Existence of a Unique Solution to a Fractional Partial Differential Equation and Its Continuous Dependence on Parameters
Abstract
:1. Introduction
- (K1)
- where ;
- (K2)
- there exist and such that for all
2. Preliminaries
3. Uniqueness
- (F)
- There exist and such that
- (A)
- There exists a measurable such that
- 1.
- ;
- 2.
- for ;
- 3.
- for
4. Continuous Dependence on Parameters
- (Fw)
- There exist and such that
- (Aw)
- There exist a measurable such that
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molica Bisci, G.; Radulescu, V.; Servadei, R. Variational Methods for Nonlocal Fractional Problems; Cambridge University Press: Cambridge, UK, 2016; Volume 162, p. xvi+383. [Google Scholar]
- Servadei, R. The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2013, 3, 235–270. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R.; Valdinoci, E. Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 2013, 33, 2105–2137. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Lewy-Stampacchia type estimates for variational inequalities driven by nonlocal operators. Rev. Mat. Iberoam. 2013, 29, 1091–1126. [Google Scholar] [CrossRef] [Green Version]
- Servadei, R.; Valdinoci, E. The Brezis-Nirenberg result for the fractional laplacian. Trans. Am. Math. Soc. 2015, 367, 67–102. [Google Scholar] [CrossRef]
- Silvestre, L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 2007, 60, 67–112. [Google Scholar] [CrossRef]
- Duvaut, G.; Lions, J.-L. Inequalities in Mechanics and Physics; Springer: Berlin, Germany, 1976. [Google Scholar]
- Cont, R.; Tankov, P. Financial Modelling with Jump Processes; Chapman & Hall/CRC Financial Mathematics Series; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Sire, Y.; Valdinoci, E. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J. Funct. Anal. 2009, 256, 1842–1864. [Google Scholar] [CrossRef] [Green Version]
- Savin, O.; Valdinoci, E. Elliptic PDEs with fibered nonlinearities. J. Geom. Anal. 2009, 19, 420–432. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 77. [Google Scholar] [CrossRef]
- Gonzalez, M.; Monneau, R. Slow motion of particle systems as a limit of a reactiondiffusion equation with half-Laplacian in dimension one. Discrete Contin. Dyn. Syst. 2012, 32, 1255–1286. [Google Scholar] [CrossRef]
- Caffarelli, L.; Mellet, A.; Sire, Y. Traveling waves for a boundary reaction-diffusion equation. Adv. Math. 2012, 230, 433–457. [Google Scholar] [CrossRef]
- Biler, P.; Karch, G.; Woyczyński, W.A. Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 2001, 18, 613–637. [Google Scholar] [CrossRef] [Green Version]
- Fefferman, C.; de la Llave, R. Relativistic stability of matter-I. Rev. Mat. Iberoam. 1986, 2, 119–213. [Google Scholar] [CrossRef] [Green Version]
- Cordoba, D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 1998, 148, 1135–1152. [Google Scholar] [CrossRef]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.; Volume 93 of Applied Mathematical Sciences; Springer: Berlin, Germany, 1998. [Google Scholar]
- Caffarelli, L.; Roquejoffre, J.-M.; Savin, O. Nonlocal minimal surfaces. Comm. Pure Appl. Math. 2010, 63, 1111–1144. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.W. On some nonlocal evolution equations arising in materials science. In Nonlinear Dynamics and Evolution Equations; Volume 48 of Fields Institute Communications; American Mathematical Society: Providence, RI, USA, 2006; pp. 13–52. [Google Scholar]
- Naumkin, P.I.; Shishmarev, I.A. Nonlinear Nonlocal Equations in the Theory of Waves; Volume 133 of Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1994. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Volume 2: Partial Differential Equations; Wiley-VCH: Weinheim, Germany, 1989. [Google Scholar]
- Stegliński, R. On Uniqueness of Solutions to the Boundary Value Problems on the Sierpiński Gasket. Numer. Funct. Anal. Optim. 2021. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear monotone operators. In Nonlinear Functional Analysis and Its Applications; Springer: New York, NY, USA, 1990; Volume II. [Google Scholar]
- Zeidler, E. Variational methods and optimization. In Nonlinear Functional Analysis and Its Applications; Springer: New York, NY, USA, 1985; Volume III. [Google Scholar]
- Galewski, M. Basic Monotonicity Methods with Some Applications; Appear in Compact Textbooks in Mathematics, Birkhä User; Springer Nature: Basingstoke, UK, 2021. [Google Scholar]
- Motreanu, D.; Motreanu, V.V.; Papageorgiou, N. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems; Springer: New York, NY, USA, 2014; p. 459. [Google Scholar]
- Cańada, A.; Villegas, S. A Variational Approach to Lyapunov Type Inequalities. From ODEs to PDEs; Springer Briefs in Mathematics; Springer: Cham, Switzerland, 2015; p. xviii+120. [Google Scholar]
- Jleli, M.; Kirane, M.; Samet, B. Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 2017, 66, 30–39. [Google Scholar] [CrossRef]
- Edward, J.; Hudson, S.; Leckband, M. Existence problems for the p-Laplacian. Forum Math. 2015, 27, 1203–1225. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Z.; Li, Y. Two-point boundary value problems for second order ordinary differential equations across many resonant points. J. Math. Anal. Appl. 1993, 179, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Willem, M. Minimax theorems. In Progress in Nonlinear Differential Equations and Their Applications; Birkhauser Boston, Inc.: Boston, MA, USA, 1996; Volume 24, p. x+162. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stegliński, R. Existence of a Unique Solution to a Fractional Partial Differential Equation and Its Continuous Dependence on Parameters. Entropy 2021, 23, 851. https://doi.org/10.3390/e23070851
Stegliński R. Existence of a Unique Solution to a Fractional Partial Differential Equation and Its Continuous Dependence on Parameters. Entropy. 2021; 23(7):851. https://doi.org/10.3390/e23070851
Chicago/Turabian StyleStegliński, Robert. 2021. "Existence of a Unique Solution to a Fractional Partial Differential Equation and Its Continuous Dependence on Parameters" Entropy 23, no. 7: 851. https://doi.org/10.3390/e23070851
APA StyleStegliński, R. (2021). Existence of a Unique Solution to a Fractional Partial Differential Equation and Its Continuous Dependence on Parameters. Entropy, 23(7), 851. https://doi.org/10.3390/e23070851