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Abstract: There is a wealth of information in real-world social networks. In addition to the topol-
ogy information, the vertices or edges of a social network often have attributes, with many of the
overlapping vertices belonging to several communities simultaneously. It is challenging to fully
utilize the additional attribute information to detect overlapping communities. In this paper, we
first propose an overlapping community detection algorithm based on an augmented attribute
graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to
help detect overlapping communities more accurately. Second, we enhance the algorithm to auto-
matically determine the number of communities by a node-density-based fuzzy k-medoids process.
Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed
algorithms can effectively detect overlapping communities with fewer parameters compared to
the baseline methods.

Keywords: attributed networks; augmented attribute graph; community detection

1. Introduction

Complex patterns exist in various real-world fields and can be simplified into complex
networks. Individuals are represented as nodes, and the connections between them are
correspondingly transformed to edges in a graph [1–3]. For example, the connections
between proteins in organisms and the relationship between cities in a traffic system [4]—
these real complex systems can be transformed into complex networks. Community
detection is a common task in the field of complex network analysis [5,6].

Many studies have attempted to incorporate attribute and topology information in
the community detection methodologies [7] beyond the traditional approaches [8,9]. In
addition to the topological structure of nodes connected by edges, the nodes or edges
themselves always carry attribute information—that is, they form an attributed network.
The attributes can be used as complementary information to overcome the sparsity of
topological structure [10,11]. However, these two sources of information may be contradic-
tory to each other in some cases [12]. This makes it challenging to detect communities on
attributed networks. In real-world networks, there may exist some vertices that belong to
several communities simultaneously. Consequently, overlapping community detection has
become a valuable research topic [13]. The proposed OCEA and AOCEA are implemented
over attributed networks and can be used to detect overlapping communities. Most of the
real-world networks are full of attribute information and overlapping communities are
quite common in social networks. Therefore, the proposed algorithms will have a wide
range of applications in real life.

The main contributions of this work are as follows: (1) We proposed two algorithms
OCEA and AOCEA that can be used to detect overlapping communities on attributed
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networks, which considers the multiple vertex-community memberships and employs
a strategy to adjust attribute weights iteratively according to the memberships. (2) A new
method for the automatic estimation of the number of communities is proposed to improve
the practicability of OCEA. (3) Experimental results on synthetic and real-world datasets
validate the effectiveness of OCEA and AOCEA.

Related work for Big Data Networks. Researches on community detection in large-
scale networks are motivated by the situation that the traditional methods cannot handle
the increasing size of networks. ADVNDS [14] utilized modularity maximization and
designed a heuristic method to solve it. The algorithm proposed in [15] combined parallel
processing techniques with binary trees to solve the efficiency problem. The algorithm
proposed in [16] extended it later using CPU-GPU modules. CDMEC [17] introduced
several functions to construct similarity matrices and integrated a stacked autoencoder and
transfer learning to learn the embeddings of large-scale networks.

Related work on Attributed Networks. From the perspective of processing attribute
information, existing algorithms can be classified into five categories [18]. First, algorithms
based on distance design a distance function to combine attribute topology information.
SToC [19] made use of the Jaccard index and Euclidean distance to measure the similarity
of topology or attribute information, respectively. SA-cluster [20] obtains the distance by
applying a random walk on an augmented attribute graph, and Inc-cluster [21] is a time-
saving version of SA-cluster. Algorithms based on representation learning mainly focus on
the process of learning the low-dimension vectors of nodes—that is, the embeddings. Com-
munity detection can be performed directly through clustering by embeddings. Potential
information in the network can then be fully utilized by this method. MGAE [22] proposes
a marginal graph convolutional network and obtained deeper representations through
multiple autoencoders. DANE [23] employs two sub-processes to learn the attribute and
topology representation. The final result is obtained by minimizing a designed negative
log-likelihood. Evolutionary-algorithm-based methods measure the similarity of the topol-
ogy and attribute information, and then transform the problem of community detection
into a multi-objective optimization problem. BBO [24] proposes Simatt to represent the
similarity of node attributes. Similarly, MOEA-SA [25] proposes SA to measure the attribute
information. Nonnegative matrix factorization can also be used to obtain the representation
of nodes. SCI [10] proposes a non-negative matrix factorization model with two sets of
parameters. SCD [26] introduces an additional community relationship indicator matrix.
The elements of the matrix describe the relationship between the corresponding communi-
ties. ASCD [27] introduces the concept of a mismatch between attributes and structural
information, and then related adaptive parameters were added to detect communities.
Finally, probabilistic generative model-based algorithms focus primarily on obtaining
a generative model of communities. They directly transform the complex network struc-
ture into a probability model determined by several parameters. CESNA [28] models the
interaction between a network structure and attributes to detect overlapping communities.
The NEMBP [29] model utilizes nesting EM algorithms and confidence propagation to
detect the communities based on the correlation between topology and attribute.

Related work on Overlapping Community Detection. The recent overlapping com-
munity detection algorithms can be classified into five categories. First, algorithms based
on multi-objective evolutionary approach the global optimal solutions by swarm evolu-
tion [30–32]. MR-MOEA [31] introduces a mixed representation that consists of all the
potential overlapping vertices and all the non-overlapping vertices. They evolve together
to detect communities. MOGA-OCD [32] uses measures related to network connectivity
to optimize two objectives: maximizing internal connectivity and minimizing external
connectivity. Algorithms based on similarity partition vertices into communities accord-
ing to their mutual similarity. OCDDP [33] proposes a method based on density peaks.
LED [34] transforms the similarity into weights of the networks. Algorithms based on local
expansion first select initial vertices and then expand them to obtain communities. [35]
optimizes the conductance community score to determine good seeds and then greedily
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expands them. [36] aims to find the structural centers of communities. Algorithms based on
random walk utilize the path of random walk to define the connectivity among individuals.
MCLC [37] employs a random walk on the edges and obtains “link communities” that are
transformed into overlapping “node communities.” Finally, algorithms based on repre-
sentation learning are similar to those based on attributed networks. Through underlying
community membership, CDE [38] formulates community detection as a non-negative
matrix factorization model based on the encoded community structures and attributes.

It is still challenging to detect overlapping communities on attribute networks. As
introduced above in related work, only CESNA [28] and CDE [38] can solve the problem.
To solve the problem, an overlapping community detection algorithm based on attribute
augmented graph, OCEA, is proposed. We employ fuzzy k-medoids [39] on attribute
augmented graph first proposed by [20] to obtain the communities. Furthermore, the
number of communities k can be evaluated using the density of vertices. Through the
evaluation, the automatic OCEA can detect overlapping communities without parameter k
and obtain comparable or even better results comparing to the baseline methods.

The remainder of this paper is organized as follows. Section 2 introduces some prelimi-
nary information about the clustering problem and related definitions. Section 3 discusses
the details of OCEA and its automatic variant. Section 4 presents empirical studies of the
proposed algorithms. Finally, the conclusion and potential future work are reported in
Section 5.

2. Preliminaries
2.1. Problem Definition

Attributed network can be denoted as G = (V, E, A, X), where V = {v1, v2, . . . , vn} is
a set with n vertices, E = {(vi, vj)|vi, vi∈V} is a set of edges, A = {a1, a2, . . . , ad} denotes the
set of attributes, and X = (x1, x2, . . . , xn)T is an attribute matrix. Each row of X denotes the
binary attribute vector of vertex i with d dimensions. If vertex i has attribute j, aj(vi) = 1.
Otherwise, aj(vi) = 0. Figure 1 shows a traditional formulation of an attributed network. The
attribute information of a vertex or an edge is regarded as a d-dimensional binary vector
associated with the vertex or edge. In this study, we utilize a different formulation called
the augmented attribute graph first proposed by [20] to detect overlapping communities
on attributed networks.
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Figure 1. Illustration of an attributed network. For attribute matrix X ∈ Rn×d, Xii= 1 when vertex i
has the attribute m, otherwise Xim= 0.

The overlapping community detection problem on attributed networks can be dis-
cussed from two aspects:

• Overlapping community: In a traditional community detection problem, the fi-
nal partitions do not share any vertices with each other. However, some vertices
may be assigned to multiple communities in an overlapping community detec-
tion problem. In this paper, we utilize the framework of fuzzy k-medoids [39] to
calculate the memberships of every vertex to communities and finally obtain the
overlapping communities.
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• Attributed network: For an attributed network, the final partitions should satisfy
two properties: (1) Topology similarity. The vertices belonging to the same community
have more connections with each other than the vertices outside the community.
(2) Attribute homogeneity. The vertices whose attribute vectors are close to each
other have a high probability to be assigned to the same community. The community
partitions should embody both the topology similarity and attribute homogeneity.

2.2. Augmented Attribute Graph

In contrast to the traditional formulation of an attributed network, the augmented
attribute graph directly transforms the attributes into attribute vertices and adds them to
the original graph. Figure 2 shows an example of an augmented attribute graph, the set of
attributes A = {Football, Basketball}, and the set of structure vertices V = {v1, v2, . . . , v5}.
The solid points denote the added set of attribute vertices Va = {va1, va2}, and the hollow
points represent the original topology structure of the network. The solid lines denote the
original structure edges. The hollow lines are used to connect the attribute and structure
vertices. Vertex v4, for example, has two attributes: Basketball and Football. Thus, there
are two attribute edges connected to the attribute vertices va1: Basketball and va2: Football.
Consequently, the attribute vectors can be transformed into attribute vertices and edges on
the augmented attribute graph.
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Due to the addition of attribute vertices, the structure similarity and attribute ho-
mogeneity between vertices can be uniformly represented by the probability of random
walks on the augmented attribute graph. Based on this, there are four cases to calculate
the transition probability of random walk. The corresponding equations are expressed as
follows:

1. From structure vertex vi to structure vertex vj:

pvi ,vj =

{
ω0

N(vi)ω0+ω1+ω2+...+ωd
, i f

(
vi, vj

)
∈ E

0, otherwise
(1)

2. From attribute vertices vip and vjq corresponding to the pth attribute of vertex vi and
the qth attribute of vertex vj, respectively:

pvip ,vjq = 0, ∀vip, vjq ∈ Va (2)
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3. From attribute vertex vip to structure vertex vj:

pvip,vj =

{
1

N(vi)
, i f

(
vip, vj

)
∈ Ea

0, otherwise
(3)

4. From structure vertex vi to attribute vertex vjq:

pvi ,vjq =

{ ωj
N(vi)ω0+ω1+ω2+...+ωd

, if
(
vi, vjq

)
∈ Ea

0, otherwise
(4)

where d is the dimension of attribute vectors. ω denotes the weights of the topol-
ogy and attribute information, ω0 denotes the weight of topology information, and
ω1, ω2, . . . , ωd denote the weights of attribute information. N(vi) denotes the num-
ber of neighbors of vi on the original network. The indices p and q in Equations (2)–(4)
could be equal or not, and p, q ∈ {a 1, a2, . . . , ad}.
Based on this, the transition probability of l step random walks between each pair of

vertices can be obtained by Equation (5).

RA =
l

∑
γ=1

c(1− c)γPγ
A (5)

where c is the stop probability of the random walk, l is the step length and γ is a power.
PA is the transition probability matrix calculated by the Equations (1)–(4). Equation (5)
denotes the process of l step random walks on the augmented attribute graph with a stop
probability c. Here RA is considered the similarity between vertices that reflects both
topology and attribute information on the network.

3. Algorithms

Here, we introduce the proposed OCEA based on augmented attribute graph and its
extended version with an estimation of the number of communities. The framework of
OCEA is shown as Figure 3.
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As shown in Figure 3, OCEA is mainly composed of three steps. First, it calculates the
transition probability matrix PA and the random walk similarity matrix RA. Second, the
vertex-community membership matrix U is updated according to RA. Third, the structural
weight ω0 is fixed to 1, and the attribute weights ω1, ω2, . . . , ωd are updated according to
matrix U. The procedure is repeated until the objective function converges within a certain
range ε.

3.1. Overlapping Community Detection

Based on the framework of the augmented attribute graph, the OCEA utilizes fuzzy
k-medoids [39] to detect overlapping communities. ith row of the random walk similarity
matrix RA is used as the vector of vi that is denoted as RA(vi). Before the iteration of
updating memberships, k initial vertices are selected as the centers of each cluster.

Equations (6) and (7) show the process of updating memberships matrix U and the
vector Xc for centers in each cluster:

U(t)
ij =

1
k
∑

c=1

(
‖R(t)

A (vi)−X(t)
c (j)‖

‖R(t)
A (vi)−X(t)

c (k)‖

)2 (6)

X(t+1)
c (j) =

N
∑

i=1
(U(t)

ij )
m
· R(t)

A (vi)

N
∑

i=1
(U(t)

ij )
m

(7)

where U(t)
ij denotes the memberships of vertex vi to cluster j. Further, Xc(j) is not the

vector of an actual existing vertex that is regarded as the center of cluster j. It denotes the
average vector of all vertices in cluster j. And Xc(j) is used to update the memberships of
all vertices in cluster j. Thereafter, the center vertices of each cluster are selected as follows:

c(t+1)
i = argminvj∈Vi ∑

vi∈Vi

‖R(t)
A (vj)− R(t)

A (vi)‖
|Vi|

(8)

The main objective of the algorithm is to ensure the vertices are close to their corre-
sponding cluster centers. To this end, the objective function is minimized by

min F =
N

∑
i=1

k

∑
j=1

Um
ij ‖RA(vi)− RA(cj)‖2 (9)

where cj denotes an actual existing vertex that is the center of cluster j determined by
Equation (8). It is different from Xc(j) in Equation (7). The m in Equation (7) and Equation
(9) is a parameter and it will be set to 2 in experiments. The Euclidean distance is used to
measure the similarity between vertices, after which the vertices are assigned to different
communities according to their memberships to the communities.

3.2. Weights Adjustment

Each iteration of the update can obtain memberships. The weights of each attribute
can be adjusted based on the currently detected communities. The equations of attribute
weights adjustment are as follows:

weightp
(
cj, vi

)
=

{
Uij, if cj, vi share the same value on ap
0,

(10)
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ωt+1
i =

1
2

ωt
i +

d
k
∑

j=1
∑

v∈Vj

weighti
(
cj, v

)
d
∑

p=1

k
∑

j=1
∑

v∈Vj

weightp
(
cj, v

)
 (11)

Memberships can be observed as the influence of a vertex on a cluster. The high
similarity of a certain attribute in a cluster implies that the attribute is an effective feature
to detect communities. Subsequently, the weights of the corresponding attributes should
be increased, or else they should be decreased.

3.3. Estimation on the Number of Communities

In the case of community detection without ground truth, we cannot obtain the
number of communities k directly. Most algorithms need to input k as a hyperparameter
or directly set k as a fixed value. Based on OCEA, the automatic version of it is proposed
using a process for estimating the number of communities k. It will be called AOCEA for
brevity in the following.

First, the density of vertex is defined by Equation (12):

D(vi) = ∑
vj∈V

(
1− e−

RA(vi ,vj)
2

2

)
(12)

Taking out four egonetworks randomly from the Facebook egonetwork set introduced
in Section 4.1, we draw the histogram of the probability density distribution of each
egonetwork’s vertex density value in Figure 4. When calculating the density, the structural
weight ω0 is set to 1, and the attribute weights ω1, ω2, . . . , ωd are set to 1/d. The stop
probability c is set to 0.5 to draw the curves.

Entropy 2021, 23, x FOR PEER REVIEW 7 of 17 
 

 

( )

( )
11

1 1

weight ,
1
2 weight ,

j

j

k

i j
j v Vt t

i i d k

p j
p j v V

d c v

c v
ω ω = ∈+

= = ∈

 
 
 = + 
  
 

 


 (11)

Memberships can be observed as the influence of a vertex on a cluster. The high sim-
ilarity of a certain attribute in a cluster implies that the attribute is an effective feature to 
detect communities. Subsequently, the weights of the corresponding attributes should be 
increased, or else they should be decreased. 

3.3. Estimation on the Number of Communities 
In the case of community detection without ground truth, we cannot obtain the num-

ber of communities k directly. Most algorithms need to input k as a hyperparameter or 
directly set k as a fixed value. Based on OCEA, the automatic version of it is proposed 
using a process for estimating the number of communities k. It will be called AOCEA for 
brevity in the following. 

First, the density of vertex is defined by Equation (12): 

( )2
,

2( ) 1
A i j

j

R v v

i
v V

D v e
−

∈

 
 = −
 
 

  (12)

Taking out four egonetworks randomly from the Facebook egonetwork set intro-
duced in Section 4.1, we draw the histogram of the probability density distribution of each 
egonetwork’s vertex density value in Figure 4. When calculating the density, the struc-
tural weight ω0 is set to 1, and the attribute weights ω1, ω2, …, ωd are set to 1/d. The stop 
probability c is set to 0.5 to draw the curves. 

  

  
Figure 4. Probability distribution curve of four Facebook egonetworks’ density values. 

The x-axis denotes the vertex density value and the y-axis denotes the number of 
vertices. Each blue curve denotes the probability distribution curve fitted to each histo-
gram. Each black curve denotes the Gaussian distribution calculated according to the 
mean and standard deviation of each subnetwork’s vertex dense value, as shown in Table 1. 

Figure 4. Probability distribution curve of four Facebook egonetworks’ density values.

The x-axis denotes the vertex density value and the y-axis denotes the number of
vertices. Each blue curve denotes the probability distribution curve fitted to each histogram.
Each black curve denotes the Gaussian distribution calculated according to the mean and
standard deviation of each subnetwork’s vertex dense value, as shown in Table 1.



Entropy 2021, 23, 680 8 of 17

Table 1. Statistics of the vertex density values of the Facebook’s egonetworks.

Network Mean Variance Standard Deviation

Facebook_686 9.134 × 10−5 2.294 × 10−9 4.804 × 10−5

Facebook_414 4.849 × 10−5 6.579 × 10−10 2.573 × 10−5

Facebook_698 1.031 × 10−4 3.079 × 10−9 5.591 × 10−5

Facebook_3437 7.135 × 10−6 2.517 × 10−11 5.021 × 10−6

As we can observe in Figure 4, the fitted curves are very close to their corresponding
calculated Gaussian distribution curves, which means that each sub-network’s vertex
density value is nearly Gaussian distributed. It is assumed that centers should have higher
density values than other vertices—higher density values imply a higher probability of
being a center. Therefore, the sample mean of the density value is used as the threshold for
selecting the candidate initial centers.

As shown in Figure 5, the solid points denote the initial selected candidate centers
based on the density value. In general, the number of initial centers was much larger
than the number of real communities. Under the framework of OCEA, with the iterative
update of centers and attribute weights using Equations (8) and (11), respectively, the l
step random walk probability changes and influences the similarity between vertices. In
general, the vertices in the network gradually gather to several clusters in a distinct trend
because of the adjustment of weights.
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Figure 5. Estimation on the number of communities according to the evolution of community centers.

During the update of memberships, there may be several clusters that select the
same vertex as their centers—that is, there may exist a vertex whose memberships to
several clusters are all the highest in the current cluster. Only the vertices with the highest
memberships are preserved as centers. This implies that parts of the candidate centers
will be eliminated. As shown in Figure 5, parts of the solid points are transformed into
hollow points, which implies that the solid points are no longer regarded as centers.
After the elimination of centers, the number of remaining centers can be observed as an
approximation of the number of communities. Function 1 summaries the process of cluster
number estimation.

3.4. OCEA and AOCEA

As introduced in the previous sections, the update of memberships and the adjustment
of weights are the main processes of OCEA, as shown in Algorithm 1.

It initializes weights, the random walk similarity, and centers first (lines 1–3). Then,
the memberships, centers, and weights of attributes are updated iteratively until the
convergence of the objective function in a certain range (lines 4–17). Detected communities
are obtained using memberships (lines 18–23).



Entropy 2021, 23, 680 9 of 17

Function 1. ClusterNumberEstimation.

Input: Attribute Augmented Graph GA(V, E, A, X), random walk length l, stop probability c,
number of epochs T
Output: Number of Communities k
1: Initialize weights ω0 = ω1 = . . . = ωd = 0, dS = 0
2: for vertices vi ∈ V do
3: Compute density D(vi) by Equation (12)
4: dS = dS + D(vi)
5: end for
6: dT = dS/n
7: Initialize centers VD ← {vi|D(vi) ≥ dT, vi ∈ V}
8: Lk = |VD|
9: for i = 1, . . . , T do
10: for vertices vi ∈ V do
11: Update memberships Uij and Xc by Equations (6) and (7)
12: end for
13: for m = 1, . . . , d do
14: Update weights of attributes ωm by Equation (11)
15: end for
16: Compute RA by Equation (5)
17: end for
18: for j = 1, . . . , Lk do
19: VC ← argmaxvi(Uij)
20: end for
21: k = |VC|
22: return k

Algorithm 1 OCEA

Input: Attribute Augmented Graph GA(V, E, A, X), random walk length l, stop probability c,
convergence parameter ε, overlapping parameter γ, number of communities k
Output: Communities C1, . . . , Ck

1: Initialize weights ω0 = ω1 = . . . = ωd = 1
2: Compute initial RA by Equation (5)
3: Select the initial centers VC
4: while mar > ε do
5: for vertices vi ∈ V do
6: for j = 1, . . . , k do
7: Update memberships Uij by Equation (6)
8: Update centers Xc by Equation (7)
9: end for
10: end for
11: for m = 1, . . . , d do
12: Update weights of attributes ωm by Equation (11)
13: end for
14: Compute RA by Equation (5)
15: Compute objective function Ft

16: mar = |Ft − Ft−1|
17: Ft−1 = Ft

18: end while
19: for vertices vi ∈ V do
20: µi

max = max({Uij|j = 1, . . . , k})
21: for j = 1, . . . , k do
22: Cj ← {vi|Uij ≥ γ × µi

max}
23: end for
24: end for
25: return C1, . . . , Ck
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As shown in Algorithm 2. AOCEA first utilizes the function ClusterNumberEstimation
to obtain an estimated number of communities k. Then, this estimated k is regarded as the
input of the OCEA to detect the overlapping communities.

Algorithm 2 AOCEA

Input: Attribute Augmented Graph GA(V, E, A, F), random walk length l, stop probability c,
convergence parameter ε, overlapping parameter γ

Output: Community C1, . . . , Ck

1: Initialize k = ClusterNumberEstimation (GA, l, c, T)
2: return OCEA (GA, l, c, ε, γ, k)

The time complexity of computing the transition probability is O(|E A|). Here, EA
denotes the set of edges in an attribute augmented graph that consists of two parts. The
edges in an attribute augmented graph composed of two parts. One includes the original
edges in the topological graph, the other includes the added edges according to the attribute
information. Let zp be the numbers of nonzero entries in transition probability matrix
P and n be the number of vertices. Since P is a sparse matrix, the time complexity of
the matrix multiplication is O(z 2

p n). Weight adjustment requires O(nk) time. Here, k is
the true number of communities. Thus, the overall complexity of OCEA and AOCEA
is O(|E A|+z 2

p n + nk), which can be reduced to O(n) because k << n. AOCEA has an
extra procedure of estimating the number of communities, and its initial estimation of the
number of communities is roughly equal to n/2. Therefore, the time complexity of weights
adjustment in AOCEA is O

(
n2) and gradually reduces to O(nk e), where ke is the final

estimation of the number of communities.

4. Experiments
4.1. Datasets

The algorithms were tested on synthetic and real-world attributed networks.
We evaluated the performance of proposed algorithms and the baselines on six real-

world attributed networks. The Facebook egonetwork set (http://snap.stanford.edu/
data/) (accessed on 28 April 2021) is a set of ten Facebook users’ ego networks. The users
are denoted by nodeId’s and each ego network is numbered by the specific nodeId. Vertices
denote the users of Facebook and each two pair of vertices within a circle (friends lists) are
connected by an edge with a certain probability. The user profiles are encoded into vectors
with binary values [40].

Texas, Washington and Wisconsin are three citation networks, where the vertices
denote papers and the edges denote the citation relationships among the papers. The
features of the papers are encoded into binary values. The papers are classified according
to their domains [41].

Synthetic networks and the true communities were generated by the LFR bench-
mark [42]. The methods in [43] were used to generate each network’s attribute matrix
according to its true communities. Specifically, the vertices in a community shared the
same attributes with high probability while the probability for the vertices in different
communities is low. The generated attributes were consistent with the format of .feat files
of the real-world network Facebook.

Table 2 presents the meaning of the parameters for the LFR benchmark networks.
Two sets of synthetic networks D1 and D2 were generated to evaluate the algorithms. D1 is
a set of seven networks with increasing community size from 100 to 700. D2 is a set of five
networks with increasing mixing parameters µ. The number of attributes was set to be the
same as the number of communities, and τ1 and τ2 were set as default values 2.0 and 1.0,
respectively. Table 3 lists the corresponding parameters of D1 and D2.

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
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Table 2. The meaning of parameters in LFR benchmark networks.

Parameter Meaning

N number of vertices
kavg average degree
kmax maximum degree

µ mixing parameters
τ1 negative exponent of degree
τ2 negative exponent of community size

cmin minimum community size
cmax maximum community size
on number of overlapping vertices
om maximum of an overlapping vertex belongs to

Table 3. Parameter settings of D1 and D2 datasets.

Dataset Parameters

D1 N = 100–700, kavg = 10, kmax=25, µ = 0.1, cmin = 10, cmax = 50, on = 20, om = 2
D2 N = 600, kavg = 10, kmax = 25, µ = 0.2–0.6, cmin = 10, cmax = 50, on = 20, om = 2

In addition to synthetic networks, three egonetworks from Facebook egonetwork set
were also used in our experiments. As shown in Table 4, N is the number of vertices, M is
the number of attributes, and k denotes the number of real communities.

Table 4. Information of real-world networks.

Network N M k

Facebook_698 65 48 13
Facebook_348 225 161 14

Facebook_0 347 2533 24
Texas 187 328 5

Washington 230 446 5
Wisconsin 265 530 5

4.2. Evaluation Metric

Overlapping normalized mutual information (ONMI) [44] is an improved measure of
normalized mutual information (NMI) that can be used as the evaluation metric for overlap-
ping community detection. This metric reflects the accuracy of the detected communities.
The higher the value of ONMI, the higher the similarity between detected communities and
ground-truth communities. Unlike NMI, ONMI can measure the accuracy of overlapping
communities.

Given two covers, detected communities X and ground truth Y, H*(Xi|Yj) is
defined as

H∗
(
Xi
∣∣Yj
)
=

{
H
(
Xi
∣∣Yj
)
, if h(a, n) + h(d, n) ≥ h(b, n) + h(c, n)

h(c + d, n) + h(a + b, n), otherwise
(13)

where a=
n
∑

m=1

[
Xim= 0∧Yjm= 0

]
, b =

n
∑

m=1

[
Xim= 0∧Yjm= 1

]
, c =

n
∑

m=1

[
Xim= 1∧Yjm= 0

]
,

d =
n
∑

m=1

[
Xim= 1∧Yjm= 1

]
and h(w, n) = log2(w/n).

In Equation (13), i and j denote the index of the clusters. Xim and Yjm denote whether
there is a vertex m in the cluster i or j, respectively. Subsequently, the entropy H(X|Y) and
H(X) can be obtained as

H(X|Y) = ∑
i∈{1,...KX}

minj∈{1,...KY}H
∗(Xi

∣∣Yj
)

(14)
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H(X) =
KX

∑
i=1

(
h

(
n

∑
m=1

[Xim = 1], n

)
+ h

(
n

∑
m=1

[Xim = 0], n

))
(15)

Next, H(Y|X) and H(Y) can be obtained similarly. ONMI is defined as

ONMl =
1
2 [H(X)− H(X

∣∣∣Y) + H(Y)− H(Y
∣∣∣X)]

max(H(X), H(Y))
(16)

4.3. Experimental Scheme

Four experiments were conducted: runtime, the accuracy of community detection
on synthetic or real-world networks, and the accuracy of the estimation of the number of
communities.

The baseline methods include Inc-cluster, S-cluster, W-cluster [14], OCEA, and AOCEA.
Inc-cluster utilizes random walk similarity as the similarity between each pair of vertices
and k-means [45] to detect communities without considering overlapping communities. Its
adjustment of weights does not consider the memberships of each vertex to communities.

S-cluster only considers a network’s topology information, setting the structural
weight ω0 to 1.0 and other weights to 0.0. W-cluster is an algorithm that considers attribute
information without weight adjustment. It sets the structural weight to 1.0 and the weight
of each attribute to 1/d. S-cluster and W-cluster can be regarded as the variants of Inc-
cluster without adjustment of weights. The step length l is set to 5 for all algorithms. The
power m in Equations (7) and (9) is set to 2. The ε is set to 10−5. The stop probability c is
varying from 0 to 1:

1. Accuracy of detected communities on synthetic networks: Experiments were con-
ducted on D1 and D2 to compare the accuracy of detected communities. D1 fixes
the mixing parameter µ to 0.1 and sets the size of networks from 100 to 700. Mean-
while, D2 fixes the size of the networks to 600 and sets the mixing parameters µ from
0.2 to 0.6.

2. Accuracy of detected communities on real-world networks: Experiments were con-
ducted on three networks from Facebook egonetwork set and three paper citation
networks: Texas, Washington, and Wisconsin. The accuracy of the detected communi-
ties was studied and analyzed.

3. Accuracy of estimation on the number of communities: Experiments on Facebook
egonetwork set, including all the ten egonetworks, to study the accuracy of the
estimation on real-world networks.

4. Runtime: Experiments were conducted on D1 to compare the algorithm runtimes. As
the size of networks increasing, we analyze the changing runtime trends.

The above experiments were conducted on a computer with an Intel i5-6300HQ CPU
@ 2.30 GHz, with 8 GB RAM.

4.4. Results and Analysis
4.4.1. Accuracy on Synthetic Networks

The results of ONMI values on synthetic datasets D1 and D2 are shown in Figures 6 and 7.
Figure 6 shows that the ONMI value of algorithms is maintained within a certain

range with an increasing number of vertices. OCEA had a higher ONMI value on D1 than
the other algorithms because they consider the vertex’s memberships. S-cluster detects
communities without considering attribute information, and W-cluster does not have
the process of attribute weight adjustment. Consequently, the superiority of OCEA and
AOCEA reflects the effectiveness of considering attribute information and corresponding
adjustment of weights. Besides, the adjustment of weights in OCEA and AOCEA considers
the memberships of each vertex to communities. That is, the attribute weights of the
vertices in communities are updated according to the memberships. Inc-cluster does not
consider the attribute weights to communities in the adjustment of weights.
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As shown in Figure 7, with the increase of the values of the mixing parameter µ, it
becomes difficult for the algorithms to uncover the communities with increasingly blurred
boundaries, which results in the decrease of the ONMI values. All algorithms could not
detect communities correctly when the value of µ reaches 0.6. Although Inc-cluster [21]
exhibited a high ONMI value at the beginning, it was greatly affected by the increase of
the value of µ. S-cluster and W-cluster were affected less than other algorithms because of
their inadequate use of attribute information. OCEA had a similar changing trend of the
ONMI value compared to Inc-cluster because of the introduction of attribute information.
The ONMI value of AOCEA decreased greatly when µ > 0.3 because it included an extra
procedure of estimating the number of communities. The ONMI value of AOCEA increased
when µ < 0.3 because the estimated number of communities is affected by the update of
memberships matrix U. And the boundaries between communities are not blurred when
µ < 0.3. The number of communities estimated by AOCEA may not be identical to the true
ones when the value of µ is higher than 0.5, which affects its accuracy.

4.4.2. Accuracy on Real-World Networks

Six networks were selected to study the accuracy of algorithms on real-world networks.
The results are shown in Figure 8.
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As shown in Figure 8, the accuracy of OCEA was relatively higher than that of Inc-
cluster algorithm [21] on the Facebook egonetworks. Although S-cluster only considers
topology information, it still performs well on some networks. It is assumed that there may
have been some attribute information that was not conducive to detecting communities—
that is, the introduction of some attributes may have degraded the results of community
detection. Moreover, the invalid attribute information may have influenced the estimation
of the number of communities, resulting in the inferior performance of AOCEA on some
networks. OCEA and AOCEA were superior to all the baselines because they consider
the vertices’ community memberships and employ a strategy to adjust attribute weights
iteratively according to the memberships. The vertices in the communities in the three
paper citation networks (Texas, Washington and Wisconsin) are loosely connected, which
results in the poor performance of S-cluster and W-cluster. Inc-cluster performed better
than S-cluster and W-cluster because it considers the adjustment of attribute weights.
However, it is not competitive with OCEA and AOCEA because it does not consider the
vertices’ community memberships.

On the whole, as we can observe from Figure 6, network size has little impact on the
algorithms’ accuracy when it is greater than 400. We conjecture that the accuracy of an
algorithm on a synthetic network should exhibit little change when all network parameters
in Table 2 except N are kept invariant because the more important structure and attribute
features of the network are invariant. Additionally, as shown in Figure 8, the accuracy of
an algorithm on a large network (facebook_0 with 347 vertices) may be inferior to that on
a small network (facebook_698 with 65 vertices), which also reveals that other features of
a network than its size may have a greater impact on its accuracy.

4.4.3. Accuracy of Estimation on the Number of Communities

Experiments were conducted on all ten egonetworks from Facebook egonetwork set,
and the number of vertices on each network was 347, 1045, 792, 755, 547, 227, 59, 159, 170,
and 66, respectively. The results of the estimation of the number of communities are shown
in Table 5. Here, real, initial, and estimation denote the real number of communities, the
number of selected initial candidate centers, and the estimated number of communities by
AOCEA, respectively.
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Table 5. Estimation on the number of communities in the Facebook’s egonetworks.

Facebook Real Initial Estimation

facebook_0 24 127 17
facebook_107 9 417 17

facebook_1684 17 335 14
facebook_1912 46 338 12
facebook_3437 32 230 15
facebook_348 14 109 14

facebook_3980 17 27 14
facebook_414 7 85 19
facebook_686 14 76 8
facebook_698 13 28 16

As presented in Table 5, the number of initial candidate centers was much larger than
the real ones. After the estimation, most of the estimated number of communities were
generally close to the real ones except for facebook_1912, facebook_3437, and facebook_414.
The gaps between the estimated and real number of communities on some networks were
assumed to be caused by the sparse structure of communities on these networks.

4.4.4. Runtime

As shown in Figure 9, each algorithm exhibited a different trend with the increasing
number of vertices. OCEA ran faster than Inc-cluster because the adjustment of attribute
weights and the update of the centers in OCEA are more efficient than that in Inc-cluster.
S-cluster and W-cluster methods do not contain the process of updating weights, leading
to their fast running speed. The runtime of AOCEA is much higher than that of other algo-
rithms because it contains an additional process to estimate the number of communities.
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number of vertices. OCEA ran faster than Inc-cluster because the adjustment of attribute 
weights and the update of the centers in OCEA are more efficient than that in Inc-cluster. S-
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their fast running speed. The runtime of AOCEA is much higher than that of other algo-
rithms because it contains an additional process to estimate the number of communities. 
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5. Conclusions

In this paper, an overlapping community detection algorithm called OCEA—based
on an augmented attribute graph—and its extended version with an additional estimation
process for the number of communities was proposed. To utilize the attribute information
properly, we adopt a strategy of iteratively adjusting attribute weights. For overlapping
community detection, fuzzy k-medoids [39] was employed. In addition, a process to
estimate the number of communities was introduced to solve the community detection
problems despite the number of communities being unknown. Experimental results
showed the effectiveness of the proposed algorithms in real-world and synthetic networks.
In the future, we will continue to study the strategy to estimate the number of communities
more precisely to increase the performance of AOCEA. We will also explore new heuristic
methods to conduct biased random walk towards vertices with high attribute weights to
compensate for the inaccuracy caused by the loss of structural information in community
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detection on sparse networks. Furthermore, we plan to adopt approximate random walk
to improve our algorithms’ performance on large networks.
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