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Abstract: The development of dynamic single-electron sources has made it possible to observe and
manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we
investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of
voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference
current and the visibility in the outputs of the interferometer. An injected multi-particle state can
be described by its first-order correlation function, which we decompose into a sum of elementary
correlation functions that each represent a single particle. Each particle in the pulse contributes
independently to the interference current, while the visibility (given by the maximal interference
current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference
between different particles in the pulse. For a sequence of multi-particle pulses, the visibility
resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the
slits being played by the pulses and the time delay between them. Our findings may be observed in
future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.

Keywords: time-dependent currents; Floquet scattering theory; levitons; electron quantum optics;
single-electron sources; Mach–Zehnder interferometer

1. Introduction

Quantum-coherent circuits based on mesoscopic conductors [1] combined with dy-
namic single-electron emitters [2,3] have paved the way for experiments on high-frequency
quantum transport [4–9] and are holding great promises for future quantum technologies.
Advances in nanotechnology have made it possible to fabricate highly pure samples and
cool them to sub-Kelvin temperatures, where the phase coherence of the charge carriers
is preserved over large enough distances to exploit and control their quantum behav-
ior. By utilizing the quantum Hall effect in a strong magnetic field, the electrons can be
forced to move along chiral edge states, as if traveling on rail tracks [10,11]. In addition,
several dynamic single-electron emitters have been developed. Single electrons can now
be injected into a quantum-coherent circuit using driven mesoscopic capacitors [5,6,12],
dynamic quantum dots [13–15] or by applying Lorentzian-shaped pulses to a contact [7,8],
as first envisioned by Levitov and coworkers [16–18]. When operated in the gigahertz
regime, these setups make it possible to investigate and observe the quantum behavior of a
single or a few electrons in a quantum-coherent circuit.

Interference of particles is one central prediction of quantum mechanics, which dis-
tinguishes it from classical physics. Interference patterns can develop because the states
of quantum particles are described by wave functions. The quantum nature of photons
was clarified in pioneering work such as the Hanbury Brown–Twiss [19,20] and Hong–Ou–
Mandel [21] interference experiments and by the quantum mechanical theory of light by
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Glauber based on correlation functions [22–24]. This understanding led to the development
of quantum optics, which uses beam splitters, mirrors, and other optical components to
investigate the statistics and coherence of photons, and eventually paved the way for
quantum technologies, such as quantum communication with photons [25].

Quantum optics-like experiments can now be conducted with electrons, which
has led to the field of electron quantum optics [1,26,27]. Electrons in a circuit can be
manipulated using electronic analogs of various optical components. For example,
quantum point contacts [28,29] may function as beam splitters and serve as the ele-
mentary building blocks of electronic Hanbury Brown–Twiss experiments [30–33] or
Mach–Zehnder [34–41] and Fabry-Pérot interferometers [42–45]. Obviously, the differ-
ences between electrons and photons have clear implications for such experiments. For
instance, due to the Pauli exclusion principle, two electrons cannot occupy the same
single-particle state, unlike photons. Furthermore, electrons in a mesoscopic conductor
propagate on top of the underlying Fermi sea in contrast to photons that typically travel
in vacuum. Furthermore, in some situations, electrons interact strongly with each other
via the mutual Coulomb interactions [46–56]. These differences lead, for example, to the
electronic Hong–Ou–Mandel effect, where electrons arriving simultaneously on each side
of a quantum point contact anti-bunch due to destructive two-particle interference and
leave via different output arms (in contrast to the bunching of photons due to constructive
interference) [6,57–61]. Experiments have also demonstrated the tomography of single
electrons [8,15,62,63], measured the time of flight [9,14,64,65] and counting statistics [66,67]
of injected particles, and have emitted particles well above the Fermi level [54,68].

All of these experiments have stimulated a wide range of theoretical activities. Sev-
eral works have explored the possibilities of generating entanglement using dynamic
single-electron sources [69–78]. Heat transport and fluctuations of dynamic single-electron
emitters have also been considered [79–84] as well as the distribution of waiting times
between emitted particles [85–89]. In addition, methods for performing signal processing of
quantum electric currents have been developed [90,91], and combinations of voltage pulses
and superconductors have been discussed [92,93]. The combined effects of several single-
particle sources, as well as multi-particle emitters, have also been investigated [94–101].
At the heart of electron quantum optics lies the Landauer-Büttiker formalism, which de-
scribes the transmission and reflection of incoming particles on a mesoscopic conductor in
terms of scattering matrices [102]. Originally, it was formulated for static setups; however,
it can be extended to periodically driven systems using Floquet scattering theory, which
accounts for the exchange of energy quanta between particles and an external classical
driving field [103–110].

In this article, we investigate theoretically the interference of multi-particle excitations
emitted into an electronic Mach–Zehnder interferometer building on earlier works on ei-
ther static voltages [111], periodically modulated interferometers [112], or dynamic charge
emitters [113]. We focus in particular on the injection of clean multi-particle pulses into the
interferometer, and we show how the visibility measured in the outputs can be related to
the excess correlation function of the incoming pulse, which can be further decomposed into
elementary contributions from the individual charges making up the pulse. Based on this un-
derstanding, we can interpret an observed Fraunhofer-like diffraction pattern as arising due
to the interference of the excess correlation functions of various elementary single-electron
components of the multi-particle pulse. (We note that related oscillations were found in
Reference [45]). These findings may be observed in future experiments in electron quantum
optics with dynamic charge emitters and electronic Mach–Zehnder interferometers.

The rest of the paper is organized as follows: In Section 2, we review the theoretical
description of quantum transport in periodically driven mesoscopic conductors based on
the Floquet scattering formalism, and we introduce the notion of correlation functions
in electron quantum optics. In Section 3, we describe the electronic Mach–Zehnder in-
terferometer and show how the current in the outputs can be divided into a classical
contribution and an interference term, which vanishes as the temperature is increased. We
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also show how the visibility of the interferometer can be expressed in terms of the excess
correlation function of the injected charge pulses. Section 4 is devoted to our results and
analysis of the visibility of the interferometer, which we interpret in terms of interferences
between the different single-particle components of the multi-charge pulse, giving rise to a
Fraunhofer-like diffraction pattern. Finally, in Section 5, we describe the main conclusions
of our work.

2. Theoretical Background
2.1. Floquet Scattering Theory

Mesoscopic conductors driven by a periodic voltage can be described using Floquet
scattering theory [110]. We thus consider systems governed by a time-periodic Hamiltonian
H(x, t) = H(x, t + T ) with period T and frequency Ω = 2π/T . According to the Floquet
theorem, a complete set of solutions to the time-dependent Schrödinger equation can be
written as [110]

Ψ`(x, t) = e−
iE` t

h̄ φ`(x, t), φ`(x, t) = φ`(x, t + T ). (1)

We can expand the periodic function φ`(x, t) in a Fourier series, such that the wave
functions become

Ψ`(x, t) = e−
iE` t

h̄

∞

∑
n=−∞

e−inΩtφ`,n(x). (2)

The wave functions are invariant with respect to the shift E` → E` +mh̄Ω, with m ∈ Z.
Therefore, the energy E` is a quasi-energy (Floquet energy), which is defined only up to
integer multiples of h̄Ω.

In the following, we consider a mesoscopic scatterer that is connected by ballistic
leads to two electronic reservoirs, and a periodic voltage V(t) = V(t + T ) is applied to
one of them, see Figure 1. Electrons are then emitted from the driven reservoir towards
the scatterer from where they are either reflected back into the source electrode or they are
transmitted through th e scatterer and eventually reach the drain electrode. An applied
voltage can be treated as a spatially uniform potential [110]. The wave function of electrons
leaving the reservoir can then be derived from the Schrödinger equation,

Ψ(x, t) = e−
iEt
h̄ ψ0(x)J(t), (3)

where ψ0(x) is the solution without the voltage pulses, and J(t) is a time-dependent
phase factor,

J(t) = e
−ie

t∫
−∞

V(t′)dt′/h̄
. (4)

Owing to the periodicity of the time-dependent voltage, we can expand J(t) in a
Fourier series as

J(t) =
∞

∑
n=−∞

Jne−inΩt, (5)

with the Fourier coefficients given as

Jn =

T∫
0

dt
T einΩt J(t). (6)

As a result, the wave function of electrons leaving the driven contact becomes

Ψ(x, t) = e−
iEt
h̄

∞

∑
n=−∞

e−inΩt Jnψ0(x), (7)
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which is obviously a Floquet wave function as in Equation (2). Now, based on Equation (7),
the possible energies of an electron after being excited by the periodic voltage are
En = E + nh̄Ω, where n is a positive or negative integer and E is the energy of the electron
before interacting with the voltage pulses.

Figure 1. Illustration of a periodically-driven mesoscopic scatterer. Periodic voltage pulses, V(t),
are applied to the left electrode so that electrons are emitted towards the central scatterer, described
by the scattering matrix S(E). There, they are either reflected back into the source electrode or
transmitted to the right drain electrode, where the electric current is measured. The fermionic
operators â†

0 and â0 describe electrons in equilibrium at temperature T and chemical potential µ,
before the application of the voltage pulses. The operators â† and â describe electrons after the
application of the voltage pulses, while the operators b̂† and b̂ describe electrons that have been
transmitted through the scatterer. The different operators are related via the Floquet scattering matrix
according to Equations (9) and (10). The electric current before and after the scatterer are denoted as
Iin(t) and Iout(t), respectively.

In what follows, we consider quasi-one-dimensional transport as in the chiral edge
states of a quantum Hall system. We assume that the propagating electrons have en-
ergies close to the Fermi energy µ, and approximate their dispersion relation as linear,
E− µ ' h̄vF(k− kF), where kF is the Fermi wavevector. Thus, the electrons are assumed
to propagate at the Fermi velocity vF. We only consider edge states with filling factor 1 and
discard any decoherence mechanisms. Using second quantization, the operators â†

0,j(E)
and â0,j(E) describe electrons with energy E in the reservoir labeled j connected to the
incoming lead, before being excited by the voltage pulses. These electrons are in thermal
equilibrium, allowing us to write their quantum-statistical average as

〈â†
0,i(E)â0,j(E′)〉 ≡ 〈0|â†

0,i(E)â0,j(E′)|0〉 = δijδ(E− E′) f j(E), (8)

where |0〉 is the state of the undisturbed Fermi sea, and f j(E) = 1/(eβ(E−µ) + 1) is the
Fermi–Dirac distribution with β = 1/(kBT) being the inverse electronic temperature.
We also define the creation and annihilation operators â†

j and âj for electrons incident
on the scatterer from lead j, after being excited by the voltage. They are related to the
equilibrium ones as

âj(E) =
∞

∑
n=−∞

Jn â0,j(E−n), â†
j (E) =

∞

∑
n=−∞

J∗n â†
0,j(E−n). (9)

Next, we describe the transmission and reflection of charge pulses on the central scat-
terer. The operators b†

i (E) and bi(E) for scattered electrons, with i labeling the reservoirs,
are related to the incident ones as

b̂i(E) = ∑
j

Sij(E)âj(E), b̂†
i (E) = ∑

j
S∗ij(E)â†

j (E), (10)
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where S(E) is the scattering matrix. Then, by combining Equations (9) and (10), we can
express the operators for the scattered electrons as

b̂i(E) = ∑
j

∞

∑
n=−∞

Sij(E)Jn â0,j(E−n), b̂†
i (E) = ∑

j

∞

∑
n=−∞

S∗ij(E)J∗n â†
0,j(E−n), (11)

whereby we can identify the product S(En)Jn as the Floquet scattering matrix,

SF(En, E) = S(En)Jn, (12)

for a static conductor driven by periodic voltage pulses. The Floquet scattering matrix
contains the probability amplitudes for an electron with energy E to change its energy to
En = E + nh̄Ω by exchanging n modulation quanta of size h̄Ω with the voltage and to
be transmitted through the scatterer. For our purposes, it is useful that the effects of the
voltage drive and the scatterer can be factorized as in Equation (12), which would not be
the case if the scatterer itself was modulated in time.

Finally, the electric current generated by a time-dependent voltage reads [102,110,114]

Ii(t) =
e
h

∞∫
0

∞∫
0

dEdE′e
i
h̄ (E−E′)t〈b̂†

i (E)b̂i(E′)− â†
i (E)âi(E′)〉. (13)

Using Equations (8) and (11), the time-dependent current can be recast as

Ii(t) =
e
h

∞∫
0

dE ∑
j

∞

∑
n=−∞

∞

∑
m=−∞

[ f j(E)− fi(En)]e−iΩt(m−n) J∗n JmS∗ij(En)Sij(Em), (14)

where the Fourier components of the voltage pulses are defined in Equation (6).

2.2. Voltage Pulses

We now specify the types of voltage pulses that we will consider. A current that carries
the charge of one electron per period can be created by applying a periodic voltage V(t)
which satisfies the condition e2

h

∫ t+T
t V(t′)dt′ = e, where T is the period of the drive [18].

For almost any voltage drive, such a current is accompanied by neutral electron-hole pairs,
and the resulting charge pulses consist of more than just a single electron. However, by
applying Lorentzian-shaped pulses, clean single-electron excitations can be created [16–18].
Experimentally, such single-electron pulses were first realized by Dubois and coworkers,
who named them levitons [7,115]. A Lorentzian voltage pulse has the form

V(t) = n̄
h̄
e

2Γ
t2 + Γ2 , (15)

where Γ is the half-width of the pulse, and n̄ controls the average charge per voltage pulse,
which can be either integer or non-integer. Technically, we treat single voltage pulses, or a
train of a finite number of pulses, within the Floquet scattering formalism by considering a
period that is much longer than all other time scales in the problem. We will also consider
single Gaussian voltage pulses of the form

V(t) = n̄
h̄
e

√
4π log(2)

Γ
exp

(
− log(2)t2

Γ2

)
, (16)

as well as sinusoidal voltage pulses reading

V(t) =

{
n̄ h̄

e
π
2Γ (sin(πt

2Γ + π
2 ) + 1), if |t| ≤ 2Γ

0, otherwise
(17)
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Finally, a sequence of m pulses is given as

V(t) =
m−1

∑
j=0

V1(t− jw), (18)

where V1 is the voltage for a single pulse, and w is the separation between the pulses.

2.3. Excess Correlation Function

Electron quantum optics experiments aim to realize ideas from quantum optics, how-
ever, with electrons in solid-state architectures instead of photons in vacuum or in optical
fibers. Therefore, it is relevant to adapt the theoretical toolbox from quantum optics to
condensed matter systems. Among the useful tools in quantum optics are the correlation
functions introduced by Glauber [22–24]. Correlation functions, also known as Green’s
functions, involve quantum statistical averages of products of field operators. To facilitate
the analysis of electron quantum optics experiments, the ideas of Glauber have recently
been extended to electronic systems and mesoscopic conductors [62,116,117]. An important
difference in the electronic case compared to quantum optics is that, unlike photons which
often propagate in vacuum, electrons in mesoscopic conductors propagate on top of the
Fermi sea. For this reason, we need to use excess correlation functions, which subtract
the effects of the underlying Fermi sea, leaving only correlations between the propagating
electrons close to the Fermi level.

The first-order excess correlation function G̃(1) contains all information about the
single-particle states of the emitted electrons [117,118]. For electrons injected by a voltage
drive, it is defined as [62]

G̃(1)
ij (t1, t2) = 〈Ψ̂†

i (t1)Ψ̂j(t2)〉on − 〈Ψ̂†
i (t1)Ψ̂j(t2)〉off, (19)

where the term with the subscript “on” contains field operators for the case with a time-
dependent voltage V(t), and the term with the subscript “off” corresponds to the case
where there is no voltage drive. Due to the linear dispersion relation, we can evaluate
the correlation function anywhere along a lead, and we generally leave out the spatial
dependence in these definitions as well as in wave functions and other related quantities.
If the injected electrons are transmitted through a scatterer, we must separately define
the correlation functions before and after the scatterer. However, we will focus on the
correlation function before the scatterer, which can be related to measurable quantities
such as the interference current and the visibility in a Mach–Zehnder interferometer as we
will see.

To evaluate the correlation function, we first define the electronic field operators that
create an electron at position x in lead j as

Ψ̂†
j (x, t) =

1√
hvF

∫ ∞

0

[
â†

j (E)ψ(in)∗
E,j (x, t) + b̂†

j (E)ψ(out)∗
E,j (x, t)

]
dE, (20)

where ψ
(in/out)
E,j (x, t)/

√
hvF are the incident and scattered wave functions for electrons in

lead j with energy E. The prefactor 1/
√

hvF ensures that the wave functions carry a unit
flux of particles.

Without a voltage applied to the reservoir, the creation and annihilation operators
in the lead are simply the same as the reservoir operators, â†

0,j, â0,j. However, when a
time-dependent voltage is applied to the reservoir, the operators in the lead are related to
the reservoir operators according to Equation (9). To keep the notation simple, we only
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consider the correlation function for operators in the same lead and henceforth omit the
indices of the leads. The correlation function in Equation (19) then reads

G̃(1)(t1, t2) =

〈
1

hvF

∫ ∞

0
â†(E)ψ(in)∗

E (t1)dE
∫ ∞

0
â(E′)ψ(in)

E′ (t2)dE′
〉

−
〈

1
hvF

∫ ∞

0
â†

0(E)ψ(in)∗
E (t1)dE

∫ ∞

0
â0(E′)ψ(in)

E′ (t2)dE′
〉

.
(21)

Since the wave functions in the lead are plane waves, ψ
(in)
E (x, t) = eikxe−iEt/h̄, we more-

over find

G̃(1)(t1, t2) =
1

hvF

∫ ∞

0

∫ ∞

0
dE′dEei(Et1−E′t2)/h̄

[〈
â†(E)â(E′)

〉
−
〈

â†
0(E)â0(E′)

〉]
. (22)

Using Equation (9), we can insert equilibrium operators in this expression, which
allows us to evaluate the quantum-statistical averages based on Equation (8). We can
perform one of the integrals, which yields

G̃(1)(t1, t2) =
1

hvF

∫ ∞

0
dEeiE(t1−t2)/h̄

[
∞

∑
n,m=−∞

J∗n Jmei(n−m)Ωt1 f (E−m)− f (E)

]
. (23)

This expression holds for any temperature and driving frequency. However, we still
need to evaluate the last integral. To this end, we employ an approximation that is valid
at low temperatures and driving frequencies compared to the Fermi energy, which is
reasonable for mesoscopic conductors.

Generally, we need to evaluate energy integrals of the form

∫ ∞

0
f (En)eia(E−µ)dE =

∫ ∞

0

eia(E−µ)

1 + eβ(E+nh̄Ω−µ)
dE, a ∈ R. (24)

Changing the integration variable to ε = β(E + nh̄Ω− µ) allows us to rewrite the
integral as ∫ ∞

β(nh̄Ω−µ)

eia(ε/β−nh̄Ω)

1 + eε

dε

β
' e−ianh̄Ω

β

∫ ∞

−∞

eiaε/β

1 + eε
dε, (25)

where we have assumed that both the temperature and the driving frequency are small
compared to the Fermi energy, namely, µβ � 1 and µ � nh̄Ω, where n is among the
largest numbers of excitation quanta that an electron can emit or absorb because of the
time-dependent voltage. As a result, we can extend the lower limit of the integral to minus
infinity and evaluate the resulting integral using contour integration in the complex plane,
leading to the simple expression

∫ ∞

0
f (En)eia(E−µ)dE ' e−ianh̄Ω

ia
χ

(
πa
β

)
, χ(x) ≡ x

sinh(x)
. (26)

Finally, by combining Equations (23) and (26), we arrive at the useful approximation

G̃(1)(t1, t2) '
eiµ(t1−t2)/h̄

2πi(t1 − t2)vF
χ

(
π(t1 − t2)

h̄β

)[ ∞

∑
n,m=−∞

J∗n JmeiΩ(nt1−mt2) − 1

]
. (27)

To proceed, we note that the sums in Equation (27) exactly correspond to the Fourier
expansions of J∗(t1) and J(t2) in Equation (5). Moreover, by using Equation (4), we find

J∗(t1)J(t2) = e−iΦ(t1,t2), Φ(t1, t2) =
e
h̄

∫ t2

t1

V(t)dt, (28)
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such that the correlation function can be written as

G̃(1)(t1, t2) '
eiµ(t1−t2)/h̄

vF
χ

(
π(t1 − t2)

h̄β

)
G(1)(t1, t2), (29)

where we have introduced the envelope correlation function [119]

G(1)(t1, t2) =
e−iΦ(t1,t2) − 1
2πi(t1 − t2)

. (30)

The form of the correlation function in Equation (29) is particularly useful, as it
separates the effects of the Fermi energy, the temperature, and the voltage [46,60]. The
effects of the Fermi energy enter as the phase factor eiµ(t1−t2)/h̄, while the temperature
enters via the function χ, which decreases from χ = 1 at zero temperature to χ ' 0 at large
temperatures, where quantum coherence is lost. Finally, the effects of the time-dependent
voltage are contained in G(1) through the phase factor Φ(t1, t2). It is easy to add the other
factors, if needed, and we therefore focus on the envelope correlation function.

3. Mach–Zehnder Interferometer

An electronic Mach–Zehnder interferometer can be used to investigate the interfer-
ence effects of electrons, similarly to an optical Mach–Zehnder interferometer for photons.
The setup can be realized using chiral edge states in a Corbino disk geometry [33]. The in-
terferometer is made up of two quantum point contacts that act as beam splitters with
energy independent reflection and transmission amplitudes that we denote by r1, r2 and
t1, t2. There are two paths for electrons to travel from the first beam splitter to the next one,
as illustrated in Figure 2, and we denote the length of the upper and lower paths as Lu
and Ld, respectively. In addition, a magnetic flux threads the area enclosed by the paths,
causing electrons to acquire the additional phases φu and φd depending on the path. In the
following, we analyze the current injected in the upper input and the current that reaches
the upper output.

Figure 2. Schematic of an electronic Mach–Zehnder interferometer implemented with chiral edge
states. Charges are emitted in the upper input by the application of a time-dependent voltage V(t).
Incoming particles are coherently split at the first quantum point contact, which acts as a beam
splitter, and they then propagate along the upper or lower arms of the interferometer of lengths Lu

and Ld, respectively. The particles recombine at the second quantum point contact and then leave
via the upper or lower output of the interferometer. The injected particles propagate at the Fermi
velocity, vF, such that it takes the time τu,d = Lu,d/vF to travel along the upper or lower arm. In
addition, the arms enclose a magnetic flux, which causes a phase shift φ = φu − φd between electrons
traveling along each of the arms. We consider the time-dependent current in the upper output of the
interferometer, I(t).



Entropy 2021, 23, 736 9 of 19

3.1. Injected Current

We start by evaluating the time-dependent current injected into the input. In this case,
the scattering matrix in Equation (14) equals unity, and the integral over energy becomes
nh̄Ω. We then find

Iin(t) =
e

2π

∞

∑
n=−∞

nΩJ∗neiΩtn
∞

∑
m=−∞

Jme−iΩtm. (31)

From Equation (5), we recognize that this expression can be rewritten as

Iin(t) =
e

2π

(
−i

dJ∗(t)
dt

)
J(t). (32)

Moreover, using that

− i
dJ∗(t)

dt
J(t) =

e
h̄

V(t), (33)

we arrive at the simple expression for the injected current

Iin(t) =
e2

h
V(t), (34)

showing that it is given simply by the conductance quantum, G0 = e2/h, times the
applied voltage.

3.2. Output Current

Next, we turn to the current in the upper output of the interferometer. The scattering
amplitude is given by [33,120]

S(E) = r1r2ei(LukF+τu(E−µ)/h̄+φu) + t1t2ei(LdkF+τd(E−µ)/h̄+φd), (35)

where τu,d = Lu,d/vF are the times it takes for electrons to travel along the upper or lower
arm. The two contributions above describe the propagation of electrons in each of the
two arms. We now see that the product of scattering matrices can be written as a sum of
“classical” and “interference” contributions,

S∗(En)S(Em) = Tcl + Tint, (36)

with
Tcl = R1R2ei(m−n)Ωτu + T1T2ei(m−n)Ωτd (37)

and

Tint = −
√

R1R2T1T2

(
ei[(kFvF+(E−µ)/h̄)∆τ+(mτu−nτd)Ω−φ]

+e−i[(kFvF+(E−µ)/h̄)∆τ+(nτu−mτd)Ω−φ]
)

,
(38)

where ∆τ = τu − τd is the time difference between traveling along each arm, and
φ = φu − φd is the phase difference controlled by the magnetic flux. We have also used
the unitarity of the scattering matrices of the two quantum point contacts to deduce that
rjt∗j = −r∗j tj, which leads to r1r2t∗1t∗2 = r∗1r∗2 t1t2 = −

√
R1R2T1T2, where Tj = |tj|2 and

Rj = 1− Tj, j = 1, 2.
Based on Equation (14), we see that the current in the output can also be divided into

a classical part and an interference contribution. Specifically, we find

Iout(t) = Icl(t) + Iint(t), (39)
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with the two contributions given by the corresponding terms of the transmission in
Equation (36),

Icl(int)(t) =
e
h

∞

∑
n=−∞

∞

∑
m=−∞

e−iΩt(m−n) J∗n Jm

∞∫
0

[ f (E)− f (En)]Tcl(int)dE. (40)

For the classical part Icl, there is no energy dependence in the scattering amplitudes,
so Icl can be derived in essentially the same way as the injected current in Equation (34),
with the only differences being the prefactors R1R2 and T1T2 and the exponential factors
containing τu and τd. Hence, we find

Icl(t) =
e2

h
[R1R2V(t− τu) + T1T2V(t− τd)], (41)

which is simply a sum of shifted and scaled injected currents, and this result can be
understood without resorting to quantum mechanics. By contrast, quantum effects are
important for the interference current. For ∆τ = 0, the scattering amplitudes are energy
independent, and we find the interference current just as we found the classical one. On
the other hand, for ∆τ 6= 0, the scattering amplitudes are energy dependent, and we find
the interference current using Equation (26). The interference current then becomes

Iint(t) = −2e
√

R1R2T1T2

{ e
h V(t− τu/d) cos φ, ∆τ = 0

χ
(

π∆τ
h̄β

)
Re
{

e−i(kFvF∆τ−φ)G(1)(t− τu, t− τd)
}

, ∆τ 6= 0
(42)

with the envelope correlation function G(1) defined in Equation (30), and the function χ
given in Equation (26).

3.3. Transferred Charge

In addition to the output current, we can consider the transferred charge given by
the integral

Q =
∫

Iout(t)dt, (43)

which is taken over a period, which for a finite number of pulses is assumed to be much
longer than any other time scale in the problem. The transferred charge can again be
separated into classical and interference contributions as

Q = Qcl + Qint, (44)

where Qcl and Qint are given by Equation (43) by inserting the corresponding currents.
From Equation (41), we see that the classical contribution reads

Qcl =
∫

Icl(t)dt =
e2

h
(R1R2 + T1T2)

∫
V(t)dt (45)

which is simply the charge of the injected current multiplied by R1R2 + T1T2. The charge
transferred due to the interference current follows from Equation (42) and can be ex-
pressed as

Qint =
∫

Iint(t)dt = −2e
√

R1R2T1T2 χ

(
π∆τ

h̄β

)
× Re

{
e−i(kFvF∆τ−φ)

∫
G(1)(t− τu, t− τd)dt

} (46)

in terms of the excess correlation function, where we have assumed that ∆τ 6= 0.
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3.4. Visibility

A common way to characterize interference is to measure the visibility of a physical
observable. This technique can be applied to various situations involving wave interference,
from classical electromagnetic waves to quantum mechanical particles. Typically, there
is a physical observable that oscillates as a function of a control parameter. The usual
definition of visibility in this context is the ratio of the amplitude of the oscillations over
the average value of the oscillations. The charge visibility has so far been the main method
for characterizing interference effects in Mach–Zehnder interferometers [33].

The charge transferred through a Mach–Zehnder interferometer oscillates as a function
of the magnetic flux according to Equations (43), (45) and (46). The standard definition of
the charge visibility is then

ν =
max[Q(φ)]−min[Q(φ)]

max[Q(φ)] + min[Q(φ)]
, (47)

where we have to maximize and minimize the transferred charge over the phase differ-
ence φ. To evaluate the visibility from Equation (47), we again decompose the charge as
Q = Qcl + Qint and consider the two terms separately. For ∆τ 6= 0, the interference term
can be expressed as

Qint(φ) = −2e
√

R1R2T1T2χ

(
π∆τ

h̄β

)
|G(τu, τd)| cos[α2 − α1(φ)], (48)

where we have introduced the phase α1(φ) = kF∆L− φ, defined the function

G(τu, τd) ≡
∫

G(1)(t− τu, t− τd)dt, (49)

and then written G(τu, τd) in polar form with the complex phase α2. As a result, the integral
reduces to ∫

Re
{

e−iα1(φ)G(1)(t− τu, t− τd)
}

dt = |G(τu, τd)| cos[α2 − α1(φ)]. (50)

From Equation (48), we see that Qint only depends on the phase φ through the cosine
term, which takes values between −1 and 1. Thus, for the maximum value of Qint, we get

max(Qint) = 2e
√

R1R2T1T2χ

(
π∆τ

h̄β

)
|G(τu, τd)|, ∆τ 6= 0, (51)

while for the minimum, we have

min(Qint) = −max(Qint). (52)

For ∆τ = 0, we have

Qint(φ) = −
2e2

h

√
R1R2T1T2 cos(φ)

∫
V(t)dt, (53)

and therefore

max(Qint) =
2e2

h

√
R1R2T1T2

∣∣∣∣∫ V(t)dt
∣∣∣∣, ∆τ = 0 (54)

together with Equation (52). Moreover, since Qcl is independent of φ, we immediately get
max(Qcl) = min(Qcl) = Qcl, and combining these results, we obtain the expression

ν =
max(Qint)

Qcl
=

ν0
h
e
|G(τu ,τd)|∫

V(t)dt , ∆τ 6= 0

ν0
|∫ V(t)dt|∫

V(t)dt , ∆τ = 0
, (55)
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where we have defined the prefactor

ν0 = 2
√

R1R2T1T2

R1R2 + T1T2
χ

(
π∆τ

h̄β

)
, (56)

which is independent of the voltage pulses, and where χ encodes the loss of visibility due
to thermal effects.

4. Results and Analysis

We are now ready to analyze the charge transferred through the Mach–Zehnder in-
terferometer and the corresponding interference effects. We have already seen how the
charge visibility is captured by the absolute value of the time-averaged excess correlation
function, cf. Equations (49) and (55). We now go on to show how the properties of the cor-
relation function, in particular the possibility to decompose it into elementary components,
can explain the interference patterns in the visibility.

4.1. Fraunhofer-Like Diffraction Pattern

We start by considering a single voltage pulse, and in Figure 3, we show the visibility
given by Equation (55) as a function of the difference of travel times ∆τ over the pulse
half-width Γ. We consider Lorentzian pulses, Equation (15), Gaussian pulses, Equation (16),
and sinusoidal pulses, Equation (17). In each case, we see that the visibility decreases
as a function of the difference in travel times. If the difference of travel times is large
compared to the width, the parts of the wave function going through different arms do not
interfere when they reach the second quantum point contact, leading to a suppression of
the visibility. By contrast, for short differences of travel times compared to the pulse width,
a pulse can interfere with itself at the second quantum point contact.
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Figure 3. Visibility for different pulse types. Results are shown as a function of the difference of
travel times ∆τ over the pulse width Γ for Lorentzian (L), Gaussian (G), and sine (S) pulses with a
different number of charges n̄ = 1, 2, 3, 5.

The visibility for Gaussian and sinusoidal pulses are nearly identical and qualitatively
similar to the Lorentzian pulses. The difference between the Lorentzian and the other
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pulses is mainly due to the long tails of the Lorentzian ones, which extend beyond |t| ≥ Γ.
The similarity between the Gaussian and the sinusoidal pulses suggests that the exact shape
of the pulses only has a small influence on the visibility. Owing to the similar behavior
of the different pulses, we focus now on the Lorentzian ones, which can be interpreted in
terms of elementary excitations that leave the Fermi sea unaltered.

Continuing with a single pulse, we now allow it to carry more than a single charge. The
visibility is quite featureless for n̄ = 1 according to Figure 3. By contrast, more interesting
structures appear as n̄ is increased. For n̄ > 1, even for non-integer n̄, oscillations appear in
the visibility. For integer n̄, they form a Fraunhofer-like interference pattern (a peak with
superimposed interference oscillations in the tails) as seen in Figure 3, with the number of
oscillations being proportional to n̄. To understand this Fraunhofer-like diffraction pattern,
we analyze the correlation function G(1) in more detail.

All voltages in Figure 3 are proportional to n̄, and we can write the phase in Equation (28)
as Φ(t1, t2) = −n̄ϕ(t1, t2) with ϕ being the phase for a single pulse with n̄ = 1. Hence, for
integer values of n̄, we can decompose the numerator of the correlation function as

e−iΦ(t1,t2) − 1 = (eiϕ(t1,t2) − 1)(ei(n̄−1)ϕ(t1,t2) + ei(n̄−2)ϕ(t1,t2) + ... + 1)

=
n̄−1

∑
k=0

(eiϕ(t1,t2) − 1)eikϕ(t1,t2),
(57)

When combined with Equation (30), we can then write the correlation function as

G(1)(t1, t2) = g(t1, t2)
n̄−1

∑
k=0

eikϕ(t1,t2), (58)

with

g(t1, t2) =
eiϕ(t1,t2) − 1
2πi(t1 − t2)

. (59)

We note that g(t1, t2) is the correlation function of a single pulse with n̄ = 1. Conse-
quently, Equation (58) implies that the correlation function G(1) for a pulse with integer
n̄ > 1 is a sum of n̄ elementary correlation functions, which differ from each other only by
the relative phases kϕ with k = 0, . . . , n̄− 1.

The visibility is proportional to the time-integrated correlation function G(τu, τd)
according to Equation (49). We thus denote the correlation function G(τu, τd) for a single
pulse with charge n̄ as Gn̄(τu, τd). Using Equation (58) and omitting the dependence on τu
and τd to keep the notation simple, we find

Gn̄ =
∫

dtg
n̄−1

∑
k=0

eikϕ =
n̄−1

∑
k=0
Gkeiθk = G0eiθ0

n̄−1

∑
k=0

Gk
G0

ei(θk−θ0), (60)

where we have defined the real numbers Gk and θk such that Gkeiθk =
∫

dtgeikϕ. In analogy
with Equation (58), we can now interpret this expression as a sum of elementary contri-
butions, where each term of the sum has a different phase θk − θ0 and amplitude Gk/G0.
Hence, the interference effects can be understood as interference between the correlation
functions of the elementary excitations within the pulse. We refer to this as interference
of the second kind in contrast to conventional interference, where it is the wave function
that interferes [45]. We stress that while the wave function of a single particle can interfere
with itself only, the correlation functions of various single particles can interfere with each
other. Specifically, the Fraunhofer-like diffraction pattern in Figure 3 can be captured by
the expression

ν

ν0
=

1
n̄

∣∣∣∣∣n̄−1

∑
k=0
Gkei(θk−θ0)

∣∣∣∣∣, (61)

which is valid for ∆τ 6= 0 and n̄ being an integer.
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In addition to the interference oscillations, we see that the overall decay of the visibility
in Figure 3 for n̄ > 1 is similar to the case n̄ = 1. Generally, the visibility decreases as
a function of the difference of travel times, but the decay is faster for larger values of n̄.
Thus, the interference caused by the relative phases tend to reduce the visibility. From
Figure 3, we also conclude that to observe interference, the difference of travel times, ∆τ
and the pulse width, 2Γ, should be of the same order. For ∆τ � Γ or ∆τ � Γ, there are no
oscillations in the visibility.

4.2. Diffraction Grid

Having established that the interference of the elementary components in a single
pulse is revealed in the visibility as a Fraunhofer-like diffraction pattern, we now consider
two separated pulses with arbitrary charge. In the case with only a single pulse, the
interference pattern was fully determined by the charge of the pulse and the difference of
the arm lengths. Now, the time delay w between the two pulses, see Equation (18), offers
another way to control the interference pattern. Figure 4 shows the effect of changing
the delay w between two pulses with charge n̄ = 2 (n̄ = 1) in the left (right) panel. For
w = 0, the pulses combine into a single pulse with the charge given by the total charge
of the pulses. As the time delay is increased, the pulse splits into the two separate pulses.
As we further decompose the multi-charged pulse into its elementary parts with n̄ = 1,
the number of oscillations decreases and the visibility is enhanced, as can be seen by
comparing the left and right panels. We also note that if we take w � Γ, we completely
split the pulses and they do not interfere. In Figure 4, the oscillations are concentrated
near w = ∆τ = 2Γ, and we should generally choose w close to those values to observe the
clearest interference effects.

0.0 1.5 3.0 4.5 6.0

0.00

0.25

0.50

0.75
L-pulse
G-pulse
S-pulse

0.0 1.5 3.0 4.5 6.0

Figure 4. Visibility for two charge pulses with n̄ = 2 (left panel) and n̄ = 1 (right panel). The time
delay between the charge pulses is denoted by w, and we have used ∆τ/Γ = 2.

Under these conditions, we can further enhance the interference effects by increasing
both the number of pulses m and their charge n̄. This leads to an increased number of
oscillations, as seen in Figure 5, where we consider the splitting of a single pulse with
n̄ = 25 into five pulses with n̄ = 5. To maximize the Fraunhofer-like pattern, the pulses are
separated by the same time delay w. The magnitude of the visibility and its oscillations
are reduced by the increased interference. Again, the visibility of a single pulse is given by
its half-width Γ and its total charge n̄. Figure 5 shows how the visibility starts to rapidly
oscillate with the time delay w as we decompose the large pulse into smaller ones. This
behavior resembles the diffraction pattern generated by a regular spatial grid, where the
smaller pulses here are acting like the slits of the grid, which are spaced by the delay time
w. Thus, by tuning the separation between the pulses, one can directly control the resulting
diffraction pattern.
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Figure 5. Visibility for five voltage pulses of different types with n̄ = 5 particles each. The time delay
between the pulses is denoted by w, and we have used ∆τ/Γ = 2.

5. Conclusions

We have theoretically investigated multi-particle interference in an electronic Mach–
Zehnder interferometer driven by dynamic voltage pulses. To this end, we have described
a Floquet scattering theory, which allows us to calculate the time-dependent current and
the excess correlation function in a mesoscopic conductor driven by a time-dependent
voltage. The current can be divided into a classical part and an interference term, with the
classical contribution being independent of the temperature, while the interference term
is gradually washed out by an increasing temperature. Moreover, the interference term
determines the visibility that we have investigated for different pulse types.

For a single Lorentzian-shaped voltage pulse containing several charges, we have shown
how oscillations in the visibility can be related to interference between the individual charges
making up the pulse. This interference gives rise to a Fraunhofer-like diffraction pattern
consisting of interference oscillations superimposed on a central peak structure. Additional
features appear as several pulses are injected into the interferometer, making it possible for
different pulses to arrive simultaneously at the second quantum point contact of the setup.
In that case, we observe an interference pattern that resembles what one would get with a
regular spatial grid, however, with the spacing between the slits of the grid replaced by the
delay time between the pulses. These predictions may be observed in future experiments by
injecting multi-particle pulses into an electronic Mach–Zehnder interferometer.
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