Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Models of Spatial Distribution of Soil Fractions
3.2. Changes of Particle Size Distribution
3.3. Statistical Analysis of Changes of Soil Properties
4. Conclusions
- (1)
- Methods for integration of data on granulometric composition of studied soils from three different sources using statistical and geostatistical methods have been selected and applicated. The models of spatial distribution of sand, silt and clay content based on long-term archival data and current field measurements for the study site in Záhorie Lowlands have been developed.
- (2)
- A spatio-temporal analysis has shown a significant influence of wind erosion on the granulometric composition of soils in the study area in Slovakia. Soil grains and particles from the layer up to 5 cm depth were transported by the wind, and accumulation of dust fraction dominated in the analysed area. This led to significant changes of soil types, the soil surface become much rougher.
- (3)
- The results obtained from the integrated GIS-based approach can be used in decision support systems and sustainable soil and land management for planning of cost-effective targeted mitigation measures or their evaluation in the process of adaptive management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.A.; Săvulescu, I.; Birsan, M.V.; Bandoc, G. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil erosion modelling: A bibliometric analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Webb, N.P.; Kachergis, E.; Miller, S.W.; McCord, S.E.; Bestelmeyer, B.T.; Brown, J.R.; Chappell, A.; Edwards, B.L.; Herrick, J.E.; Karl, J.W.; et al. Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecol. Indic. 2020, 110, 105881. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Yang, X.; Huang, X.; Zhang, R.; Wu, H.; Yang, L.; Wang, Z.; Sun, G.; Zhang, Y. Improved evaluation method of the soil wind erosion intensity based on the cloud–AHP model under the stress of global climate change. Sci. Total Environ. 2020, 746, 141271. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A review of wind erosion models: Data requirements, processes, and validity. Catena 2020, 187, 104388. [Google Scholar] [CrossRef]
- Liu, B.; Wagner, L.E.; Ning, D.; Qu, J. Estimation of wind erosion from construction of a railway in arid Northwest China. Int. Soil Water Conserv. Res. 2017, 5, 102–108. [Google Scholar] [CrossRef]
- Halecki, W.; Kruk, E.; Ryczek, M. Loss of topsoil and soil erosion by water in agricultural areas: A multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy 2018, 73, 363–372. [Google Scholar] [CrossRef]
- Li, C.; Huang, H.; Li, L.; Gao, Y.; Ma, Y.; Amini, F. Geotechnical hazards assessment on wind-eroded desert embankment in Inner Mongolia Autonomous Region, North China. Nat. Hazards 2015, 76, 235–257. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Chen, L. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth Sci. Rev. 2017, 173, 109–121. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Silva, M.L.N.; Beniaich, A.; Pio, R.; Gonzaga, M.I.S.; Avanzi, J.C.; Bispo, D.F.A.; Curi, N. Dynamics and losses of soil organic matter and nutrients by water erosion in cover crop management systems in olive groves, in tropical regions. Soil Tillage Res. 2021, 209, 104863. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z. Review of soil thermal conductivity and predictive models. Int. J. Therm. Sci. 2017, 117, 172–183. [Google Scholar] [CrossRef]
- Policht-Latawiec, A. Testing water permeability of silt-clayey soil, sand and peat substrate composites. Acta Sci. Pol. Form. Circumiectus 2008, 7, 21–30. [Google Scholar]
- Jiu, J.; Wu, H.; Li, S. The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China. Int. J. Environ. Res. Public Health 2019, 16, 1856. [Google Scholar] [CrossRef] [Green Version]
- García-Gutiérrez, C.; Martín, M.Á.; Pachepsky, Y. On the information content of coarse data with respect to the particle size distribution of complex granular media: Rationale approach and testing. Entropy 2019, 21, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Zhang, G.L.; Song, X.; Li, D.; Zhao, Y.; Yang, J.; Wu, H.; Yang, F. High-resolution and three-dimensional mapping of soil texture of China. Geoderma 2020, 361, 114061. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Modelling of sand/dust emission in Northern China from 2001 to 2014. Geoderma 2018, 330, 162–176. [Google Scholar] [CrossRef]
- Urban, T.; Lackóová, L.; Halászová, K.; Stred’anský, J. Wind Erosion in the Agricultural Landscape. The Wind Erosion Equation Used in GIS; Wydawnictwo Uniwersytetu Rolniczego w Krakowie: Kraków, Poland, 2013. [Google Scholar]
- Muchová, Z.; Tárníková, M. Land cover change and its influence on the assessment of the ecological stability. Appl. Ecol. Environ. Res. 2018, 16, 2169–2182. [Google Scholar] [CrossRef]
- Ledari, M.B.; Saboohi, Y.; Valero, A.; Azamian, S. Exergy analysis of a bio-system: Soil–plant interaction. Entropy 2021, 23, 1–28. [Google Scholar]
- Takáč, J.; Bárek, V.; Halaj, P.; Igaz, D.; Jurík, Ľ. Possible Impact of Climate Change on Soil Water Content in Danubian Lowland. Cereal Res. Commun. 2008, 36, 1623–1626. [Google Scholar]
- Visser, S.M.; Sterk, G.; Ribolzi, O. Techniques for simultaneous quantification of wind and water erosion in semi-arid regions. J. Arid Environ. 2004, 59, 699–717. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Krammes, C.A.; Williamson, D.L.; Zobeck, T.M. Computing the wind erodible fraction of soils. J. Soil Water Conserv. 1994, 49, 183–188. [Google Scholar]
- van Lynden, G.W.J. European Soil Resources: Current Status of Soil Degradation, Causes, Impacts and Need for Action (Nature and Environment); Council of Europe: Strasbourg, France, 1995. [Google Scholar]
- Veen, P.; Kampf, H.; Liro, A. Nature Development on Former State Farms in Poland. Report within the Framework of the Memorandum of Understanding for Nature Conservation between the Polish Ministry of Environmental Protection, Natural Resources and Forestry and the Dutch Ministry of Agriculture, Nature Management and Fisheries; Soest Veen Ecology: Hague, The Netherlands, 1997. [Google Scholar]
- Jönsson, P. Wind erosion on sugar beet fields in Scania, southern Sweden. Agric. For. Meteorol. 1992, 62, 141–157. [Google Scholar] [CrossRef]
- Borrelli, P.; Ballabio, C.; Panagos, P.; Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 2014, 232–234, 471–478. [Google Scholar] [CrossRef]
- Bärring, L.; Jönsson, P.; Mattsson, J.O.; Åhman, R. Wind erosion on arable land in Scania, Sweden and the relation to the wind climate—A review. In Catena; Elsevier: Amsterdam, The Netherlands, 2003; Volume 52, pp. 173–190. [Google Scholar]
- Oldeman, L.R. Global Extent of Soil Degradation; ISRIC: Wageningen, The Netherlands, 1992. [Google Scholar]
- Du, H.; Zuo, X.; Li, S.; Wang, T.; Xue, X. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agric. Ecosyst. Environ. 2019, 274, 1–13. [Google Scholar] [CrossRef]
- Bristow, C.S.; Hudson-Edwards, K.A.; Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 2010, 37, L14807. [Google Scholar] [CrossRef]
- Perez, L.; Tobias, A.; Querol, X.; Künzli, N.; Pey, J.; Alastuey, A.; Viana, M.; Valero, N.; González-Cabré, M.; Sunyer, J. Coarse Particles From Saharan Dust and Daily Mortality. Epidemiology 2008, 19, 800–807. [Google Scholar] [CrossRef]
- Karanasiou, A.; Moreno, N.; Moreno, T.; Viana, M.; de Leeuw, F.; Querol, X. Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environ. Int. 2012, 47, 107–114. [Google Scholar] [CrossRef]
- Chang, X.; Sun, L.; Yu, X.; Liu, Z.; Jia, G.; Wang, Y.; Zhu, X. Windbreak efficiency in controlling wind erosion and particulate matter concentrations from farmlands. Agric. Ecosyst. Environ. 2021, 308, 107269. [Google Scholar] [CrossRef]
- Kheirabadi, H.; Mahmoodabadi, M.; Jalali, V.; Naghavi, H. Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution. Geoderma 2018, 323, 22–30. [Google Scholar] [CrossRef]
- Arifjanov, A.; Fatxulloev, A.; Kaletová, T. Movement of the Suspended Flow in the Open Irrigation Channels. Acta Hortic. Regiotect. 2019, 22, 80–83. [Google Scholar] [CrossRef]
- Sharratt, B.; Feng, G.; Wendling, L. Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia Plateau. Earth Surf. Process. Landf. 2007, 32, 621–630. [Google Scholar] [CrossRef]
- Singh, P.; Sharratt, B.; Schillinger, W.F. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res. 2012, 124, 219–225. [Google Scholar] [CrossRef]
- Hevia, G.G.; Mendez, M.; Buschiazzo, D.E. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma 2007, 140, 90–96. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 2010, 159, 228–236. [Google Scholar] [CrossRef]
- López, M.V. Wind erosion in agricultural soils: An example of limited supply of particles available for erosion. Catena 1998, 33, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Chepil, W.S.; Moldenhauer, W.C.; Hobbs, J.A.; Nossaman, N.L.; Taylor, H.M. Deep Plowing of Sandy Soil; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1962.
- Woodruff, N.P.; Siddoway, F.H. A wind erosion equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A.; Schomberg, H.; Stout, J.E.; Zobeck, T.M. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar]
- Liu, L.Y.; Li, X.Y.; Shi, P.J.; Gao, S.Y.; Wang, J.H.; Ta, W.Q.; Song, Y.; Liu, M.X.; Wang, Z.; Xiao, B.L. Wind erodibility of major soils in the farming-pastoral ecotone of China. J. Arid Environ. 2007, 68, 611–623. [Google Scholar] [CrossRef]
- Tuo, D.; Xu, M.; Gao, L.; Zhang, S.; Liu, S. Changed surface roughness by wind erosion accelerates water erosion. J. Soils Sediments 2016, 16, 105–114. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Wang, H.; Gong, J.; Li, S.; Dou, H.; Dang, D. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China. J. Environ. Manag. 2021, 277, 111488. [Google Scholar] [CrossRef]
- Nikseresht, F.; Landi, A.; Sayyad, G.; Ghezelbash, G.; Schulin, R. Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J. Environ. Manag. 2020, 268, 110639. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agric. Ecosyst. Environ. 2000, 82, 247–259. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J.K. Environmental Carrying Capacity Assessment—The Policy Instrument and Tool for Sustainable Spatial Management. Front. Environ. Sci. 2020, 8, 579838. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, F.-F.; Yang, G.; Sun, C.-H.; Han, F.; Jiang, L. Improved estimation method of soil wind erosion based on remote sensing and geographic information system in the Xinjiang Uygur Autonomous Region, China. Geomat. Nat. Hazards Risk 2017, 8, 1752–1767. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Samat, A.; Ge, Y.; Ma, L.; Tuheti, A.; Zou, S.; Abuduwaili, J. Quantitative Soil Wind Erosion Potential Mapping for Central Asia Using the Google Earth Engine Platform. Remote Sens. 2020, 12, 3430. [Google Scholar] [CrossRef]
- Głowienka, E.; Michałowska, K.; Pekala, A. Spatio-temporal analysis of soil properties for the eastern border of the European Union. In Advances and Trends in Engineering Sciences and Technologies II, Proceedings of the 2nd International Conference on Engineering Sciences and Technologies, Vysoké Tatry, Slovakia, 29 June–1 July 2016; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 407–412. [Google Scholar]
- Húska, D.; Jurík, L.; Tátošová, L.; Šinka, K.; Jakabovičová, J. Cultural landscape, floods and remote sensing. J. Ecol. Eng. 2017, 18, 31–36. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Dąbek, P.; Lejcuś, I. Identifying Surface Runoff Pathways for Cost-Effective Mitigation of Pollutant Inputs to Drinking Water Reservoir. Water 2018, 10, 1300. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Heipke, C.; Butenuth, M.; Hu, X. Automatic extraction of wind erosion obstacles by integration of GIS data, DSM and stereo images. Int. J. Remote Sens. 2006, 27, 1677–1690. [Google Scholar] [CrossRef]
- Teng, Y.; Zhan, J.; Liu, W.; Sun, Y.; Agyemang, F.B.; Liang, L.; Li, Z. Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China. Ecol. Indic. 2021, 123, 107340. [Google Scholar] [CrossRef]
- Leys, J.F.; McTainsh, G.H. Soil loss and nutrient decline by wind erosion—Cause for concern (Mallee, New South Wales). Aust. J. Soil Water Conserv. 1994, 7, 30–40. [Google Scholar]
- Lyles, L.; Tatarko, J. Wind erosion effects on soil texture and organic matter. J. Soil Water Conserv. 1986, 41, 191–193. [Google Scholar]
- Tatarko, J. Long Term Monitoring of Wind Erosion Induced Changes to Soil Properties in Western Kansas. In Proceedings of the International Symposium on Erosion and Landscape Evolution, Anchorage, Alaska, 18–21 September 2011. [Google Scholar]
- Li, J.; Okin, G.S.; Alvarez, L.; Epstein, H. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 2007, 85, 317–332. [Google Scholar] [CrossRef]
- Minár, J.; Barka, I.; Jakál, J.; Stankoviansky, M.; Trizna, M.; Urbánek, J. Geomorphological hazards in Slovakia. Stud. Geomorphol. Carpatho-Balc. 2006, 40, 61–78. [Google Scholar]
- Toth, G.; Jones, A.; Montanarella, L.; Alewell, C.; Ballabio, C.; Carre, F.; De Brogniez, D.; Guicharnaud, R.A.; Gardi, C.; Hermann, T.; et al. LUCAS Topoil Survey—Methodology, Data and Results. EUR 26102; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Beuselinck, L.; Govers, G.; Poesen, J.; Degraer, G.; Froyen, L. Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. Catena 1998, 32, 193–208. [Google Scholar] [CrossRef]
- Buurman, P.; Pape, T.; Reijneveld, J.A.; de Jong, F.; van Gelder, E. Laser-diffraction and pipette-method grain sizing of Dutch sediments: Correlations for fine fractions of marine, fluvial, and loess samples. Neth. J. Geosci. 2001, 80, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. Critical Evaluation of the Use of Laser Diffraction for Particle-Size Distribution Analysis. Soil Sci. Soc. Am. J. 2004, 68, 736–743. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B.; Mays, M.D. A fast method for determining soil particle size distribution using a laser instrument. Soil Sci. 2006, 171, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 2008, 44, 523–535. [Google Scholar] [CrossRef] [Green Version]
- Mihalache, M.; Ilie, L.; Marin, D.I.; Calciu, I. The new methods for measuring soil texture. Ann. Univ. Craiova Agric. Mont. Cadastre Ser. 2010, 40, 486–490. [Google Scholar]
- Vdović, N.; Obhođaš, J.; Pikelj, K. Revisiting the particle-size distribution of soils: Comparison of different methods and sample pre-treatments. Eur. J. Soil Sci. 2010, 61, 854–864. [Google Scholar] [CrossRef]
- Kondrlová, E.; Igaz, D.; Horák, J.; Čimo, J. Comparison of sample preparation methods for laser diffraction to determine the particle size distribution of medium fine soils. In Proceedings of the Land Degradation and Challenges in Sustainable Soil Management, Izmir, Turkey, 15–17 May 2012; pp. 432–437, ISBN 978-975-96629-9-8. [Google Scholar]
- Vandecasteele, B.; De Vos, B. Relationship between Soil Textural Fractions Determined by the Sieve-Pipette Method and Laser Diffractometry; Instituut voor Bosbouw en Wildbeheer: Brussels, Belgium, 2001; pp. 1–19. [Google Scholar]
- Igaz, D.; Aydin, E.; Šinkovičová, M.; Šimanský, V.; Tall, A.; Horák, J. Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in central Europe. Water 2020, 12, 1232. [Google Scholar] [CrossRef]
- Kun, Á.; Katona, O.; Sipos, G.; Barta, K. Comparison of Pipette and Laser Diffraction Methods in Determining the Granulometric Content of Fluvial Sediment Samples. J. Environ. Geogr. 2013, 6, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Balkovič, J.; Skalský, R.; Nováková, M. Spatial Model of Sand and Clay Distribution in the Top Soil of Agricultural Land of Slovakia. Proc. Soil Sci. Conserv. Res. Inst. 2010, 32, 5–13. [Google Scholar]
- Giacometti, C.; Cavani, L.; Baldoni, G.; Ciavatta, C.; Marzadori, C.; Kandeler, E. Microplate-scale fluorometric soil enzyme assays as tools to assess soil quality in a long-term agricultural field experiment. Appl. Soil Ecol. 2014, 75, 80–85. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D. The Impact of Agriculture on Soil Texture Due to Wind Erosion. L. Degrad. Dev. 2015, 26, 62–70. [Google Scholar] [CrossRef]
- Goossens, D.; Gross, J. Similarities and dissimilarities between the dynamics of sand and dust during wind erosion of loamy sandy soil. Catena 2002, 47, 269–289. [Google Scholar] [CrossRef]
- Chepil, W.S. Sedimentary characteristics of dust storms; I. Sorting of wind-eroded soil material. Am. J. Sci. 1957, 255, 12–22. [Google Scholar] [CrossRef]
- Okin, G.S.; Murray, B.; Schlesinger, W.H. Degradation of sandy arid shrubland environments: Observations, process modelling, and management implications. J. Arid Environ. 2001, 47, 123–144. [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Epstein, H.E. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments. J. Geophys. Res. Biogeosci. 2009, 114, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Okin, G.S.; Gillette, D.A.; Herrick, J.E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J. Arid Environ. 2006, 65, 253–275. [Google Scholar] [CrossRef]
- Larney, F.J.; Bullock, M.S.; Janzen, H.H.; Ellert, B.H.; Olson, E.C.S. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 1998, 53, 133–140. [Google Scholar]
- Okin, G.S.; Mahowald, N.; Chadwick, O.A.; Artaxo, P. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles 2004, 18, GB2005. [Google Scholar] [CrossRef] [Green Version]
- Zobeck, T.M.; Fryrear, D.W. Chemical and Physical Characteristics of Windblown Sediment II. Chemical Characteristics and Total Soil and Nutrient Discharge. Trans. ASAE 1986, 29, 1037–1041. [Google Scholar] [CrossRef]
- Dale, A. Gillette Fine Particulate Emissions Due to Wind Erosion. Trans. ASAE 1977, 20, 0890–0897. [Google Scholar] [CrossRef]
- Whitford, W.G.; Duval, B.D. Chapter 4—Wind and Water Processes. In Ecology of Desert Systems; Academic Press: San Diego, CA, USA, 2020; pp. 73–107. [Google Scholar]
KPP | Sand | 1 | |||||||||||
Silt | −0.93 | 1 | |||||||||||
Clay | −0.71 | 0.41 | 1 | ||||||||||
Soil type | −0.72 | 0.48 | 0.88 | 1 | |||||||||
LUCAS | Sand | 0.29 | −0.28 | −0.20 | −0.22 | 1 | |||||||
Silt | −0.24 | 0.26 | 0.11 | 0.14 | −0.96 | 1 | |||||||
Clay | −0.33 | 0.25 | 0.34 | 0.30 | −0.86 | 0.68 | 1 | ||||||
Soil type | −0.35 | 0.28 | 0.34 | 0.30 | −0.68 | 0.58 | 0.72 | 1 | |||||
Current data | Sand | 0.43 | −0.32 | −0.44 | −0.39 | 0.20 | −0.19 | −0.19 | −0.18 | 1 | |||
Silt | −0.42 | 0.32 | 0.41 | 0.37 | −0.19 | 0.18 | 0.17 | 0.16 | −0.99 | 1 | |||
Clay | −0.33 | 0.19 | 0.41 | 0.34 | −0.18 | 0.14 | 0.22 | 0.20 | −0.70 | 0.59 | 1 | ||
Soil type | −0.40 | 0.34 | 0.34 | 0.34 | −0.16 | 0.16 | 0.13 | 0.15 | −0.91 | 0.92 | 0.55 | 1 | |
Sand | Silt | Clay | Soil type | Sand | Silt | Clay | Soil type | Sand | Silt | Clay | Soil type | ||
KPP | LUCAS | Current data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lackóová, L.; Pokrývková, J.; Kozlovsky Dufková, J.; Policht-Latawiec, A.; Michałowska, K.; Dąbrowska, J. Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union. Entropy 2021, 23, 935. https://doi.org/10.3390/e23080935
Lackóová L, Pokrývková J, Kozlovsky Dufková J, Policht-Latawiec A, Michałowska K, Dąbrowska J. Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union. Entropy. 2021; 23(8):935. https://doi.org/10.3390/e23080935
Chicago/Turabian StyleLackóová, Lenka, Jozefína Pokrývková, Jana Kozlovsky Dufková, Agnieszka Policht-Latawiec, Krystyna Michałowska, and Jolanta Dąbrowska. 2021. "Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union" Entropy 23, no. 8: 935. https://doi.org/10.3390/e23080935
APA StyleLackóová, L., Pokrývková, J., Kozlovsky Dufková, J., Policht-Latawiec, A., Michałowska, K., & Dąbrowska, J. (2021). Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union. Entropy, 23(8), 935. https://doi.org/10.3390/e23080935