candidate and Ij,worst,i is the value
of the variable j for the worst candidate during the ith iteration. I′j,k,i are the updated
values of Ij,k,i and r 1,j,i and r 2,j,i are two random numbers of the jth variable during the
ith iteration, with their value range in [0, 1].

Based on the updating rule, the optimization process of the Rao-1 algorithm is sum-
marized as follows:

1. Initialize the common controlling parameters, population size, number of design
variables, and termination criteria.

2. Determine the best and worst solutions in the population.
3. Update the current solution based on the best, worst, and candidate solutions, random

interaction according to (2)
4. Computer the objective function value for every updated solution. Next, the updated

solution will be selected according to (3).
5. If the termination conditions are satisfied, the optimization process will stop. Other-

wise, the process skips to Step 2.

3.2. NM Method

The NM search method is a local search method, and it parameterizes the function
value through unconstrained optimization without using the gradient information. The
objective function shrinks to optimal value by adapting to the local landscape with simplex.
Since the TM problem can be regarded as a two-dimensional optimization problem, a sim-
plex is a triangle composed of vertices. If a point is defined as the origin of a non-degenerate
simplex, the other n points will define the vector direction across the N-dimensional vector
space [37].

NM method uses four basic steps to readjust the scale of the simplex according to the
local behavior of the function: Reflection, expansion, contraction, and shrinkage [38]. The
simplex can approach the optimal value continuously through these procedures.

Before starting the algorithm, defining the complete NM method requires four scaling
parameters: Coefficients of reflection (α), contraction (γ), expansion (β), and shrinkage (σ).
According to the definition of the NM method, these parameters should satisfy (4):

α > 0, γ > 1, γ > α, 0 < β < 1, and 0 < σ < 1 (4)
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As Image TM is actually a two-dimensional optimization problem, parameters are
restricted to the standard case according to (5).

α = 1, γ = 2, β =
1
2

, and σ =
1
2

(5)

The specific steps of the NM method are described as follow:

1. Initialization:

Randomly Generate initial n + 1 vertices within their respective search range. Com-
pute the objective function value and the simplex constraint of each vertex, and then order
these vertices to satisfy f (x1) ≤ f (x2) ≤ ··· ≤ f (xn+1).

2. Reflection:

Calculate the reflection point xr according to the (6):

xr = x + α(x− xh) (6)

where x = ∑n
i=1

xi
n , βh and βl are the vertices with the highest and lowest function values,

respectively, f (xh) and f (xl) represent the value of the observation function. Next, obtain
the xc, which is the center of the simplex without xh in minimization case. If f (xr) < f (xl),
go to step 3; If f (xr) > f (xh), go to step 4; otherwise, if f (xr) lies between f (xl) and f (xh),
xh is replaced by xr and go to step 6.

3. Expansion:

To expand the search space in the same direction, the expansion point is expanded the
simplex and computed as (7):

xe = γxr + (1− γ)xc (7)

If f (xe) < f (xr), xh is replaced by xe;
If f (xe) ≥ f (xr), xh is replaced by xr;
Go to step 6.

4. Contraction:

When f (xr) lies between f (xl) and f (xh), then xh is replaced by xr and contraction is
performed. When f (xr)> f (xh), perform contraction directly without any replacements.
The contraction vertex is computed as follow (8):

xcont = βxh + (1− β)xcent (8)

If f (xcont) < f (xh), xh is replaced by xcont and go to step 6. Otherwise, do shrinking in
step 5.

5. Shrinkage:

When the contraction is failed, shrinkage attempts to all vertexes of the entire simplex
expect xl as (9):

xi = σxi + (1− σ)xl (9)

Then go to step 6.

6. If the termination condition is met, the computation is stopped and terminates the
iteration. Otherwise, return Step 1 to start a new iteration.

3.3. The Hybrid Rao-NM Algorithm

The Rao-NM algorithm combines the adaptive Rao-1 algorithm and the NM method
to balance the efficiency and accuracy of the optimization process with a higher probability
of obtaining the optimal solution within limited iterations.

In the optimization process, the Rao-1 algorithm [34] is initially applied to finding
a relatively optimal solution, and the search space is reduced for the continued search.
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Next, according to the solution obtained from the Rao-1 algorithm, the NM method [35]
is utilized to search the best local solution near the initial solution. Compared with the
generic Rao-1 algorithm, the proposed hybrid algorithm can offer better solutions thanks
to the NM method. Meanwhile, the Rao-NM algorithm can converge quickly, inheriting
the advantage of the Rao-1 algorithm. The main optimization process of the proposed
Rao-NM algorithm is described in Algorithm 1.

As shown in Algorithm 1, considering the multiplication operation of the NCC compu-
tation as the basic operation, the time complexity of the proposed algorithm is O(M·N·w·h),
where w and h are the weight and height of the template image, respectively. Thus, it is
independent of the size of the source image.

Algorithm 1. Rao-NM Algorithm.

1: Input: Population Size: N, Number of Iterations: M, Tolerance: e, The ith individual solution at
the jth iteration: Ii,j
2: Output: Optimal Solution: I*best
3: for each j: = 1 to N do
4: Initialize Ii,1;
5: end
6: Let j = 1;
7: While (e or j value is satisfied)
8: Update solutions Ii,j based on (2);
9: Obtain the best solution Ibest;
10: Let e = j(Ibest);
11: Let m = m + 1.
12: Update Ibest via NM algorithm to I*best;
13: Return I*

best;

4. Experiment and Analysis
4.1. Benchmarking Test Functions

To assess the performance of the proposed algorithm, four benchmarking test func-
tions, as shown in (10)–(13), are utilized, and their images are shown in Figures 2–5. The
test functions include unimodal functions and multimodal functions with numerous local
optimums in their images. Meanwhile, three algorithms—Rao-1, PSO, and the Genetic
algorithm (GA)—are benchmarked to assess the performance of the proposed method.
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Function 1: Schaffer function

min f (x, y) = 0.5−

(
sin2

√
x2 + y2 − 0.5

)
[1 + 0.001(x2 + y2)]

2 , xi ∈ [−10, 10] (10)

Function 2: Camel function

min f (x, y) =
(

4− 2.1x2 +
x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2, x, y ∈ [−100, 100] (11)

Function 3:

min f (x, y) = −[xsin(9πy) + ycos(25πx) + 20], x, y ∈ [−10, 10] (12)

Function 4:

min f (x, y) = 20 + x2 + y2 − 10× (cos 2πx + cos 2πy), xi ∈ [−4, 4] (13)

For the above four benchmark functions, four algorithms have experimented 50 times,
respectively. According to the results presented in Table 1, The proposed hybrid Rao-NM
algorithm achieves the best performance in terms of both efficiency and precision among
all considered methods. Besides, though both the Rao-1 algorithm and the proposed hybrid
Rao-NM algorithm can quickly converge to the optimal value, the Rao-NM algorithm has
higher accuracy, especially for the F2 function, it can precisely converge to the optimal
value. For the F3 function, many local optimal values in the solution space exist, and the
proposed hybrid algorithm can find the optimal value accurately and efficiently. Therefore,
the proposed algorithm outperforms other algorithms in searching for the optimal solution.

Table 1. Results comparisons of the benchmark.

Algorithm

F1 F2 F3 F4

Theoretical
Optimal Value 0.0 −1.0316 −39.9450 0.0

Rao-1
Average time 6.9750 × 10−6 8.8250 × 10−6 0.0032 0.0033

Actual optimal 0.0610 −0.1943 −39.8498 0.0003

PSO
Average time 0.2421 0.2767 0.3727 0.2229

Actual optimal 0.0048 57.6269 −39.0897 2.6623

GA
Average time 1.2741 1.2757 1.2739 1.2990

Actual optimal 0.0024 −0.9549 −39.4269 0.0032

Rao-NM
Average time 4.1650 × 10−5 3.7300 × 10−5 0.0032 0.0033

Actual optimal 0.0025 −1.0316 −39.8500 5.2560 × 10−6

The bold indicates the best results.

4.2. Sensitivity Analysis on Controlling Parameters

Since the two controlling parameters, the population size and the number of iterations,
are included for all considered TM algorithms, they are tuned based on 368 images selected
from the Oxford-IIIT Pet Dataset [39]. Nine parameter configurations are employed, and
the grid search is utilized. All considered algorithms are implemented on a PC with AMD
Ryzen 9 3950X CPU and 32 GB RAM. The programs are written by Python3, and they
are executed o Windows 10. The algorithm-specific parameters of PSO and GA are set
as follows:

(1) PSO parameter settings [40]: Cognitive and social acceleration constants C1 = 1.8,
C2 = 1.8, self-weighting factor = 1.0, and independent random numbers r1 and r2 are
distributed in the range of [0, 1].

(2) GA parameter settings [41]: The mutation probability = 0.05, the elite ratio = 0.01,
the crossover probability = 0.75, and the parent portion = 0.1.
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The matching accuracy and execution time of different algorithms are shown in
Tables 2–4. In this study, the success rate is defined in (14) to depict the accuracy.

R =
T
S
× 100% (14)

where R is the success rate, T is the number of times that the matching pixel position is the
same as the template image in the experiment, and S is the total number of experiments.

Table 2. Test results of TM using Rao-NM algorithm.

Population Size No. of Iterations R Time (s)

50 50 77.71% 71.42
50 100 80.70% 140.23
50 200 84.51% 277.56

100 50 85.32% 138.61
100 100 89.13% 274.53
100 200 87.77% 546.94
200 50 88.58% 273.82
200 100 91.84% 544.45
200 200 95.10% 1085.16

Table 3. Test results of TM using PSO.

Population Size No. of Iterations R Time (s)

50 50 24.45% 99.38
50 100 29.89% 196.78
50 200 41.57% 371.76

100 50 32.06% 197.40
100 100 48.36% 311.62
100 200 61.68% 622.31
200 50 52.44% 372.62
200 100 66.03% 624.34
200 200 77.44% 1194.61

Table 4. Test results of TM using GA.

Population Size No. of Iterations R Time (s)

50 50 15.48% 196.89
50 100 34.51% 394.18
50 200 58.96% 776.82

100 50 35.05% 399.27
100 100 66.03% 792.42
100 200 82.06% 1567.83
200 50 67.39% 798.36
200 100 88.31% 1570.10
200 200 94.29% 2951.44

4.3. Template Matching Results

The Oxford Pets Dataset of 2580 images [39] is utilized to compare the performance of
different algorithms based on the optimized parameters. Each algorithm is executed ten
times, and the accuracy and execution time are presented in Table 5.

According to Table 5, it can be seen that the proposed method outperforms other
benchmarking methods in terms of the highest accuracy and the shorter computing time.
Meanwhile, the execution time of the proposed method is slightly longer than that of the
Rao-1 algorithm. Thus, it is more practical to apply the proposed method for real applications.
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Table 5. Performance of different methods on the Oxford Pets Dataset.

Model R (%) Time (s)

PSO 49.76 ± 0.84 2616.38 ± 9.29
GA 70.17 ± 0.82 4345.63 ± 151.69

Rao-1 54.17 ± 0.59 1666.08 ± 25.15
Proposed 88.94 ± 0.64 1807.25 ± 30.69

To assess the performance of the proposed method on real biometrics recognition
tasks, 94 images collected from the V47 dataset [42] and 100 images selected from the
WIDER FACE dataset [43] are employed to evaluate the performance of the proposed
method on person re-identification and face detection problems. The images from the
WIDER FACE dataset are with a high degree of variability in scale, pose, and occlusion, as
shown in Figure 6. The image matching results are obtained and shown in Tables 6 and 7.
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Table 6. Performance of different methods for Person Re-identification.

Model R (%) Time (s)

PSO 16.91 ± 3.34 97.067 ± 0.61
GA 48.19 ± 3.54 151.736 ± 4.06

Rao-1 19.68 ± 1.60 86.23 ± 0.55
Proposed 56.70 ± 3.13 89.11 ± 1.09

Table 7. Performance of different methods for FaceDetector.

Model R (%) Time (s)

PSO 15.2 ± 2.03 126.533 ± 1.51
GA 44.3 ± 4.59 189.719 ± 2.26

Rao-1 19.5 ± 1.50 116.022 ± 0.54
Proposed 67.1 ± 3.95 120.916 ± 0.67

According to the results presented in Tables 6 and 7, the proposed method dom-
inates other methods with the highest accuracy for both two datasets. Therefore, the
proposed method is applicable for face detection and person re-identification tasks. Since
different scenes are included in these images, TM using the Rao-NM method offers more
robust results.

Three large images of different sizes are employed to validate the actual performance
of all considered algorithms, shown in Figures 7–9. Each algorithm is executed 50 times
independently based on three images to validate their average performance.

Table 8 shows the proposed hybrid Rao-NM algorithm dominates all the compared
algorithms in terms of the highest success rate. Although the Rao-1 algorithm requires the
least execution time, it performs badly in TM of these three images. Especially, the success
rate is only 2% by using the Rao-1 algorithm for Image 2. Thus, it is not suitable to directly
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apply the Rao-1 algorithm for TM problems. Compared with PSO and GA algorithms,
the search efficiency and accuracy of the proposed algorithm are greatly improved over
all three images. As shown in Table 8, the hybrid Rao-NM algorithm matching accuracy
can reach more than 85%, while PSO and GA algorithms can only offer success rates of
less than 85%. The above comparison results show that it is more practical to apply the
proposed hybrid algorithm for TM problems.
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Table 8. Results comparisons of TM.

Image 1 Image 2 Image 3

PSO
Average time 5.64 24.44 27.86

Accuracy 34% 28% 50%

GA
Average time 9.33 14.75 24.59

Accuracy 82% 84% 50%

Rao-1
Average time 4.27 13.86 11.72

Accuracy 34% 2% 52%

Rao-NM
Average time 4.28 13.87 11.73

Accuracy 96% 86% 86%
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5. Conclusions and Future Work

In this paper, a novel hybrid optimization algorithm, combining the Rao-1 algorithm
and the NM method, is proposed to address the image matching problem in an effective and
efficient way. The proposed algorithm incorporates the powerful largescale global search
ability of the Rao-1 algorithm and the thorough local search capability of the NM method.
Thus, the Rao-NM algorithm can accurately search for high-quality optimal solutions.

To verify the robustness and the efficiency of the proposed Rao-NM algorithm, four
commonly applied test functions, and three image datasets are utilized. Meanwhile, three
benchmarking algorithms are considered. The experimental results demonstrate that the
proposed algorithm is more accurate than other recently reported algorithms and takes less
time to converge to the optimum. Considering the higher accuracy and shorter execution
time, the proposed algorithm is practical for image matching problems.

The proposed method is implemented serially on the CPU. Since current image pro-
cessing and computer vision algorithms can run on modern GPUs, the parallel version of
the proposed method will be investigated, and thus, the multi-core CPUs and many-core
GPUs can be employed to speed up the image matching task. Meanwhile, the elite mecha-
nism can be incorporated into the Rao-1 algorithm to improve the global searchability.

Author Contributions: Conceptualization, L.W.; methodology, L.W. and Z.W.; investigation, X.L.
(Xinran Liu) and Z.W.; resources, X.L. (Xiong Luo); writing—original draft preparation, X.L. (Xinran
Liu); writing—review and editing, L.W. and C.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
2018YFC0810601, in part by in part by the National Natural Science Foundation of China under
Grants 62002016 and U1836106, in part by the Guangdong Basic and Applied Basic Research Founda-
tion under Grants 2020A1515110431 and 2019A1515111165, in part by Scientific and Technological
Innovation Foundation of Shunde Graduate School, USTB under Grants BK19BF006 and BK20BF010,
in part by the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research
Funds for the Central Universities) under Grant FRF-IDRY-19-017, and in part by the Fundamental
Research Funds for the Central Universities under Grants 06500078 and 06500103.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goshtasby, A. Template Matching in Rotated Images. IEEE Trans. Pattern Anal. Mach. Intell. 1985, PAMI-7, 338–344. [CrossRef]
2. Brunelli, R.; Poggio, T. Face recognition: Features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 1042–1052.

[CrossRef]
3. An, L.; Zou, C.; Zhang, L.; Denney, B. Scalable attribute-driven face image retrieval. Neurocomputing 2016, 172, 215–224. [CrossRef]
4. Wang, L.; Zhang, Z. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images. IEEE Trans. Ind.

Electron. 2017, 64, 7293–7303. [CrossRef]
5. Wang, L.; Zhang, Z.; Xu, J.; Liu, R. Wind Turbine Blade Breakage Monitoring With Deep Autoencoders. IEEE Trans. Smart Grid

2018, 9, 2824–2833. [CrossRef]
6. Yang, J.; Liu, J.; Dai, Q. An improved Bag-of-Words framework for remote sensing image retrieval in large-scale image databases.

Int. J. Digit. Earth 2015, 8, 273–292. [CrossRef]
7. Pisek, J.; Lang, M.; Kuusk, J. A note on suitable viewing configuration for retrieval of forest understory reflectance from

multi-angle remote sensing data. Remote Sens. Environ. 2015, 156, 242–246. [CrossRef]
8. Ionescu, B.; Popescu, A.; Radu, A.-L.; Müller, H. Result diversification in social image retrieval: A benchmarking framework.

Multimed. Tools Appl. 2016, 75, 1301–1331. [CrossRef]
9. Liu, Q.; Li, Z. Projective nonnegative matrix factorization for social image retrieval. Neurocomputing 2016, 172, 19–26. [CrossRef]
10. Kalpathy-Cramer, J.; de Herrera, A.G.S.; Demner-Fushman, D.; Antani, S.; Bedrick, S.; Müller, H. Evaluating performance of

biomedical image retrieval systems—An overview of the medical image retrieval task at ImageCLEF 2004–2013. Comput. Med.
Imaging Graph. 2015, 39, 55–61. [CrossRef]

11. Dimitrovski, I.; Kocev, D.; Kitanovski, I.; Loskovska, S.; Džeroski, S. Improved medical image modality classification using a
combination of visual and textual features. Comput. Med. Imaging Graph. 2015, 39, 14–26. [CrossRef]

http://doi.org/10.1109/TPAMI.1985.4767663
http://doi.org/10.1109/34.254061
http://doi.org/10.1016/j.neucom.2014.09.098
http://doi.org/10.1109/TIE.2017.2682037
http://doi.org/10.1109/TSG.2016.2621135
http://doi.org/10.1080/17538947.2014.882420
http://doi.org/10.1016/j.rse.2014.09.033
http://doi.org/10.1007/s11042-014-2369-4
http://doi.org/10.1016/j.neucom.2014.09.094
http://doi.org/10.1016/j.compmedimag.2014.03.004
http://doi.org/10.1016/j.compmedimag.2014.06.005


Entropy 2021, 23, 678 14 of 15

12. Trojacanec, K.; Kitanovski, I.; Dimitrovski, I.; Loshkovska, S. Medical Image Retrieval for Alzheimer’s Disease Using Data from
Multiple Time Points. In Advances in Intelligent Systems and Computing; Loshkovska, S., Koceski, S., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 215–224.

13. Minaee, S.; Abdolrashidi, A. Highly accurate palmprint recognition using statistical and wavelet features. In Proceedings of the
2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE), Salt Lake City, UT, USA, 9–12 August 2015;
pp. 31–36.

14. Minaee, S.; Luo, P.; Lin, Z.; Bowyer, K. Going Deeper Into Face Detection: A Survey. arXiv 2021, arXiv:2103.14983.
15. Gao, C.; Chen, Y.; Yu, J.-G.; Sang, N. Pose-guided spatiotemporal alignment for video-based person Re-identification. Inf. Sci.

2020, 527, 176–190. [CrossRef]
16. Cuevas, E.; Echavarría, A.; Zaldivar-Navarro, D.; Pérez-Cisneros, M. A novel evolutionary algorithm inspired by the states of

matter for template matching. Expert Syst. Appl. 2013, 40, 6359–6373. [CrossRef]
17. Li, B.; Gong, L.-G.; Li, Y. A Novel Artificial Bee Colony Algorithm Based on Internal-Feedback Strategy for Image Template

Matching. Sci. World J. 2014, 2014, 1–14. [CrossRef]
18. Grailu, H.; Lotfizad, M.; Sadoghi-Yazdi, H. An improved pattern matching technique for lossy/lossless compression of binary

printed Farsi and Arabic textual images. Int. J. Intell. Comput. Cybern. 2009, 2, 120–147. [CrossRef]
19. Koutaki, G.; Yata, K.; Uchimura, K.; Kan, M.; Asai, D.; Takeba, M.; Kan, M. Fast and high accuracy pattern matching using

multi-stage refining eigen template. In Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision,
Incheon, Korea, 30 January–1 February 2013; pp. 58–63. [CrossRef]

20. Yang, H.; Huang, C.; Wang, F.; Song, K.; Yin, Z. Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor.
IEEE Trans. Image Process. 2019, 28, 3061–3074. [CrossRef]

21. Buniatyan, D.; Macrina, T.; Ih, D.; Zung, J.; Seung, H.S. Deep Learning Improves Template Matching by Normalized Cross
Correlation. arXiv 2017, arXiv:1705.08593.

22. Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-
51706-2.

23. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex Method in Low
Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

24. He, Y.; He, Z.; Lee, D.-H.; Kim, K.-J.; Zhang, L.; Yang, X. Robust fuzzy programming method for MRO problems considering
location effect, dispersion effect and model uncertainty. Comput. Ind. Eng. 2017, 105, 76–83. [CrossRef]

25. Chen, X.; Li, X.; Li, P. Toward Communication Efficient Adaptive Gradient Method. In Proceedings of the 2020 ACM-IMS on
Foundations of Data Science Conference, ACM, Seattle, WA, USA, 18–20 October 2020; pp. 119–128.

26. Tang, J.; Egiazarian, K.; Golbabaee, M.; Davies, M. The Practicality of Stochastic Optimization in Imaging Inverse Problems. IEEE
Trans. Comput. Imaging 2020, 6, 1471–1485. [CrossRef]

27. Wang, L.; Wang, Z.; Liang, H.; Huang, C. Parameter estimation of photovoltaic cell model with Rao-1 algorithm. Optik 2020, 210,
163846. [CrossRef]

28. Liu, M.; Cao, Z.; Zhang, J.; Wang, L.; Huang, C.; Luo, X. Short-term wind speed forecasting based on the Jaya-SVM model. Int. J.
Electr. Power Energy Syst. 2020, 121, 106056. [CrossRef]

29. Wang, Z.; Wang, L.; Huang, C.; Zhang, Z.; Luo, X. Soil Moisture Sensor-based Automated Soil Water Content Cycle Classification
with a Hybrid Symbolic Aggregate Approximation Algorithm. IEEE Internet Things J. 2021, 1. [CrossRef]

30. Yan, X.; Song, T.; Wu, Q. An improved cultural algorithm and its application in image matching. Multimed. Tools Appl. 2017, 76,
14951–14968. [CrossRef]

31. Liu, F.; Duan, H.; Deng, Y. A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image
matching. Optik 2012, 123, 1955–1960. [CrossRef]

32. Luo, Q.; Li, J.; Zhou, Y. Spotted hyena optimizer with lateral inhibition for image matching. Multimed. Tools Appl. 2019, 78,
34277–34296. [CrossRef]

33. Huang, L.; Duan, H.; Wang, Y. Hybrid bio-inspired lateral inhibition and Imperialist Competitive Algorithm for complicated
image matching. Optik 2014, 125, 414–418. [CrossRef]

34. Rao, R.V. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput.
2020, 107–130. [CrossRef]

35. Zahara, E.; Kao, Y.-T. Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design
problems. Expert Syst. Appl. 2009, 36, 3880–3886. [CrossRef]

36. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
37. Li, B. An evolutionary approach for image retrieval based on lateral inhibition. Optik 2016, 127, 5430–5438. [CrossRef]
38. Ali, A.F.; Tawhid, M.A. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.

SpringerPlus 2016, 5, 473. [CrossRef] [PubMed]
39. Parkhi, O.M.; Vedaldi, A.; Zisserman, A.; Jawahar, C.V. Cats and dogs. In Proceedings of the 2012 IEEE Conference on Computer

Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3498–3505.
40. Liu, X.; Jiang, W.; Xie, J.; Jia, Y. An image template matching method using particle swarm optimization. In Proceedings of

the 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), Wuhan, China, 28–29
November 2009; Volume 1, pp. 83–86.

http://doi.org/10.1016/j.ins.2020.04.007
http://doi.org/10.1016/j.eswa.2013.05.055
http://doi.org/10.1155/2014/906861
http://doi.org/10.1108/17563780910939273
http://doi.org/10.1109/FCV.2013.6485460
http://doi.org/10.1109/TIP.2019.2893743
http://doi.org/10.1137/S1052623496303470
http://doi.org/10.1016/j.cie.2016.12.021
http://doi.org/10.1109/TCI.2020.3032101
http://doi.org/10.1016/j.ijleo.2019.163846
http://doi.org/10.1016/j.ijepes.2020.106056
http://doi.org/10.1109/jiot.2021.3068379
http://doi.org/10.1007/s11042-016-4313-2
http://doi.org/10.1016/j.ijleo.2011.09.052
http://doi.org/10.1007/s11042-019-08081-3
http://doi.org/10.1016/j.ijleo.2013.06.085
http://doi.org/10.5267/j.ijiec.2019.6.002
http://doi.org/10.1016/j.eswa.2008.02.039
http://doi.org/10.1093/comjnl/7.4.308
http://doi.org/10.1016/j.ijleo.2016.02.056
http://doi.org/10.1186/s40064-016-2064-1
http://www.ncbi.nlm.nih.gov/pubmed/27217988


Entropy 2021, 23, 678 15 of 15

41. Dong, N.; Wu, C.-H.; Ip, W.-H.; Chen, Z.-Q.; Chan, C.-Y.; Yung, K.-L. An improved species based genetic algorithm and its
application in multiple template matching for embroidered pattern inspection. Expert Syst. Appl. 2011, 38, 15172–15182. [CrossRef]

42. Wang, S.; Lewandowski, M.; Annesley, J.; Orwell, J. Re-identification of pedestrians with variable occlusion and scale. In
Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain,
6–13 November 2011; pp. 1876–1882.

43. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A Face Detection Benchmark. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533.

http://doi.org/10.1016/j.eswa.2011.05.085

	Introduction 
	Problem Formulation 
	The Proposed Hybrid Rao-NM Algorithm 
	Rao-1 Algorithm 
	NM Method 
	The Hybrid Rao-NM Algorithm 

	Experiment and Analysis 
	Benchmarking Test Functions 
	Sensitivity Analysis on Controlling Parameters 
	Template Matching Results 

	Conclusions and Future Work 
	References

