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Abstract: With the development of wireless sensor networks (WSNs), energy constraints and network
security have become the main problems. This paper discusses the dynamic of the Susceptible,
Infected, Low-energy, Susceptible model under pulse charging (SILS-P) in wireless rechargeable
sensor networks. After the construction of the model, the local stability and global stability of the
malware-free T-period solution of the model are analyzed, and the threshold R0 is obtained. Then,
using the comparison theorem and Floquet theorem, we obtain the relationship between R0 and the
stability. In order to make the conclusion more intuitive, we use simulation to reveal the impact
of parameters on R0. In addition, the paper discusses the continuous charging model, and reveals
its dynamic by simulation. Finally, the paper compares three charging strategies: pulse charging,
continuous charging and non-charging and obtains the relationship between their threshold values
and system parameters.

Keywords: wireless rechargeable sensor networks; comparison theorem; Floquet theorem; persistence

1. Introduction

With the rapid development of Internet of Things technology in recent years, more and
more scholars have focused on wireless sensor networks (WSNs). WSNs consist of many
cheap wireless sensor nodes that consume power. Sensor nodes have acquisition, process-
ing, control and communication functions, making WSNs widely used in various fields,
such as collaborative detection of multiple unmanned aerial vehicles and fault diagnosis.

Sensor nodes use a multi-hop or single-hop mode to access the network through the
data transmission link. No matter what kind of communication mode, a wireless link is
needed for data transmission. It is very difficult to build a perfect security mechanism
based on a wireless link. Therefore, the security of WSNs has attracted much attention.

The most fundamental reason that malware can spread in WSNs is the connectivity of
the network. Since wireless links are used for data transmission among nodes, it is difficult
to construct complex protection mechanisms. In order to curb the spread of malware
among nodes, a research team has proposed the weight adaptation scheme [1]. The weight
adaptation scheme can block the transmission of malware by reducing the transmission
efficiency among nodes. In addition, with the development of WSNs, there has been a lot of
studies on network security in recent years and some relevant literature is listed in Table 1.
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Table 1. Research on network security in WSNs.

Authors Participants Goal

Xiaotong Xu et al. [2] Attack and defense based on
evolutionary game theory

Obtain higher security benefits, more suitable for
the actual situation of network attack and

defense

Hongbin Wang et al. [3] Sensor network node under the attack
of Sybil Accurate detection of Sybil attacks using RSSI

G. Shanmugavadivel et al. [4] Data security in wireless body area
networks (WBAN)

Based on AES and efficient task flow scheduling,
an enhanced data security model using genetic

GA is proposed

Liu Yang et al. [5] Clustering security in industrial wireless
sensor networks (IWSNS)

A cluster head selection method based on fuzzy
theory is proposed to balance energy saving

and safety

Monette H. Khadr et al. [6] Data security in heterogeneous networks A key selection algorithm for protecting data
is proposed.

Abhilash Singh et al. [7] Attack and defense in WSNs
An intrusion prevention method based on

Gaussian Process Regression (GPR) model and
machine learning is proposed

Deepti Singh et al. [8] Attack and defense in wireless medical
sensor networks (WMSNs)

This paper presents an elliptic curve
cryptosystem (ECC) based on random

prediction model

Ning Sun et al. [9] Security of information transmission
in WSNs

The key management and design technology of
encryption technology are improved

At present, the research on network security is mostly based on the perspective of
algorithms [10–12]. However, there are many perspectives on the research of network
security, and it is also a direction that can combine the spread of malicious software with
the dynamics of infectious diseases. Since the spread of malware is somewhat similar to
the spread of biological viruses, the research on WSNs security can be carried over into the
dynamics of infectious diseases [13]. For example, Wang et al. [14] proposed an effective
and efficient immunization strategy for MWSNs based on pulse differential equations and
the SIR model. Similarly, Liu et al. proposed an optimal control scheme based on the
novel epidemic model (SILS) [15], and Cao et al. obtained the optimal control variables of
immunization ratio and recovery ratio by using Pontryagin’s maximum principle based on
the theory of infectious disease [16].

However, up to now, there have been few studies on the security of WSNs using im-
pulse differential equation theory. Therefore, based on the dynamics of infectious diseases,
this paper uses the impulse differential equation theory to study the node persistence and
network security of WRSNs.

In addition to network security, energy constraints are also an important problem that
restricts the development of WSNs [17]. With the development of WSNs, rechargeable
technology is also a research trend [18–20]. In this paper, the residual energy of nodes and
the concept of pulse charging are introduced. Because the charging time is relatively short
in the whole network cycle, the charging behavior can be approximated as an instantaneous
behavior. Compared with continuous charging, pulse charging is more energy saving.
Thus, it is of great significance to study the application of pulse charging in WRSNs.

The main purpose of this study is to extend the existing network model [21] and verify
the stability of disease-free periodic solutions and the persistence of disease. We improved
the charging strategy of the existing model to make it more energy efficient. In the next
section, we propose the improved version of the SILS model under pulse charging [21].
In Section 3, the stability of the periodic solution is proved by the next generation matrix
and Floquet theory. In Section 4 we discuss the persistence of malware transmission. The
persistence of malware transmission refers to the persistent spread of malware in WRSNs
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under certain conditions. The persistence theory of malware transmission is of great
significance for study of the cyberspace security problem. In the last section, we verify the
accuracy of the theory through simulation.

2. Epidemic Modeling
2.1. Epidemic Model under Continuous Charging Based on WSNs

Far-field charging is a widely used charging strategy, but this charging strategy is
relatively inefficient, so it is often used in low-energy wireless systems such as RFID and
WSNs [22]. The following is the low-energy wireless system model built based on far-field
charging and epidemic model.

For briefness, sensor nodes are divided into five established compartments: Infected (I),
Susceptible (S), low-energy infection (LI), low-energy susceptible to infection (LS), and
hardware is damaged (D). Malware attacks the sensor nodes in S state with high probability.
The sensor nodes in I state are partially disabled due to malware attacks and perform
malicious operations. The low-energy sensor nodes LS and LI are forced to sleep due to
energy constraints. The sensor node in the D state is completely disabled due to irreparable
hardware damage. Specifically, a sensor node in the dormant state cannot perform data
transfer. Thus, low-energy infected nodes in LI cannot spread malware.

When the malware starts to run, the susceptible nodes in S enter the communication
range of the infected nodes in I and are attacked by malware. Because the infected node is
not familiar with the network topology, there is a data transfer coefficient for the spread
of the malware [16]. Transforming from susceptible nodes to infected nodes is produced
with a2I(t)S(t) and the positive number α2 is used to denote the data transfer coefficient.
The number of sensor nodes in S depends partly on Λ, where Λ is the birth rate. Some
infected nodes become susceptible nodes at the conversion rate of a1, which is the repair
rate. Both of the high-energy nodes I and S are transformed at a rate µ into the low-energy
nodes LI and LS. To reduce the complexity of the model, the constant C is used to denote
the charging rate. It is assumed that all the charging rates are identical and invariant.
Similarly, it assumes that all sensor nodes have the same mortality rate γ. Based on existing
studies [21], the SILS model can be expressed as follows

.
S(t) = Λ− [α2 I(t) + µ + γ]S(t) + α1 I(t) + CLS(t) (1a)

.
I(t) = [−α1 − µ− γ + α2S(t)]I(t) + CLI(t) (1b)

.
LI(t) = −(C + γ)LI(t) + µI(t) (1c)

.
LS(t) = −(C + γ)LS(t) + µS(t) (1d)

.
D(t) = γ[S(t) + I(t) + LS(t) + LI(t)] (1e)

Moreover, N(t) = S(t) + I(t) + LS(t) + LI(t), and is constrained by

.
N(t) = Λ− γN(t) (1 f ) (1f)

2.2. A Pulse Charging Model for SILS

WSNs with a low duty cycle can maintain permanent operation within a certain range
of RF power density, and a pulse charging strategy can accomplish this purpose [22].

By introducing the impulse differential equation into the SILS model [21], we can
achieve the SILS model of pulse charging (SILS-P) at different moments. The SILS model
discusses a WSNs model of continuous charging while the SILS-P model proposes a new
charging strategy based on the same WSNs model and reformulates the system.

In the SILS-P model, charging does not occur continuously but over a period of
time that is much smaller than the cycle, which is why charging is seen as a pulse. As
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t = nT(n = 1, 2, 3 . . .), the SILS-P model can be written as follows, which is used to
describe the dynamic changes of nodes during charging.

S(t+) = S(t) + CLS(t)
I(t+) = I(t) + CLI(t)
LI(t+) = (1− C)LI(t)
LS(t+) = (1− C)LS(t)

N(t+) = N(t)

(2)

where T is the pulse charging period, and nT+ is used to represent the next instant of
nT. Because the time of pulse charging is much less than one cycle, pulse charging can
be regarded as instantaneous behavior. In a nutshell, pulse charging is the charging of
low-power nodes at a series of time points (t = nT). When t 6= nT(n = 1, 2, 3 . . .), the
pulse charging model is governed by following Equations (2) and (3) does not consider
dynamic changes caused by charging during this period.

.
S(t) = Λ− α2 I(t) + µ + γS(t) + α1 I(t)

.
I(t) = [−α1 − µ− γ + α2S(t)]I(t)

.
LI(t) = −γLI(t) + µI(t)

.
LS(t) = −γLS(t) + µS(t)

.
D(t) = γ[S(t) + I(t) + LS(t) + LI(t)]

(3)

The existence of disease-free periodic solutions is the periodic solution of T that
satisfies the above system of equations when I = 0. Since I = 0, we begin the analysis of
Equations (2) and (3) by demonstrating the existence of disease-free periodic solutions, and
we can obtain the system as follows [23]

S(t+) = S(t) + CLS(t)
LS(t+) = (1− C)LS(t)

N(t+) = N(t)

 t = nT(n = 1, 2, 3 . . .)

.
S(t) = Λ− (µ + γ)S(t)

.
LS(t) = −γLS(t) + µS(t)

.
N(t) = Λ− γN(t)

 t 6= nT(n = 1, 2, 3 . . .)

(4)

When n is a natural number, [nT, (n + 1)T] is the time interval between two pulse
charges, and the pulse charges at times nT and (n + 1)T.

From the last equation of Equations (2) and (1f), we obtain

lim
t→∞

N(t) =
Λ
γ

(5)

If there is a disease-free periodic solution, then LS(t) = I(t) = 0 when t→ ∞ .
According to Equation (5), we can obtain the following limit results from system (4)

S(t) =
Λ
γ
− LS(t) (6)

In this case, LS and S satisfy the following impulse differential system
S(t+) = (1− C)S(t) + ΛC

γ

LS(t+) = (1− C)LS(t)

}
t = nT(n = 1, 2, 3 . . .)

.
LS(t) = Λ− (µ + γ)S(t)
.

LS(t) = −(γ + µ)LS(t) + Λµ
γ

}
t 6= nT(n = 1, 2, 3 . . .)

(7)
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The solution of the LS on the interval [nT, (n + 1)T] is as follows

LS(t) =
µΛ

(µ + γ)γ
+

(
LS
(
nT+

)
− µΛ

(µ + γ)γ

)
e−(µ+γ)(t−nT) (8)

Let LSn+1 = LS((n + 1)T+), using stroboscopic mapping, we can derive the func-
tional relation LSn+1 = f (LSn). The relationship is as follows

LSn+1 = (1− C)
[

µΛ
(µ + γ)γ

+

(
LSn −

µΛ
(µ + γ)γ

)
e−(µ+γ)T

]
(9)

Equation (9) has a mapping f , such that LSn+1 = f (LSn). LSn+1 = LSn can be
determined when Equation (9) is in equilibrium. Thus, Equation (9) has the equilibrium
state as follows

LS∗ =
(1− C) µΛ

γ(µ+γ)

(
1− e−(u+γ)T

)
1− (1− C)e−(µ+γ)T

(10)

LS∗ is the point of cyclic convergence of LS(t) at tn = nT with T as the period. Taking
the positive equilibrium LS∗ as the initial value of Equation (9), it is obvious that∣∣∣∣d f (LSn)

dLS

∣∣∣∣
LS=LS∗

< 1 (11)

Thus, by using the stability criterion of differential systems, the equilibrium state
LS∗ of Equation (9) is locally stable, which implies the global stability of LS∗. This means
that the sequence LSn will converge to the equilibrium state LS∗. Thus, we can obtain the
periodic solution of Equation (7) as follows

L̃S(t) =
µΛ

γ(γ + u)
+

(
LS∗ − µΛ

γ(γ + u)

)
e−(µ+γ)(t−nT) (12)

According to Equation (9), we can obtain the equilibrium state of Sn+1 = Λ
γ −

(1− C)
[

µΛ
(µ+γ)γ

+
(

LSn − µΛ
(µ+γ)γ

)
e−(µ+γ)T

]
as follows

S∗ =
Λ
γ
−

(1− C) µΛ
γ(µ+γ)

(
1− e−(u+γ)T

)
1− (1− C)e−(µ+γ)T

(13)

In the same way, it is obvious that the sequence Sn will converge to the equilibrium
state S∗. According to Equation (6), we can obtain the periodic solution of Equation (7)
as follows

S̃(t) =
Λ

(γ + u)
−
(

S∗ − µΛ
γ(γ + u)

)
e−(µ+γ)(t−nT) (14)

3. Stability of a Malware-Free T-Period Solution

In this section, the local stability and global stability of the SILS-P model are analyzed.

Theorem 1. When R0 < 1, the disease-free periodic solution of the system is locally asymptotically stable.

Proof. For the sake of calculation, let Q(t) be a square matrix of order n. Let ΦQ(t) be
the fundamental matrix of x′(t) = Q(t)x(t), and then let r

(
ΦQ(t)

)
be the spectral radius

of ΦQ(t) [23]. The stability of disease-free periodic solution in the SILS model is proved
by Floquet theorem and we assume that ωi (i = 1, 2, . . .) are the Floquet multipliers of
Equation (18) [14]. Let the small perturbation of the disease-free periodic solution of the
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system be x(t) = (s(t), i(t), a(t), li(t), ls(t)), and linearize the approximation of system (2)
and (3) to obtain the equations as follows

x′(t) = Q(t)x(t), t 6= nT, n ∈ N
x(t+) = Px(t), t = nT, n ∈ N

(15)

�

Hence, we can derive some matrices

Q =

[
U B
0 F−V

]
, P =

[
P1 0
0 P2

]
U =

[
−(µ + γ) 0

µ −γ

]
, B =

[
α1 − α2S̃(t) 0

0 0

]
F =

[
α2S̃(t) 0

0 0

]
, V =

[
γ + µ + α1 0
−µ γ

]
P1 =

[
1− C 0

0 1− C

]
, P2 =

[
1 + Cµ

γ 0
0 1− C

]
(16)

Since ΦQ(t) is the fundamental matrix of x′(t) = Q(t)x(t), there exists
.

Φ(t) = Φ (t)Q(t),
where Φ (0) = E0 (E0 is the identity matrix), obtained by Equation (12), Equation (14) and
system (15), we can obtain the following matrix

Φ(t) =
(

eUT ΦB(t)
0 ΦF−V(t)

)
(17)

When t = nT, from Equation (17), we have

PΦ(t) =
(

P1eUT P1ΦB(t)
0 P2ΦF−V(t)

)
P1eUT =

[
(1− C)e−(γ+µ)T 0
(1− C)e−µT (1− C)e−γT

] (18)

We can infer the Floquet multipliers of Equation (18) as follows

ω1 = P1eUT

ω2 = P2ΦF−V(t)
(19)

According to Floquet theorem, the disease-free periodic solution is locally asymptoti-
cally stable if |ωi| < 1, where i = 1, 2. Therefore, we define thresholds

R0 , (P2ΦF−V(t)) (20)

According to Floquet theorem, when R0 < 1, the disease-free periodic solution
(S̃,0,0,0,L̃S) of Equation (4) is locally asymptotically stable.

Theorem 2. When α1 − α2S(t) < 0 and R0 < 1, the disease-free periodic solution of the system is
global asymptotic stability.

Proof. For WRSNs, we expect the number of nodes to be greater than or equal to the initial
number of nodes in the stable state. Based on Equations (1a)–(1f), we define the condition
as follows

Λ− γN(t) ≥ 0 (21)

�
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The following system (22) can be obtained from Equations (2) and (3)
S(t+) = S(t) + CLS(t)
LS(t+) = (1− C)LS(t)

}
t = nT(n = 1, 2, 3 . . .)

dS(t)
dt ≤ Λ− (µ + γ)S(t)

dLS(t)
dt ≤ −(µ + γ)LS(t) + Λµ

γ

}
t 6= nT(n = 1, 2, 3 . . .)

(22)

Based on system (22), we consider the following comparison system as follows
x1(t+) = x1(t) + Cx2(t)

x2(t+) = (1− C)x2t

}
t = nT(n = 1, 2, 3 . . . )

x′1t = Λ− (µ + γ)x1(t)
x′2t = −(µ + γ)x2(t) +

Λµ
γ

}
t 6= nT(n = 1, 2, 3 . . .)

(23)

According to the impulse differential equation comparison theorem [24], we can obtain
some inequalities as follows

St ≤ x1(t)
LS(t) ≤ x2(t)

(24)

When t→ ∞ , x1(t)→ S(t) , x2(t)→ LS(t) . Moreover, there exists a positive ε, for
any t > t1 > 0, there exists some inequalities as follows

S(t) ≤ x1(t) < S̃ + ε

LS(t) ≤ x2(t) < L̃S + ε
(25)

Equation (26) can be obtained from the second and third equations of Equations (2) and (3)
dI(t)

dt ≤
[
−α1 − µ− γ + α2

(
S̃ + ε

)]
I(t)

dLI(t)
dt ≤ −γLI(t) + µI(t)

}
t 6= nT(n = 1, 2, 3 . . . )

I(t+) =
(

1 + Cµ
γ

)
I(t)

LI(t+) = (1− C)LI(t)

}
t = nT(n = 1, 2, 3 . . .)

(26)

According to the comparison theorem, we have u1(t) ≤ I(t), u2(t) ≤ LI(t), and
construct the following system, where (u1(t), u2(t)) is the solution to Equation (26).

u′(t) = (F−V)u(t) t 6= nT(n = 1, 2, 3 . . .)

u1(t+) =
(

1 + Cµ
γ

)
u1(t)

u2(t+) = (1− C)u2(t)

 t = nT(n = 1, 2, 3 . . .)
(27)

The solution to Equation (27) can be expressed as follows

u(u1, u1) = ΦF−V(t− nT)u
(
nT+

)
(28)

When t = nT, u((n + 1)T+) = P2ΦF−V(t− nT)u(nT+). When R0 < 1 with t goes to
infinity, it exists u1 → 0 and u2 → 0 so we have

lim
t→∞

I(t) = 0

lim
t→∞

LI(t) = 0
(29)

Hence, at any time t > t2 > t1, existing

0 < I(t) < ε2
0 < LI(t) < ε2

(30)
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Equation (31) can be obtained from the first and fourth equations of Equations (2) and (3)
Λ− (α2ε2 + µ + γ)S(t) ≤ dS(t)

dt ≤ Λ− (µ + γ)S(t)
(γ + µ)S(t)−Λ ≤ dLS(t)

dt ≤ −(µ + γ)LS(t) + Λµ
γ

}
t 6= nT(n = 1, 2, 3 . . .)

S(t+) = S(t) + CLS(t)
LS(t+) = (1− C)LS(t)

}
t 6= nT(n = 1, 2, 3 . . .)

(31)

In order to use the comparison theorem, transformation to Equation (31) is as follows
y′1t = Λ− (α2ε2 + µ + γ)y1(t)

y′2t = (γ + µ)y1(t)−Λ

}
t 6= nT(n = 1, 2, 3 . . .)

y1(t+) = y1(t) + Cy2(t)
y2(t+) = (1− C)y2t

}
t = nT(n = 1, 2, 3 . . .)

(32)

Equation (32) has a set of positive solutions ỹ = (ỹ1, ỹ2), and lim
ε2→0

ỹ =
(

S̃, L̃S
)

. By

comparing the theorem of differential equations of impulses, we can obtain the inequality
group of Equation (33) as follows

y1(t) < S(t) < x1(t)
y2(t) < LS(t) < x2(t)

(33)

As t tends to infinity, we have

y1 → ỹ1
x1 → S̃
y2 → ỹ2

x2 → L̃S

(34)

At any t > t3 > t2, when ε3 > 0, we have

ỹ1 − ε3 < S(t) < S̃ + ε3

ỹ2 − ε3 < LS(t) < L̃S + ε3
(35)

When t tends to infinity, S(t)→ S̃, LS(t)→ L̃S . Thus, Theorem 2 is proved.

4. Persistence of Malware Transmission

In this section, the persistence of malware transmission is the focus of our discussion.
If the system meets certain conditions, the spread of malware in the WRSNs will continue,
which is known as the persistence of spreading malware.

Lemma 1. There exists δ > 0 such that the solution verifies the system of inequalities as follows,
when (α1 − α2S) < 0 and R0 > 1 {

lim
t→∞

sup I(t) > δ

lim
t→∞

sup LI(t) > δ
(36)

Proof. In order to make WRSNs work normally, we want the number of nodes to be larger
than the initial number when the system is stable. Therefore, according to Equation (1f),
we can obtain the following relation.

Λ− γN(t) ≥ 0 (37)

�
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Using proof by contradiction, if the above conclusion is not valid, there is a time
variable t1 > 0. For any time t > t1, we have I(t) < δ and LI(t) < δ. Based on
Equations (2) and (3), the following system can be written as follows

S′(t) ≥ Λ + [α1 − α2 S(t)]δ− (µ + γ)S(t)
LS′(t) ≥ (µ + γ)S(t)−Λ

}
t 6= nT(n = 1, 2, 3 . . .)

S(t+) = S(t) + CLS(t)
LS(t+) = (1− C)LS(t)

}
t = nT(n = 1, 2, 3 . . .)

(38)

Based on the above system, the following system will be obtained
Z′1(t) = Λ + [α1 − α2 S(t)]δ− (µ + γ)Z1(t)

Z′2(t) = (µ + γ)Z1(t)−Λ

}
t 6= nT(n = 1, 2, 3 . . .)

Z1(t+) = Z1(t) + CZ2(t)
Z2(t+) = (1− C)Z2(t)

}
t = nT(n = 1, 2, 3 . . .)

(39)

The following conclusions can be inferred from the comparison theorem{
S(t) ≥ Z1(t)

LS(t) ≥ Z2(t)
(40)

Equation (39) has a positive periodic solution Z̃ = (Z̃1, Z̃2), which is globally asymp-
totically stable and lim

δ→0
Z̃ =

(
S̃, L̃S

)
. There’s a positive number δ1, and for any δ1 > δ, we

have Z̃1 ≥ S̃− ε1 and Z̃2 ≥ L̃S− ε1. By the comparison theorem, there is a time variable
t2 > t1, and we set ε2 to be positive. At any time t > t2, there are inequalities as follows{

S ≥ Z1 ≥ Z̃1 − ε2 ≥ S− ε1 − ε2
LS ≥ Z2 ≥ Z̃2 − ε2 ≥ LS− ε1 − ε2

(41)

By combining Equations (2) and (3) with the relationship mentioned above we can
obtain the following system

I′(t) ≥
(
−α1 − µ− γ + α2

(
S̃− ε1 − ε2

))
I(t)

LI′(t) ≥ (µ + γ)I + γ
(

L̃S− ε1 − ε2

)
−Λ

 t 6= nT(n = 1, 2, 3 . . .)

I(t+) = I(t) + CLI(t)
LI(t+) = (1− C)LI(t)

}
t = nT(n = 1, 2, 3 . . .)

(42)

As ε1 and ε2 approach 0, the above inequality can be reduced to the following expression
I′(t) ≥

(
−α1 − µ− γ + α2S̃

)
I(t)

LI′(t) ≥ (µ + γ)I + γL̃S−Λ

}
t 6= nT(n = 1, 2, 3 . . .)

I(t+) = I(t) + CLI(t)
LI(t+) = (1− C)LI(t)

}
t = nT(n = 1, 2, 3 . . .)

(43)

Let u(t) =
(

u1(t)
u2(t)

)
=

(
I(t)

LI(t)

)
, we set up the system as follows


u′(t) = (F−V)u(t) t 6= nT(n = 1, 2, 3 . . .)

u1(t+) = u1(t) + Cu2(t)
u2(t+) = (1− C)u2(t)

}
t = nT(n = 1, 2, 3 . . .)

(44)
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The above system satisfies u(t, nT, u(nT+)) = φF−v(t− nT)u(nT+), U((n + 1)T+) =
P2φF−v(t− nT)u(nT+). When (α1 − α2S) < 0 and R0 > 1, there is a time variable t > 0.
As t→ ∞ , u1 → ∞ and u2 → ∞ , we can draw the conclusions as follows{

lim
t→∞

I = ∞

limL
t→∞

I = ∞
(45)

The above conclusion is in contradiction with the condition established previously.
Therefore, Lemma 1 is proved.

Theorem 3. There exists positive integer η such that the solution verifies the system of inequalities
as follows, when (α1 − α2S) < 0 and R0 > 1{

lim
t→∞

in f I(t) > η

lim
t→∞

in f LI(t) > η
(46)

From Lemma 1, there are two possible situations when the malware continues to
spread as follows:

(a) When the time variable T is large enough, I(t) > η, LI(t) > η;
(b) When the time variable T is large enough, I(t) and LI(t) oscillate around η.

If Scenario (a) is true, the persistence of malware transmission is obvious, and we will
focus our discussion on Scenario (b). Inequalities (47) can be obtained from Lemma 1, and
in the case of oscillation, the relationship exists as follows

I(t1) ≥ δ
LI(t1) ≥ δ

}
t1 ∈ (n1T, (n + 1)T]

I(t2) ≥ δ
LI(t2) ≥ δ

}
t2 ∈ (n2T, (n + 1)T]

(47)

Where n2 > n1, when t ∈ [t1, t2], the relationship exists as follows{
LI′(t) = −γLI(t) + µI(t) ≥ −γLI(t), t 6= nT, n ∈ N

LI(t+) = (1− C)LI(t), t = nT, n ∈ N
(48)

Thus available

LI(t) ≥ (1− C)n2−n1 LI(t1)e−γ(t−t1) ≥ (1− C)n2−n1 δe−γ(t−t1) ≥ (1− C)n2−n1 δe−γ(n2+1−n1) (49)

Similarly, for I, the relationship exists as follows{
I′(t) = [−α1 − µ− γ + α2S(t)]I(t) ≥ (−α1 − µ− γ)I(t), t 6= nT, n ∈ N

I(t+) = I(t) + CLI(t), t = nT, n ∈ N
(50)

By combining Equations (48) and (50), we obtain

I(t) ≥ δe−(α1−µ−γ)(t−t1) + Cn2−n1(1− C)n2−n1 δe−γ(n2+1−n1)T (51)

Let η = min
{

δe−(α1−µ−γ)(t−t1) + Cn2−n1(1− C)n2−n1 δe−γ(n2+1−n1)T ,

(1− C)n2−n1 δe−γ(n2+1−n1)
}

and n2 − n1 ≥ 0. Just because n2 − n1 is bounded, η can-
not be infinitesimal. Thus, we can derive I(t) ≥ η1 and LI(t) ≥ η1. Similarly, for t > t2,
there is also a positive number η2.
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In this way, we can obtain the sequence
{

ηj
}

, j = 1, 2, · · · k · · · , this sequence can be
represented as follows {

I(t) ≥ ηk > 0
LI(t) ≥ ηk > 0

(52)

Let η∗ = minηj, for any t > t1, we have I(t) ≥ η∗ > 0 and LI(t) ≥ η∗ > 0. Therefore,
Theorem 3 is proved.

5. Numerical Simulation

In this section, several numerical simulations are given to illustrate the correctness of
the above theory. In fact, in order to reflect the characteristics and advantages of the pulse
charging model, we make comparisons among the pulse charging model, the continuous
charging model and the non-charging model. Among them, the model of continuous
charging is derived from paper [21]. In Section 5.1, the malware-free T-period solution of
SILS-P is obtained and verified, while the global stability of the other two charging models
are presented. In Section 5.2, we analyze the impact of different variables on the threshold
in different models. All of the simulations are based on DESKTOP-VEF0OI5 (Intel Core i5,
2.30 GHz) and MATLAB 2016a.

5.1. The Global Stability of the Disease-Free Equilibrium Solution

This subsection aims to verify Theorem 1 and Theorem 2 and compares three charging
models when R0 < 1.

In reality, different distribution modes of nodes will affect the communication coverage
area of nodes. The larger the communication coverage area is, the corresponding energy
consumption will also increase [25]. However, the simulation in this section ignores the
differences of communication mechanism and node distribution, and focuses on the change
in the number of nodes. The number curve of nodes under the disease-free periodic solution
can be realized by setting the relevant parameters in Table 2.

Table 2. Description of the parameters.

Parameters Interpretation Units Source

Λ The birth rate of nodes 0.1 [21]

γ The mortality rate of nodes 0.005 [21]

µ
The rate of transforming both the high-energy nodes I and S
into the low-energy nodes LI and LS 0.05 [21]

α2 The data transfer coefficient 0.001 [21]

α1 The conversion rate of infected nodes become susceptible nodes 0.01 [21]

C The charging rate of nodes 0.05 [21]

T The period of pulse charging 10 Assumed

N The whole number of sensor nodes 20 Assumed

In Section 2, we put forward the pulse charging strategy, which can keep WSNs
running permanently under certain circumstances. Through numerical simulation, the
change of the number of nodes can be intuitively reflected, and the number of high-energy
nodes can reflect the operating state to some extent.

In Section 3, the stability of the periodic solution was proved. As t goes to infinity,
there will be no spread of malware in WSNs, and the function of WSNs will depend on
the number of remaining high-energy nodes. When t tends to infinity, the number of
high-energy nodes can reflect the effect of charging strategy to some extent.

Here, we assume that some parts of the low-energy nodes are charged in a cycle and
some nodes will be charged in the next cycle. In order to reflect the pulse charging strategy
and obtain a sufficiently small duty cycle, we consider charging as an instantaneous
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behavior. In addition, the far-field charging efficiency is low [22], and for the sake of
being closer to the real physical environment, the charging rate of nodes C is set as a
small constant.

The WSNs is assumed to have N = 20 sensor nodes [26] and we suppose the following
parameter Λ = 0.1, γ = 0.005, µ = 0.05, α2 = 0.001, α1 = 0.01, C = 0.05, T = 10
and the initial condition S(0) = 18, I(t) = 2, LI(0) = 0, LS(0) = 0. Thus, when t→ ∞ ,
whether R0 < 1 or R0 > 1, the whole number of sensor nodes is constant at 20 (i.e.,
S(t) + I(t) + LS(t) + LI(t) ≤ 20), comprising the initial value (i.e., S(t) + I(t) + LS(t) +
LI(t) = 20). It is assumed that R00 is the threshold in the continuous charging model and
R000 is the threshold of the non-charging model.

From Equation (20) and the value of the previous parameters of SILS-P, we can
calculate R0 = 0.9037 < 1. From Theorem 2, the disease-free periodic solution (S̃,0,0,0,L̃S)
is globally stable, as presented in Figure 1. Moreover, it is noted that S(t = 500) = 2.971,
S(t = 1000) = 2.978; I(t = 500) = 0.01392, I(t = 1000) = 0.0008542; LI(t = 500) = 0.1136,
LI(t = 1000) = 0.007074; LS(t = 500) = 16.06, LS(t = 1000) = 16.16.
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(
S̃, 0, 0, 0, L̃S

)
in the pulse charging model.

It is obvious that the values of S and LS nodes tend to be stable, this characteristic
conforms to Equation (35) in Theorem 2. In the same way, the values of I and LI nodes
almost disappear with the increase of t which conforms to Equation (29) in Theorem 2.
Then, with the same value of parameters, the other two charging models are compared. It

is noted that if R00 = α2Λ(C+γ)2

[(C+γ)(µ+γ)−Cµ][(α1+µ+γ)(C+γ)−Cµ]
and R000 = α2Λγ2

γ2(µ+γ)(α1+µ+γ)
[21],

we can obtain R00 = 0.5360 and R000 = 0.0280.
As shown in Figures 2 and 3, we discover that the number of S nodes is 10.47 when

S tends to be stable in the continuous charging model. In the pulse charging model, the
number of S nodes is 2.978 when S tends to be stable. When the non-charge policy is
implemented, the number of S nodes is 1.818. From Figures 2 and 3, we can also find out
the characteristics of the global stability in Theorem 3 in paper [21].

Apparently, it is easy to recognise that the number of S nodes is the largest in the
continuous charging model, followed by the pulse charging model, and, finally, the non-
charging model. Therefore, this phenomenon suggests that the continuous charging is
the most efficient, followed by the pulse charging model, and, finally, the non-charging
model. However, compared with the continuous charging model in [21], because of the
short time slot of charging behavior, our model is more scientific and realistic. We observe
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that the time at which I converges to zero with the pulse charging model is shorter than
that with the traditional continuous charging model. In this respect, the advantage of the
pulse charging model can be reflected.
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Figure 2. The global stability of the disease-free equilibrium solution in the continuous charging model.
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Figure 3. The global stability of the disease-free equilibrium solution in the non-charging model.

5.2. Relations between the Threshold and Parameters

Accordingly, the effects of the parameters on R0, R00 and R000 will be discussed
as follows.

In Figure 4a, the parameters are set as γ = 0.005, α2 = 0.001, α1 = 0.01,
C = 0.05, T = 10, µ ∈ [0, 0.1], Λ ∈ [0, 1].

As shown in Figure 4a, it is obvious that the larger Λ means the threshold larger and
the larger µ means the threshold less. In addition, the value of the threshold in the pulse
charging model is larger than that in the continuous charging model, but is smaller than
that in the non-charging model in most cases.
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Besides, it is assumed that Λ = 0.1, γ = 0.005, µ = 0.05, C = 0.05, T = 10,
α1 ∈ [0, 0.1], α2 ∈ [0, 0.01] in Figure 4b. It is indisputable that the increase of α2 and the
decrease of α1 contribute to the growth of the threshold. Furthermore, it is clear to see that
the influence of α1 on the threshold is greater than that of α2.

In addition, it can be seen from the Figure 4a,b that with the change of parameters, the
rate of change of threshold of the pulse charging model is generally smaller than that of
the continuous charging model.
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6. Conclusions and Future Work

Based on the existing SILS model [21], this paper proposes a pulse charging method,
which is more scientific and realistic. Then, the paper analyzes the WSNs under pulse
charging, obtains the malware-free T-period solution and carries out the stability analysis.



Entropy 2021, 23, 927 15 of 16

In addition, the persistent spread of malware is also discussed and the persistence of
the disease is demonstrated. By comparing the cases R0 < 1 and R0 > 1, the dynamic
of the malware spreading in WRSNs is revealed. The simulation results show that the
malicious software will die out (malware-free T-period solution) or the malicious software
will spread continuously (persistence of malware transmission). At the same time, the
paper compares the relationship among the threshold and system parameters under three
charging strategies: pulse charging, continuous charging and no charging.

In this paper, a pulse charging strategy is introduced in a homogeneous network.
However, with the development of the Internet of Things (IOT) industry, heterogeneous
network technology has become mainstream, and the pulse charging strategy for the het-
erogeneous network is one of our future research directions. Additonally, some impulsive
models can be extended into depict the dynamics of infectious disease based on the security
problem of WRSNs [15] in future.
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