Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Classical Analysis
3.2. Quantum Analysis
3.3. Rotation Matrix and Diagonalization of Invariant Operator
3.4. Eigenfunctions of the Invariant Operator
3.5. The Schrödinger Equation and Its Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Annihilation and Creation Operators in the Original System
References
- Zhou, J.-Y.; Zhou, Y.-H.; Yin, X.-L.; Huang, J.-F.; Liao, J.-Q. Quantum entanglement maintained by virtual excitations in an ultrastrongly-coupled-oscillator system. Sci. Rep. 2020, 10, 12557. [Google Scholar] [CrossRef] [PubMed]
- Kao, J.-Y.; Chou, C.-H. Quantum entanglement in coupled harmonic oscillator systems: From micro to macro. New J. Phys. 2016, 18, 073001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhu, A.-D.; Jin, Z.; Yeon, K.-H.; Um, C.-I. Quantum squeezed effect of a mesoscopic capacitance coupled circuit with mutual inductance. J. Korean Phys. Soc. 2003, 43, 773–777. [Google Scholar] [CrossRef]
- Yeo, I.; de Assis, P.-L.; Gloppe, A.; Dupont-Ferrier, E.; Verlot, P.; Malik, N.S.; Dupuy, E.; Claudon, J.; Gérard, J.-M.; Auffèves, A.; et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 2014, 9, 106–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treutlein, P. Optomechanics: A strained couple. Nat. Nanotechnol. 2014, 9, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.J.; Callaway, J.C. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J. Neurophysiol. 2000, 83, 3084–3100. [Google Scholar] [CrossRef] [PubMed]
- Frank, T.D.; Daffertshofer, A.; Peper, C.E.; Beek, P.J.; Haken, H. Towards a comprehensive theory of brain activity: Coupled oscillator systems under external forces. Physica D 2000, 144, 62–86. [Google Scholar] [CrossRef]
- Merdaci, A.; Jellal, A. Entanglement in three coupled harmonic oscillators. Phys. Lett. A 2019, 384, 126134. [Google Scholar] [CrossRef] [Green Version]
- Ndikilar, C.E.; Saleh, S.I.; Hafeez, H.Y.; Taura, L.S. Analytical calculation of power flow in three coupled oscillators and its application to one dimensional crystal. Eur. J. Appl. Phys. 2020, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Deymier, P.; Runge, K. One-dimensional mass-spring chains supporting elastic waves with non-conventional topology. Crystals 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Park, D. Dynamics of entanglement in three coupled harmonic oscillator system with arbitrary time-dependent frequency and coupling constants. Quantum Inf. Process. 2019, 18, 282. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Henao, J.C.; Pugliese, E.; Euzzor, S.; Meucci, R.; Roversi, J.A.; Arecchi, F.T. Control of entanglement dynamics in a system of three coupled quantum oscillators. Sci. Rep. 2017, 7, 9957. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, G.S.; Huang, S.M. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 2010, 81, 041803. [Google Scholar] [CrossRef] [Green Version]
- Naik, A.; Buu, O.; LaHaye, M.D.; Armour, A.D.; Clerk, A.A.; Blencowe, M.; Schwab, K.C. Cooling a nanomechanical resonator with quantum back-action. Nature 2006, 443, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Alegre, T.P.M.; Safavi-Naeini, A.H.; Hill, J.T.; Krause, A.; Groblacher, S.; Asp, M. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 2011, 478, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Rosenberg, J.; Chang, D.; Camacho, R.; Eichenfield, M.; Vahala, K.J.; Painter, O. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photon. 2010, 4, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Shkarin, A.B.; Flowers-Jacobs, N.E.; Hoch, S.W.; Kashkanova, A.D.; Deutsch, C.; Reichel, J.; Harris, J.G.E. Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 2014, 112, 013602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossein-Zadeh, M.; Vahala, K.J. Observation of optical spring effect in a microtoroidal optomechanical resonator. Opt. Lett. 2007, 32, 1611–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushal, R.S.; Gupta, S. Construction of exact dynamical invariants in coupled oscillator problems. J. Phys. A Math. Gen. 2001, 34, 9879–9892. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Leach, P.G.L. Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes. J. Phys. A Math. Gen. 2005, 38, 881–893. [Google Scholar] [CrossRef]
- Korsch, H.J. Dynamical invariants and time-dependent harmonic systems. Phys. Lett. A 1979, 74, 294–296. [Google Scholar] [CrossRef]
- Kaushal, R.S.; Korsch, H.J. Dynamical Noether invariants for time-dependent nonlinear systems. J. Math. Phys. 1981, 22, 1904–1908. [Google Scholar] [CrossRef]
- Lutzky, M. Symmetry groups and conserved quantities for the harmonic oscillator. J. Phys. A Math. Gen. 1978, 11, 249–258. [Google Scholar] [CrossRef]
- Lutzky, M. Noether’s theorem and the time-dependent harmonic oscillator. Phys. Lett. A 1978, 68, 3–4. [Google Scholar] [CrossRef]
- Bertin, M.C.; Pimentel, B.M.; Ramirez, J.A. Construction of time-dependent dynamical invariants: A new approach. J. Math. Phys. 2012, 53, 042104. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.R., Jr.; Riesenfeld, W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Lewis, H.R., Jr.; Riesenfeld, W.B. Class of exact invariants for classical and quantum time-dependent harmonic oscillators. J. Math. Phys. 1968, 9, 1976–1986. [Google Scholar] [CrossRef]
- Malkin, I.A.; Man’ko, V.I.; Trifonov, D.A. Invariants and evolution of coherent states for charged particle in time-dependent magnetic field. Phys. Lett. A 1969, 30, 414–416. [Google Scholar] [CrossRef]
- Malkin, I.A.; Man’ko, V.I.; Trifonov, D.A. Linear adiabatic invariants and coherent states. J. Math. Phys. 1973, 14, 576–582. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Integrals of the motion, Green functions and coherent states of dynamical systems. Int. J. Theor. Phys. 1975, 14, 37–54. [Google Scholar] [CrossRef]
- De Castro, A.S.M.; Peruzzo, J.F.; Dodonov, V.V. Quantum state exchange between indirectly coupled modes. Phys. Rev. A 2005, 71, 032319. [Google Scholar] [CrossRef]
- Fan, H.-Y. Squeezing in the triatomic linear molecule model revealed by virtue of IWOP technique. J. Phys. A 1993, 26, 151–158. [Google Scholar]
- El-Orany, F.A.A.; Perina, J.; Abdalla, M.S. Statistical properties of three quantized interacting oscillators. Phys. Scr. 2001, 63, 128–140. [Google Scholar] [CrossRef]
- Caldirola, P. Porze non conservative nella meccanica quantistica. Nuovo Cimento 1941, 18, 393–400. [Google Scholar] [CrossRef]
- Kanai, E. On the quantization of dissipative systems. Prog. Theor. Phys. 1948, 3, 440–442. [Google Scholar] [CrossRef]
- Choi, J.R.; Menouar, S. Quantum dynamics of nano-optomechanical three coupled oscillators. 2021; unpublished. [Google Scholar]
- Qiao, Y.-F.; Li, R.-J.; Zhao, S.-H. Symmetry and invariant in generalized mechanical systems in the high- dimensional extended phase space. Acta Phys. Sin. 2001, 50, 814–815. [Google Scholar]
- Mei, F.X.; Wu, H.B.; Zhang, Y.F. Symmetries and conserved quantities of constrained mechanical systems. Int. J. Dyn. Control 2014, 2, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Mei, F.X. Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 2000, 141, 135–148. [Google Scholar] [CrossRef]
- Peng, W. Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 463–471. [Google Scholar]
- Bateman, H. On dissipative systems and related variational principles. Phys. Rev. 1931, 38, 815–819. [Google Scholar] [CrossRef]
- Lemos, N.A. Canonical approach to the damped harmonic oscillator. Am. J. Phys. 1979, 47, 857–858. [Google Scholar] [CrossRef]
- McDonald, K. A Damped Oscillator as a Hamiltonian System. 2015. Preprint. Available online: http://kirkmcd.princeton.edu/examples/damped.pdf (accessed on 16 May 2021).
- Kronenburg, M.J. A method for fast diagonalization of a 2 × 2 or 3 × 3 real symmetric matrix. arXiv 2013, arXiv:1306.6291. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medjber, S.; Menouar, S.; Choi, J.R. Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators. Entropy 2021, 23, 837. https://doi.org/10.3390/e23070837
Medjber S, Menouar S, Choi JR. Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators. Entropy. 2021; 23(7):837. https://doi.org/10.3390/e23070837
Chicago/Turabian StyleMedjber, Salim, Salah Menouar, and Jeong Ryeol Choi. 2021. "Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators" Entropy 23, no. 7: 837. https://doi.org/10.3390/e23070837
APA StyleMedjber, S., Menouar, S., & Choi, J. R. (2021). Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators. Entropy, 23(7), 837. https://doi.org/10.3390/e23070837