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Abstract: Communication games are crucial tools for investigating the limitations of physical theories.
The communication complexity (CC) problem is a typical example, for which several distributed
parties attempt to jointly calculate a given function with limited classical communications. In this
work, we present a method to construct CC problems from Bell tests in a graph-theoretic way. Starting
from an experimental compatibility graph and the corresponding Bell test function, a target function
that encodes the information of each edge can be constructed; then, using this target function, we can
construct a CC function, and by pre-sharing entangled states, its success probability exceeds that of
the arbitrary classical strategy. The non-signaling protocol based on the Popescu–Rohrlich box is also
discussed, and the success probability in this case reaches one.

Keywords: Bell nonlocality; entanglement; communication complexity

1. Introduction

Bell nonlocality [1–4] is one of the most distinctive features that distinguish quan-
tum mechanics from classical mechanics. It is an experimentally verified phenomenon
and now serves as a crucial resource for many quantum information tasks, such as quan-
tum computation [5], quantum key distribution (QKD) [6], quantum random number
generation [7], and the communication complexity (CC) problem [8]. Among these tasks,
CC problems for which distributed parties jointly calculate a function with limited com-
munications are of great importance for investigating the limitations of different physical
theories [4,8]. For instance, the set of calculable functions and the success probabilities for
calculating a given function may be different for local hidden variable (LHV) theory [2],
quantum theory, and non-signaling theory.

CC problems, originally introduced by Yao [9], concern the following question: what is
the minimal amount of communication necessary for two or more parties to jointly calculate
a given multivariate function f (x1, · · · , xn) where the k-th party only knows his own input
xk but no information about the inputs of other parties initially? It has been shown from
different perspectives that entanglement and Bell nonlocality are closely related to the
quantum advantage of the CC problem; see Refs. [8,10–15]. Violation of Bell inequalities
often leads to quantum advantages of CC problems [8,10–13] and it is also argued that the
quantum advantage of CC problem implies violation of Bell inequalities [14,15]. However,
many of the results above are existence proof. In practice, to utilize Bell nonlocality to
obtain quantum advantages of a real CC problem, one needs to consider how to explicitly
translate the Bell test into a CC problem. In this work, we systematically explore the
translation of a Bell test into CC problem via the graph-theoretic method.

We are mainly interested in the CC problems for which only limited classical commu-
nications are allowed and the goal for each party is to calculate the function with as high

Entropy 2021, 23, 744. https://doi.org/10.3390/e23060744 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-8588-173X
https://doi.org/10.3390/e23060744
https://doi.org/10.3390/e23060744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23060744
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23060744?type=check_update&version=2


Entropy 2021, 23, 744 2 of 11

success probability as possible. By introducing the concept of the experimental compatibil-
ity graph and its corresponding Bell test function, we explore the relationship between the
Bell nonlocality and quantum advantage of CC problems. We show that, from an arbitrary
experimental compatibility graph Ge, we can construct a corresponding CC problem FGe

for which the quantum protocol exhibits a success probability that exceeds the that of all
classical protocols. We also investigate the possibility of using a non-signaling box to solve
CC problems, and we show that it has an advantage over all quantum protocols.

The paper is organized as follows: in Section 2, we introduce several graph-theoretic
concepts related to Bell nonlocality, including the experimental compatibility graph, com-
patibility graph, and Bell test functions; in Section 3, we provide the basics of CC problems
and define the quantum advantages of the protocol; in Section 4, we present a class of
functions based on an arbitrary given experimental graph Ge for which quantum protocols
exhibit advantages; finally, in the last section, we make some concluding remarks.

2. Bell Inequalities from Compatibility Graphs

Let us now introduce a general framework for n-party Bell inequalities based on
a set of n-point correlation functions E(xi1 , xi2 , · · · , xin) = 〈xi1 ⊗ xi2 ⊗ · · · ⊗ xin〉. Many
pertinent classes of Bell inequalities are of this correlator form; see, e.g., Refs. [4,16]. To
start with, let us first introduce a useful mathematical tool, compatibility graphs. For a set
of measurementsM = {M1, · · · , Mn}, we can assign a corresponding graph GM called
the measurement compatibility graph [17], whose vertices are labeled by measurements, and
there is an edge between two vertices if the corresponding measurements are compatible;
i.e., they can be measured simultaneously. We denote the vertex set of the graph G as
V(G) and the edge set as E(G), and an edge is a pair 〈ij〉 := (Mi, Mj) ∈ V(G)× V(G).
Similarly, we can introduce the experimental compatibility graph and hypergraph Ge

M [17], in
which the vertices are labeled with the measurements involved in the experiment, and an
edge represents two or more jointly measured measurements in the experiment. For two-
party case, each edge consists of two measurements, and Ge

M is a subgraph of GM, while
for the n-party (n > 2) case, each edge consists of n vertices; thus, Ge

M is a hypergraph.
See Figure 1b,c for an illustration of the compatibility graph and two-party experimental
compatibility graph.

In a typical n-party Bell scenario, the experimenters share an n-partite system. Ac-
cording to an experimental compatibility graph Ge, they can choose a set of measurements
xi1 , xi2 , · · · , xin for joint measurements, where xik is the measurement chosen by the k-th
party. After many runs of experiments, they obtain a set of n-point correlation functions
{E(xi1 , xi2 , · · · , xin)|〈i1i2 · · · in〉 ∈ E(Ge)}. To determine whether the obtained measure-
ment statistics are local, viz., obey the LHV theory or not, a function must be calculated,

BGe = ∑
〈i1i2···in〉∈E(Ge)

γ〈i1i2···in〉E(xi1 , xi2 , · · · , xin)

+ ∑
〈i1i2···in−1〉∈E(Ge)

γ〈i1i2···in−1〉E(xi1 , xi2 , · · · , xin−1)

+ · · ·+ ∑
xi∈V(G)

γ〈xi〉E(xi),

(1)

which we refer to as the Bell test function. In this work, we mainly focus on the homogenous
case; that is, for the n-party Bell test, the Bell test function only contains n-point correlation
functions. It is also convenient for our purpose to assume that γ〈i1i2···in〉 = ±1. In this case,
different colors of edges of Ge represent different coefficients; if γ〈i1i2···in〉 = +1, the edge is
drawn as a black solid line and deemed a positive edge, and if γ〈i1i2···in〉 = −1, the edge is
drawn as a red dashed line and deemed a negative edge, as depicted in Figure 1.
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(a) (b) (c) (d) 

Figure 1. Depiction of the experimental compatibility graph and measurement compatibility
graph. (a) Experimental compatibility graph Ge

4−cycle of CHSH inequality, which is a 4-cycle graph;
(b) experimental compatibility graph Ge

6−cycle of 6-cycle Bell inequality; (c) measurement compatibil-
ity graph G6 corresponding to Ge

6−cycle; (d) non-cycle experimental compatibility graph Ge
2|3.

Note that for an n-party Bell experiment, Ge is usually an n-partite graph, as the
measurements of each party are usually chosen as incompatible measurements. In an
LHV world, the value of the test function lies in the range RLHV = [B1

C, B2
C]; e.g., for

the Clauser–Horne–Shimony–Holt (CHSH) type of Bell test function BCHSH , the range is
RLHV = [−2, 2] [16]. However, for quantum theory, the value may lie outside the LHV
range RLHV ; this is called the quantum violation of Bell inequality, which means that
quantum theory is not consistent with the LHV assumption. Similar to LHV theory, there
also exists a quantum rangeRQ = [B1

Q, B2
Q] of the value of the Bell test function; e.g., for

CHSH type of Bell test function, it isRQ = [−2
√

2, 2
√

2], and this kind of quantum bound
is known as Tsirelson bound. Is it possible for a Bell test function to violate the quantum
range? The answer is yes; there are many different kinds of approaches to understand
quantum theory from outside; e.g., in non-signaling theory [18], the Bell test function may
reach its functional minimal and maximal values. To summarize, we have the following
Bell inequalities for a given experiment compatibility graph:

BGe
LHV
∈ RLHV

Q
⊆ RQ

NS
⊆ RNS. (2)

Note that for a given experimental compatibility graph, the Bell test function is, in
general, not unique.

Another crucial issue regards the kind of experimental compatibility graph that can
be used to test Bell nonlocality. A necessary condition for this is the following [17,19]: the
compatibility graph corresponding to Ge is non-chordal. Chordal graphs are those that do
not have any induced cycle with a size of more than three. From Vorob’yev theorem [20,21],
if the compatibility graph G corresponding to Ge is chordal, then there always exists a global
joint probability distribution that can reproduce all marginal probability distributions that
we obtained from the experiment. A result of Fine [22] further suggests that the existence
of this kind of global joint probability distribution is equivalent to the existence of an
LHV model for all involved measurements. Thus, for the chordal graph, the measurement
statistics are always reproducible by the LHV model. In a recent work [23], it was claimed
that the above condition is also a sufficient condition.

Here, we present two examples for convenience of our later discussions. We recom-
mend readers to read Refs. [17,19,23–25] for more examples.

2.1. Example 1

The first example is 2m-cycle Bell inequality. The experimental compatibility graph is a
2m-cycle, for which A1, A3, · · · , A2m−1 are observables chosen by Alice and B2, B4, · · · , B2m
are observables chosen by Bob; the i-th vertex connects with the (i + 1)-th vertex. The Bell
test function is thus

BGe
cycle

= ∑
i=1,3,··· ,2m−1

γiE(Ai, Bi+1) + ∑
i=2,4,··· ,2m

γiE(Ai+1, Bi) (3)



Entropy 2021, 23, 744 4 of 11

note that, here, γi = ±1, and the number of γi = −1 must be odd to ensure that it can test
Bell nonlocality. As proved in [26,27], Bell inequality is

|BGe
cycle
|

LHV
≤ 2m− 2

Q
≤ 2m cos

π

2m
NS
≤ 2m. (4)

When m = 2, the experimental compatibility graph is a 4-cycle graph, as depicted in
Figure 1a; the corresponding Bell inequality is the CHSH inequality.

It is worth mentioning that, although we can construct a Bell test from the arbitrary
non-chordal graph, the LHV bound (which corresponds to independent number calculation
of a graph) and non-signaling boundary can easily be obtained, but the maximum quantum
violation (which corresponds to the Lovász number calculation of a graph [24,28]) is
usually very difficult to calculate. The example corresponding to non-cycle experimental
compatibility graph can also be constructed.

2.2. Example 2

The experimental compatibility graph of this Bell test is shown in Figure 1d. We
denote the graph as Ge

2|3, and the subscripts here is used to indicate that Alice chooses two
observables and Bob chooses three observables to measure. The corresponding Bell test
function is

BGe
2|3

= E(A1, B1) + E(A2, B1) + E(A2, B2) + E(A1, B2)

+E(A1, B3)− E(A2, B3).
(5)

The LHV bound is 4, and the non-signaling bound is 6, but the exact quantum bound
remains unknown.

3. Communication Complexity Problems

Now, let us recall the formal definition of communication complexity; for further
information, we refer the reader to Refs. [29–31]. For simplicity, consider the two-party
case, for which Alice and Bob try to calculate a bivariate function f : Bn × Bn → B
collaboratively, where B denotes the binary set {0, 1} or {±1}. An r-round communication
complexity protocol P for computing function f (x, y) is a distributed algorithm consisting
of a set of r functions f1, · · · , fr : ∪m≥0Bm → ∪m≥0Bm. Alice first individually calculates
function f1(x) = v1 and sends the result to Bob; after Bob receives the result, he calculates
function f2(y, v1) = v2 and sends the result to Alice, etc. Each act of communication is
called a round. We suggest that the protocol P is valid for calculating f (x, y) if the last
message sent (i.e., vr = fr(x, v1, · · · , vr−1) by Alice or vr = fr(y, v1, · · · , vr−1) by Bob)
equals f (x, y) for all possible input values of x, y. The communication complexity of the
protocol P is then defined as the CP ( f ) = |v1|+ · · ·+ |vr|, where |vi| denotes the number
of bits of the message vi. The protocol defined above is deterministic. For the bounded-
error case, Alice and Bob can toss coins individually or jointly to choose the input at each
round, and the protocol P has to calculate f with a success probability greater than or equal
to a fixed value 1− δ, where δ is usually chosen as 1/3, viz, Psucc ≥ 2/3. We assume that if
Bob guesses the value f (x, y) as z = 0, 1 during the final round, the successful probability
will be

psucc(P) = ∑
x,y

p(x, y)p(z = f (x, y)|x, y). (6)

The bounded-error communication complexity is denoted as Cbe
P ( f ), which is the

number of communicated bits in the protocol such that psucc ≥ 1− δ for some δ < 1/2.
The bounded-error communication complexity problem concerns the problem of

obtaining the lower bound of the amount of communication needed for all parties to
obtain the value of a given function f with successful probability Psucc ≥ 1− δ. We can
naturally ask the inverse question: what is the highest successful probability for calculating
the function f if the amount of communication C( f ) is restricted to be upper bounded
C( f ) ≤ Cbd ? Note that unlike in the regular communication complexity problem where
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the bound of successful probability 1− δ does not matter so much, in this kind of CC
problem, the communication bound is of considerable importance. Since there exists a
trivial protocol for calculating the arbitrary function f , for which Alice communicates her
entire input to Bob, psucc can always reach 1 if the allowed communication is greater than
or equal to min{|x|+ 1, |y|+ 1}.

There are two types of quantum communication complexity protocols: (i) the prepara-
tion measurement protocol and (ii) the entanglement-assisted protocol, which is similar to
the categorification of quantum key distribution protocol. In this work, we mainly discuss
the entanglement-assisted protocol.

The performance of a usual CC protocol P is characterized by the amount of communi-
cation, i.e., classical or quantum bits C(P , f |psucc) required to achieve the success probabil-
ity psucc. The quantum advantage of the CC problem is that there exists a quantum protocol
PQ such that for any classical protocol PC, we have C(PC, f |psucc) > C(PQ, f |psucc).

The performance of the CC protocol P for calculating function f can also be charac-
terized by the maximal achievable success probability psucc(P , f |Cbd) given a bounded
amount of communication Cbd. Here, the communication could be classical bits or qubits;
we suggest that there is a quantum advantage for the ICC problem for calculating f if there
is a quantum protocol PQ such that psucc(PQ, f |Cbd) > psucc(PC, f |Cbd) for all classical
protocol PC.

There is a simple and well-known example of the CC problem in Ref. [32], for which
Alice and Bob receive bit strings (x, a) ∈ B2 and (y, b) ∈ B2, respectively, and they tend to
calculate a function f given by the following language:

LBell = {(x, a; y, b) ∈ B2 ×B2|a⊕ b = x ∧ y}. (7)

All input strings distribute uniformly, and the two parties are allowed to exchange
only two classical bits. Their goal is to calculate LBell with as high successful probability as
possible. In Ref. [10], Brukner et al. present the optimal classical protocol and prove that by
using entangled quantum states that violate CHSH inequality, the quantum solution of the
problem has a higher success probability than that of the optimal classical protocol, thus
exhibiting the quantum advantage. This protocol works in the entanglement-assisted sense.

4. From Bell Inequality Violation to the Quantum Advantage for ICC Problems

We now discuss how to translate a Bell test into an ICC problem using a compatibility
graph. To start with, let us consider the two-party case. For a given experimental compati-
bility graph Ge, which is a bipartite graph, the vertices are labeled with xA = v1, · · · , vn by
Alice and xB = u1, · · · , um by Bob. There are some edges corresponding to γ〈ij〉 = 1 (called
positive edges, drawn as black solid edge in Figure 1) and some others corresponding to
γ〈ij〉 = −1 (called negative edges, drawn as red dashed edge in Figure 1). We introduce a
function that we refer to as the target function

t(xA, xB) =

{
0, for 〈viuj〉 positive edge,
1, for 〈viuj〉 negative edge.

(8)

Consider the following two-party scenario: Alice and Bob receive (xA, yA) and
(xB, yB), respectively, where yA, yB = ±1 and xA = 1, · · · , n, xB = 1, · · · , m, and the
condition 〈xAxB〉 ∈ E(Ge) (i.e. it is an edge of the experimental compatibility graph Ge)
are promised. The function they calculate is

FGe(xA, yA; xB, yB) = yAyB(−1)t(xA ,xB). (9)

Note that this is a partial function; for some inputs, the function is not defined—see
Table 1 for an example. In this way, we can construct a CC function from an arbitrary given
experimental compatibility graph.
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For the n-party case, the corresponding experimental graph is an n-partite hypergraph;
the vertices of k-th party are labeled with xk = uk

1, · · · , uk
mk

; the edge 〈u1
i1
· · · un

in〉 consists
of n vertices, one from each party. Similar to the two-party case, we can define the
target function

t(x1, · · · , xn) =

{
0, for 〈u1

i1
· · · un

in〉 positive edge,

1, for 〈u1
i1
· · · un

in〉 negative edge.
(10)

The function to be calculated is

FGe(x1, yA; · · · ; xn, yn) = y1 · · · yn(−1)t(x1,··· ,xn). (11)

The CC problem to be solved is as follows: the n parties try to calculate the function (11),
and the k-th party receives the bit string (xk, yk) with xk = uk

1, · · · , uk
mk

. The probability
distribution for the input strings is

p(x1, y1; · · · ; xn, yn) =
1
2n ×

1
|E(Ge)| . (12)

Each party is allowed to broadcast one classical bit of information, and n parties
broadcast the information simultaneously such that their broadcast bits are independent.

Table 1. Value of FGe
6−cycle

; columns are indexed by (xA, yA) and rows are indexed by (xB, yB).

(1, +1) (1, −1) (2, +1) (2, −1) (3, +1) (3, −1)

(1, +1) 1 −1 1 −1 − −
(1, −1) −1 1 −1 1 − −
(2, +1) − − 1 −1 1 −1
(2, −1) − − −1 1 −1 1
(3, +1) 1 −1 − − −1 1
(3, −1) −1 1 − − 1 −1

4.1. Optimal Classical Protocol

Let us now introduce an optimal classical protocol PC for the above CC problem. To
make things clearer, we take the two-party case as an example. The main step is to calculate
the target function part (−1)t(xA ,xB). To do this, Alice and Bob firstly relabel their vertices
as x′A and x′B such that the values x′A + x′B are different for different edges. This can be
achieved since Ge is a finite graph. For example, for Bob’s fixed vertex u1, the range of
u1 + vi is [N1, N′1]; we can then set u′2 > N′1, and then all u′2 + vi > N′1. The intersection of
ranges of u1 + vi and u′2 + vi is empty. By repeating the procedure m times, we achieve our
goal. In fact, we can do more to relabel the vertices such that the values corresponding to
negative edges are odd numbers and the values corresponding to positive edges are even
numbers. This is because v′i + u′j are now different for different edges. If the value is not as
what we require, we can add a very large number to make the parity correct. In this way,
we see that

(−1)t(x′A ,x′B) = (−1)x′A+x′B . (13)

Before starting the calculation for a given experimental compatibility graph Ge, Alice
and Bob firstly come together to discuss and fix the procedure in order to conduct the
relabeling process. In fact, the easiest way is to relabel the vertices before calculation as x′A
and x′B.

With the above preparation, we now present our classical protocol. Alice and Bob,
when receiving inputs (xA, yA) and (xB, yB), choose to locally calculate two functions
a(xA, λA) and b(xB, λB) such that a(xA, λA) = (−1)x′A and a(xA, λA) = (−1)x′B . Note that,
here, λA, λB characterize their local classical resources, and they may be classically corre-
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lated. Then, Alice and Bob broadcast the results eA = yAa(xA, λA) and eB = yBb(xB, λB),
respectively. After receiving the result, they both output it with the answer function

AnsPC (xA, yA; xB, yB) = eAeB. (14)

The success probability of the protocol is

psucc(PC|Cbd = 2) = 1
|E(Ge)|

(
∑〈ij〉 positive p(ab = 1|viuj)

+∑〈ij〉 negative p(ab = −1|viuj)
)
.

(15)

The protocol can achieve a success probability of (BC + |E(Ge)|)/2|E(Ge)|, where BC is the
classical bound for Bell inequality. For the 2m-cycle case, it is psucc(PC|Cbd = 2) = (2m− 1)/2m,
and especially for the well-known CHSH case m = 2, psucc(PC|Cbd = 2) = 3/4.

For the n-party case, the protocol works similarly. The main difference is that the
experimental compatibility graph is now an n-partite hypergraph. By relabeling the
vertices, we have

(−1)t(x1,··· ,xn) = (−1)x′1+···+x′n . (16)

After receiving the input bit strings, each party chooses to locally calculate a function
ek = yia(xk, λk) with ak(xk, λk) = (−1)x′k . Finally they broadcast ek simultaneously and
output the value

AnsPC (x1, y1; · · · ; xn, yn) = e1 · · · en. (17)

The success probability is similar to Equation (15). The protocol can achieve a success
probability of (BC + |E(Ge)|)/2|E(Ge)|, where BC is the classical bound for Bell inequality.
In this protocol, each party indeed only broadcasts one classical bit of information.

Before we discuss the quantum advantage of the entanglement-assisted protocol, we
need to prove that this is in fact the optimal classical protocol.

Proof of the optimality of the protocol.—We now show that the above protocol is optimal;
i.e., there is no classical protocol reaching a higher success probability. For the two-party
case, what we need to show is that when Alice and Bob initially share classical randomness,
there is no Cbd = 2 protocol for which Alice and Bob can calculate the function FGe with
success probability greater than (BC + |E(Ge)|)/2|E(Ge)|. Firstly, we observe that an n-bit
Boolean function f (x1, · · · , xn) with values ±1 can be decomposed as

f (x1, · · · , xn) = ∑
i1,··· ,in=0,1

Ti1,··· ,in xi1
1 · · · x

in
m . (18)

Since f (x1, · · · , xn) = ±1, we have |Ti1,··· ,in | ≤ 1. In fact, the expansion coefficients
are given by

Ti1,··· ,in =
1
2n ∑

x1,··· ,xn=±1
f (x1, · · · , xn)xi1

1 · · · x
in
n . (19)

Now, consider the function FGe(xA, yA; xB, yB); for convenience, we introduce the
new variables x̃A = (−1)x′A and x̃B = (−1)x′B . Using the expansion of Equation (18), the
broadcast bits become

ei = ei(x̃i, yi) = (T00 + T10 x̃i) + (T01 + T11 x̃i)yi = ci(x̃i) + di(x̃i)yi, (20)

where |ci(x̃i)|+ |di(x̃i)| = 1 and |ci(x̃i)|, |di(x̃i)| = 0, 1, with i = A, B. The inner product
of Alice’s answer function with function FGe can be defined as

〈AnsA, FGe〉 = ∑
xA , yA ,
xB , yB

µ(xA, xB)

4
AnsA(xA, yA, eB)FGe(xA, yA; xB, yB). (21)



Entropy 2021, 23, 744 8 of 11

Here, µ(xA, xB)/4 is the probability distribution over the inputs. We see that when
AnsA(xA, yA, eB) = FGe(xA, yA; xB, yB), they contribute +1 to the above summation; other-
wise, they contribute−1. Note the fact that 1 = ∑xA ,yA ,xB ,yB

µ(xA ,xB)
4 ; the success probability

for Alice to output the correct answer can thus be written as psucc = 1
2 (1 + 〈AnsA, FGe〉).

Inserting the expression of FGe and the expansion AnsA(xA, yA, eB) = AnsA(x̃A, yA, eB) =

∑jx̃ jy je Tjx̃ jy je x̃jx̃
Ay

jy
Aeje

B into it, we obtain

psucc =
∑xA ,xB

(−1)t(xA ,xB)(T011 + T111 x̃A)dB(x̃B)

|E(Ge)| . (22)

From the definition of the expansion coefficients, we have |T011 + T111 x̃A| ≤ 1. Using
Bell inequality, for arbitrary functions f (xA), g(xB) with | f (xA)|, |g(xB)| ≤ 1, we have

∑
xA ,xB

γ〈xAxB〉 f (xA)g(xB) = ∑
xA ,xB

(−1)t(xA ,xB) f (xA)g(xB) ≤
BC + |E(G)|

2
. (23)

Thus, the success probability must satisfy psucc
C
≤ BC+|E(Ge)|

2|E(Ge)| . Since the protocol we
gave before reaches the bound, it is the optimal classical protocol. Similarly for Bob, we
can define 〈AnsB, FGe〉. From symmetry of the problem expression, the same result holds
for Bob. For the n-party case, the proof is completely the same.

The proof here is similar in character to that in Ref. [10]. Another way to prove
optimality is to use the traditional communication complexity theoretic approach, for
which we first prove a lower bound of the deterministic protocol. Then, using a famous
theorem [29]—which states that the communication complexity Rε( f ) of the randomized
protocol for computing the function f with error ε has a relationship with the commu-
nication complexity Dε( f |µ) of the deterministic protocol for computing the function f
with error ε, for which inputs are distributed with µ as Rε( f ) = maxµ Dε( f |µ)—the lower
bound of the deterministic protocol can be proved by assuming a protocol tree with a depth
of 2 (for the two-party case) and discussing the partitions of the inputs by different nodes
of the protocol tree.

4.2. Entanglement-Assisted Protocol

The quantum protocol works as follows: We take the two-party case as an example.
Alice and Bob pre-share an entangled quantum state |ψ〉AB, upon which Alice and Bob can
choose ±1-valued observables A1, · · · , Am and B1, · · · , Bn and obtain a violated value of
Bell inequality corresponding to the experimental compatibility graph Ge. Now, if Alice
and Bob receive input values xA = vi and xB = uj, they can measure the corresponding
observables Ai and Bj and output aA = ai and bB = bj. Then, Alice and Bob broadcast the
classical bits eA = yAaA and eB = yBbB, respectively. After receiving the communicated bits,
Alice and Bob both give their answers as AnsA = AnsB = eAeB. The success probability is
still Equation (15). We see that it can exceed the bound of classical protocol, thus exhibiting
the quantum advantage.

For further clarification, let us first take Ge
2m−cycle as an example (see Example 1). Sup-

pose that Alice and Bob pre-share the singlet state |ψ−〉 = 1√
2
(|01〉 − |10〉). The observables

for Alice are Ai = mi · σ, where

mi = (cos
(2i− 1)π

2m
, 0, sin

(2i− 1)π
2m

), i = 1, · · · , m,

and for Bob, they are Bj = nj · σ, where

nj = (cos
jπ
m

, 0, sin
jπ
m

), j = 1, · · · , m.



Entropy 2021, 23, 744 9 of 11

With these measurements, Alice and Bob can achieve a success probability psucc =
cos π/2m+1

2 , which corresponds to the Tsirelson bound of the 2m-cycle Bell inequality. We
note that the success probability is a monotone increasing function, and when m→ ∞, it
tends to 1.

Another example is Ge
2|3, as illustrated in Example 2. Alice and Bob still pre-share the

singlet state, and Alice chooses to measure A1 = σx and A2 = σz, while Bob chooses to
measure Bj = nj · σ with

n1 = (cos
π

4
, 0, cos

π

4
),

n1 = (cos
3π

4
, 0, cos

3π

4
),

n3 = (cos(
π

4
+ θ), 0, cos(

3π

4
+ θ)), θ � 1.

The optimal classical protocol can achieve a success probability of 5/6. Here, the
quantum protocol can almost reach the success probability of (3

√
2 + 6)/12 for sufficiently

small θ, which is greater than the success probability for the optimal classical protocol;
thus, it exhibits a quantum advantage. Note that the above problem is closely related to
the problem of simulation of nonlocal correlation via classical communication [33]. Our
result here matches well with previous results that suggested that by two bits of classical
communication, Bell nonlocal measurement statistics can be simulated.

4.3. Popescu–Rohrlich Box Protocol

Let us now consider a non-signaling world, which is beyond quantum mechanics.
Suppose that Alice and Bob pre-share a black box such that for the positive edge 〈ij〉
of the experimental compatibility graph Ge, the probability distribution of outputs for
measurements Ai, Bj is

p(ai, bj|Ai, Bj) =

{
1/2, aibj = 1,
0, aibj = −1.

(24)

Additionally, for negative edges, the distribution is

p(ai, bj|Ai, Bj) =

{
0, aibj = 1,
1/2, aibj = −1.

(25)

This kind of black box is known as a Popescu–Rohrlich box [18] or a perfect nonlocal
box. It can be easily confirmed whether the box satisfies the non-signaling principle.

With the help of the Popescu–Rohrlich box, we can reach a success probability of
psucc = 1. The protocol works in a similar manner to that of the entanglement-assisted
protocol. After receiving the inputs x′A = vi and x′B = uj, Alice and Bob choose to measure
Ai and Bj jointly and output ai and bj with a probability of p(ai, bj|Ai, Bj). After many
runs of the experiment, Alice and Bob check their success probability. It is obvious from
Equation (15) that for the Popescu–Rohrlich box, the success probability is psucc = 1. This
matches well with the result in Refs. [34,35], which states that using a perfect nonlocal box
can make CCP trivial for arbitrary Boolean function.

5. Conclusions and Discussions

Identifying the bound of classical theory and quantum theory is of great importance
for understanding the nature of our universe. In this work, we attempt to gain a better
understanding of the problem from a communication complexity theoretic perspective. By
restricting the classical communications, two parties can calculate a given function with
different success probabilities; this shows that the strength of quantum correlations is much
stronger than that of the classical one. These results shed new light on the bound between
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classical and quantum worlds. From a practical point of view, our result provides a method
to construct a CC function from an arbitrary given experimental compatibility graph or
hypergraph. When the graph is a bipartite graph, it gives a two-party CC function, and
when the graph is multipartite, it gives a multi-party CC function. Our construction may
have potential applications in practical CC problems where quantum advantages from Bell
nonlocality need to be extracted.
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