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Abstract: In this paper, the performance of an organic Rankine cycle with a zeotropic mixture as
a working fluid was evaluated using exergy-based methods: exergy, exergoeconomic, and exer-
goenvironmental analyses. The effect of system operation parameters and mixtures on the organic
Rankine cycle’s performance was evaluated as well. The considered performances were the following:
exergy efficiency, specific cost, and specific environmental effect of the net power generation. A
multi-objective optimization approach was applied for parametric optimization. The approach was
based on the particle swarm algorithm to find a set of Pareto optimal solutions. One final optimal
solution was selected using a decision-making method. The optimization results indicated that the
zeotropic mixture of cyclohexane/toluene had a higher thermodynamic and economic performance,
while the benzene/toluene zeotropic mixture had the highest environmental performance. Finally, a
comparative analysis of zeotropic mixtures and pure fluids was conducted. The organic Rankine
cycle with the mixtures as working fluids showed significant improvement in energetic, economic,
and environmental performances.

Keywords: organic Rankine cycle; zeotropic mixture; exergy-based analysis; multi-objective
optimization

1. Introduction

The organic Rankine cycle (ORC) has a large potential for electricity generation from
heat sources with relatively low temperatures such as geothermal, solar, biomass, and
waste industrial heat. Different aspects of ORCs have been studied intensively. In ORC, the
selection of a working fluid is an essential factor that affects the cycle’s performances [1]
including the economic and environmental aspects.

For the bibliometric analysis of the state-of-the-art developments in the field of multi-
objective optimization applied for ORC, the Scopus database (April 2021) was used with
the following algorithm. The initial keyword “ORC” was used with the following equiv-
alents: “Organic Rankine cycle” = “Organic Rankine cycle (ORC)” = “Organic Rankine
cycles” = “ORCs”. The only publications were considered if they met the following criteria:
(a) in English; (b) in an international journal, and (c) in the proceedings of an international
conference. As a result, 3058 publications were selected. Through the application of filter
“optimization”, the number of publications was reduced to 2228. To describe state-of-the-
art developments in the field of authors’ research, a second step of filters was applied.
Finally, 456 papers were selected, with at least one of the following keywords: “working
fluids”, “economic analysis”, “genetic algorithm”, “binary mixture”, and “multiobjective
optimization”. To identify the links among the keywords, the software VOSviewer [2] was
employed. Figure 1 shows the co-occurrence and links among the keywords. The evalua-
tion of the obtained results demonstrates that within “multiobjective optimization”, only
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thermodynamic and economic variables were considered. None of the evaluated papers
addressed the evaluation of ORC using thermodynamic, economic, and environmental
aspects simultaneously (particularly, based on the concept of exergy) as well as included
in the optimization. The genetic algorithm approach was applied in a larger number of
papers than “multiobjective optimization”.
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The detailed literature review of the most representative papers is as follows. Note
that in the below mentioned studies, the research results for the ORC with one-component
working fluids are reported (not included in Figure 1). For example, the thermodynamic
analysis and optimization of ORC performance with one-component working fluids are
discussed in [3–7]. Several studies have evaluated the ORC using different performance
criterions, such as energetic, economic, and environmental, using exergy tools [8,9]. Exergy
can be combined with economic analysis and an environmental assessment; these com-
binations are called exergoeconomic and exergoenvironmental analysis, or exergy-based
methods. In [4], a parametric optimization of an ORC using R123, R245fa, and isobu-
tane as working fluids has been performed from the perspectives of thermodynamic and
economic. The exergetic performance of an ORC with high critical temperature working
fluids using genetic algorithm optimization was investigated in [10]. Thermodynamics
and exergoeconomics performances of ORC with several one-component working fluids
were investigated and compared with those of the Kalina cycle and trilateral power cycle.
The obtained results reveal that the ORC system is the most recommended for generating
power among the two cycles studied from the perspective of economics [11]. In [12],
multi-objective optimization of an ORC with cyclohexane, benzene, and toluene as the
working fluids using the exergy, exergoeconomic, and exergoenvironmental approaches
has been reported.

Within Figure 1, the following papers were included. The mismatch of the isothermal
phase change line for evaporators and condensers and the heat source and sink lines led
to large irreversibility in two main heat exchangers [13]. Similar to refrigeration applica-
tions, different mixtures were discussed for use as the working fluids for ORC. Zeotropic
mixtures have the temperature glide in the two-phase zone; therefore, they can be selected
in order to bring the temperature profiles closer in the heat exchangers [14]. The perfor-
mance of the ORC using different zeotropic mixtures on the basis of thermodynamics and
thermoeconomics is discussed in [1]. The results reveal that the ORC using the mixture,
generally, demonstrates a low economic performance. The thermodynamic and thermoeco-
nomic comparison analysis of an ORC system with one-component working fluids and
mixtures are reported in [13]. The considered one-component working fluids are high



Entropy 2021, 23, 954 3 of 17

and low critical temperatures. The obtained results demonstrate that the thermoeconomic
performance of working fluids with high critical temperatures is better than those with
low critical temperatures. A comparative study of one-component working fluids and
mixtures for ORC, from the energy and exergy viewpoints, was reported in [15]. They
reported that evaluated mixtures have lower efficiency than one-component working fluids.
In [16], performance analysis and parametric optimization of several zeotropic mixtures
for an ORC using an exergy approach were performed; the mixture R245fa/R600a (0.9/0.1)
was reported as most advantageous. Thermodynamic analysis and multi-objective op-
timization for various configurations of ORC using zeotropic mixtures were performed
in [17]. The results indicated that zeotropic mixtures showed a higher performance than
one-component working fluids. A comparison of thermodynamic and exergoeconomic per-
formances for supercritical CO2 recompression cycle combined with regenerative organic
Rankine cycle using the zeotropic mixture as working fluid was reported in [18]. In [19],
a complex thermo-economic–environmental optimization and advanced exergy analysis
were applied for a dual-loop organic Rankine cycle (DORC) using zeotropic mixtures. The
payback period was selected as an economic evaluation criteria and annual CO2 emission
reduction as an environmental evaluation criterion. Higher performance was observed
for the mixtures as working fluid of ORC. Both criteria, payback period and annual CO2
emission reduction, could not be linked to the exergy variables (therefore, [19] was not
included in Figure 1).

As it can be seen from the literature review, there are valuable research works that
address the use of mixtures as working fluids for ORC. However, to the best of the authors’
knowledge, there are no research results regarding the exergoeconomic and exergoenviron-
mental evaluation of ORC with mixtures as the working fluids. The main purpose of this
study was to evaluate an ORC system with a zeotropic mixture as the working fluid for
power generation using waste heat from a cement plant. The zeotropic mixtures under this
study were toluene/cyclohexane and toluene/benzene.

For the evaluation, exergy-based methods were applied, and for the optimization, a
multi-objective optimization approach was used.

2. System Description

A flow diagram of the proposed ORC system is given in Figure 2a. The system consists
of four components: a generator as a combination of a preheater and an evaporator, a
turbine, a condenser, and a pump. The processes within the ORC are illustrated in the
temperature–entropy (T–s) diagram in Figure 2b. The pump pressurizes the working
fluid (state 2) to the evaporator pressure. The working fluid is heated and evaporated by
absorption of the heat from a heat source. The working fluid vapor (state 4) flow enters the
turbine and generates the shaft work. The low pressure vapor (state 5) leaves the turbine
to the condenser.

In the evaluated ORC system, the heat source is the exhaust gas with a temperature
of 350 ◦C from a technological process [20]. The utilization of waste technological heat
requires the use of intermediate working fluid—thermal oil.

The considered working fluids, which are zeotropic mixtures that have high critical
and boiling temperatures, are also characterized by “dry” properties and high thermody-
namic performance for ORC application [21]. This choice was based on the slope of the
saturated vapor line for the working fluid on a T–s diagram and the temperature level of
the heat source [6,22]. The mixtures of toluene with cyclohexane and toluene with benzene
at different concentrations are discussed in the present study as well.
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3. System Modeling and Analysis

The ORC system model was developed using MATLAB software. Refprop soft-
ware and equations [23] were used for calculating the properties of the working fluids.
Dowtherm

.
Q was chosen as an intermediate heat transfer fluid. All properties were calcu-

lated using the equations in [24]. The simulation model was developed with the following
assumptions: (a) steady-state operation conditions, (b) pressure drop and exergy losses
within heat exchangers are neglected, and (c) the mass fraction shift of a zeotropic mixture
is neglected in the case of each composition.

3.1. Thermodynamic Modeling

According to Figure 2, the thermodynamic model of the ORC is described below. All
components were simulated under the assumption of adiabatic operation conditions.

- Pumps
.

Wp,ORC =
.

mw f (h2 − h1) (1)
.

Wp,HTF =
.

mHTF(h10 − h9) (2)

- Turbine
.

Wt =
.

mw f (h4 − h5) (3)

- Heat exchangers

The heat balance equations in the intermediate heat exchanger (IHE), evaporator
(evp), preheater (pre), desuperheater (desp), and condenser (con) can be, respectively,
expressed as:

.
QIHE =

.
mHTFcp,HTF(T7 − T10) (4)

.
Qevp =

.
mw f (h4 − h3) =

.
mHTFcp.HTF(T7 − T8) (5)

.
Qpre =

.
mw f (h3 − h2) =

.
mHTFcp,HTF(T8 − T9) (6)

.
Qdusp =

.
mw f (h5 − h6) =

.
mwcp,w(T13 − T12) (7)

.
Qcon =

.
mw f (h6 − h1) =

.
mwcp,w(T12 − T11) (8)

All heat exchanges are a shell-and-tube type.

.
Qk = Uk AkLMDTk (9)



Entropy 2021, 23, 954 5 of 17

where the size of these components (i.e., heat transfer surface (A)) are calculated with
the help of the heat transfer coefficient correlations Uk [25,26] and the logarithmic mean
temperature difference method LMTDk.

3.2. Exergy Analysis

The exergy analysis was performed using the approach of “exergy of fuel,
.
EF,k” and

“exergy of product,
.
EP,k”. The value of irreversibilities was expressed through exergy

destruction,
.
ED,k. The exergy balance for each system component is written as [27]:

.
EF,k =

.
EP,k +

.
ED,k (10)

3.3. Exergoeconomic Analysis

In order to proceed with an exergoeconomic analysis, a cost balance is supposed to be
written for the kth component of ORC. Where necessary, the auxiliary equations should be
added to the corresponding cost balance [27] using the P-rule and/or F-rule:

∑
.
Cout = ∑

.
Cin +

.
Zk (11)

With the exergy costing principle
.
C = c

.
E. The term

.
Zk represents the total capital

investment cost rate; it was determined according to cost equations reported in [12].
Cost balances for each component must be resolved simultaneously. A linear equations

system was developed by combining Equation (11) with the auxiliary equations:[ .
Ek

]
× [ck] =

[ .
Zk

]
(12)

The matrix form of the cost equations is given in Figure 3.
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3.4. Exergoenvironmental Analysis

The methodology of exergoenvironmental is similar to the exergoeconomic analy-
sis [27]. Exergoenvironmental analysis combines exergy analysis and LCA. Environmental
balances can be written as follows:

∑
.
Bout = ∑

.
Bin +

.
Yk (13)

Correlations were developed for calculating the environmental impact of the compo-
nents (

.
Yk) in the construction period. The LCA was conducted according to Eco-indicator

99 [28].
A linear equations system was developed by combining Equation (13) with the auxil-

iary equations: [ .
Ek

]
× [bk] =

[ .
Yk

]
(14)

Figure 4 shows the matrix formulation of the environmental impact equations. Table 1
represents all exergy, cost, and environmental balance equations for different components
of the evaluated ORC system.
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Table 1. Exergy, cost, and environmental balances within ORC system components.

Component Fuel Product Cost Balances and Auxiliary Equations Environmental Balances and Auxiliary Equations

Turbine
.
E4 −

.
E5

.
Wt

.
C4 +

.
Zt =

.
C5 +

.
CWt

c .
Wp

= c .
Wtur

Z = 6000
.

W
0.7
tur

.
B4 +

.
Yt =

.
B5 +

.
BWt

b .
Wp

= b .
Wtur.

Y = (M × ωsteel)/(τ × n)

Preheater
.
E8 −

.
E9

.
E3 −

.
E2

.
C2 +

.
C8 +

.
Zpre =

.
C3 +

.
C9

c8 = c9
Z = 10, 000 + 324 A0.91

.
B2 +

.
B8 +

.
Ypre =

.
B3 +

.
B9

b8 = b9.
Y = (ρsteel × δ × ωsteel × A)/(τ × n)

Evaporator
.
E7 −

.
E8

.
E4 −

.
E3

.
C3 +

.
C7 +

.
Zeva =

.
C4 +

.
C8

c7 = c8
Z = 10, 000 + 324 A0.91

.
B3 +

.
B7 +

.
Yeva =

.
B4 +

.
B8

b7 = b8.
Y = (ρsteel × δ × ωsteel × A)/(τ × n)

Desuperheater
.
E5 −

.
E6

.
E13 −

.
E12

.
C5 +

.
C12 +

.
Zdesup =

.
C6 +

.
C13

c5 = c6
Z = 10, 000 + 324 A0.91

.
B5 +

.
B12 +

.
Ydesup =

.
B6 +

.
B13

b5 = b6.
Y = (ρsteel × δ × ωsteel × A)/(τ × n)

Condenser
.
E6 −

.
E1

.
E12 −

.
E11

.
C6 +

.
C11 +

.
Zcon =

.
C1 +

.
C12

c6 = c1c11 = 0
Z = 10, 000 + 324 A0.91

.
B6 +

.
B11 +

.
Ycon =

.
B1 +

.
B12

b6 = c1b11 = 0
.

Y = (ρsteel × δ × ωsteel × A)/(τ × n)

IHE
.
Eexh,in −

.
Eexh,out

.
E7 −

.
E10

.
Cexh,in +

.
C10 +

.
ZIHE =

.
Cexh,out +

.
C7

cexh,in = cexh,out
Z = 10, 000 + 324 A0.91

.
Bexh,in +

.
B10 +

.
Y IHE =

.
Bexh,out +

.
B7

bexh,in = bexh,out.
Y = (ρsteel × δ × ωsteel × A)/(τ × n)

PumpORC
.

WP,ORC
.
E2 −

.
E1

.
C1 +

.
C .

Wp
+

.
Zp =

.
C2

c .
Wp

= c .
Wt

Z = 422
.

W
0.71
p

[
1.41 + 1.41

(
1−0.8
1−ηp

)]
.
B1 +

.
B .

Wp
+

.
Yp =

.
B2

b .
Wp

= b .
Wt.

Y = (M × ωsteel )/(τ × n)

PumpHTF
.

WP,HTF
.
E10 −

.
E9

.
C9 +

.
C .

Wp,HTF
+

.
Zp,HTF =

.
C10

c .
Wp,HTF

= c .
Wt

Z = 422
.

W
0.71
p

[
1.41 + 1.41

(
1−0.8
1−ηp

)]
.
B9 +

.
B .

Wp,HTF
+

.
Yp,HTF =

.
B10

b .
Wp,HTF

= b .
Wt.

Y = (M × ωsteel)/(τ × n)
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4. System Optimization

The ORC system was optimized using a multi-objective approach based on the particle
swarm algorithm [29]. Pareto frontier was supposed to be obtained for the total system.
The following three objective functions were considered in this study:

- Exergy efficiency

Esys =

.
Wnet

.
Eexh, in

=

.
Wt −

( .
WP,ORC +

.
WP,HTF

)
.
Eexh,in

(15)

- Cost per exergy unit of the power generated

cp,sys =

.
Cnet
.

Wnet
=

cP,t
.

Wnet
.

Wnet
(16)

- Environmental impact of the power generated

bp,sys =

.
Bnet
.

Wnet
=

bP,t
.

Wnet
.

Wnet
(17)

5. Results and Discussion

The used ORC model was validated using the reported data [30] for the basic ORC
system with the R245fa/R600azeotropic mixture as the working fluid. The temperature
and the mass flow rate of the heat source were set as 120 ◦C and 1 kg/s. The pinch
temperature difference in the evaporator and the condenser were considered to be 10 ◦C
and 5 ◦C, respectively. The turbine efficiency and pump efficiency were assumed to be 85%
and 65%, respectively. As shown in Table 2, the present results and data from [30] are in
good agreement.

Table 2. Model verification results.

Performances Results of This Study Results from [30]

Tcon = 25 ◦C
R245fa/R600a (0.413/0.569)

.
Wnet (kW)
ηcycle (%)

36.10
11.11

36.73
11.12

Tcon = 30 ◦C
R245fa/R600a (0.437/0.563)

.
Wnet (kW)
ηcycle (%)

32.21
10.50

32.52
10.51

Tcon = 35 ◦C
R245fa/R600a (0.443/0.557)

.
Wnet (kW)
ηcycle (%)

28.62
9.90

28.92
9.91

5.1. Parametric Study

In order to investigate the effect of certain parameters on the ORC cycles perfor-
mances, a parametric study was carried out. The key input parameters and the underlying
assumptions to simulate the ORC are provided in Table 3.

The effect of the mass fraction of working fluid on the ORC performances is shown
in Figure 5. For the mixtures of cyclohexane/toluene and benzene/toluene, the exergy
efficiency decreased with the increasing mass fraction of toluene. The cost per unit of
exergy for both mixtures increased with the increase in the mass fraction of toluene.

According to the results of the parametric study reported in [12], ORC using cyclo-
hexane and benzene as pure fluids was more effective compare to toluene in terms of
thermodynamic and economics. Increasing the mass fraction of toluene will degrade the
exergetic and exergoeconomic performances of the ORC system. In addition, the envi-
ronmental impact decreased as the mass fraction of toluene increased for both mixtures
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(Figure 5). This is because the exergoenvironmental performance of ORC with toluene
as working fluid was better than that of ORC with cyclohexane and benzene as pure
fluids [12].

Table 3. A summary of the major parameters for the simulation of ORC [12].

Parameter Value

T0 (◦C) 25

p0 (bar) 1.01
.

mexh (kg/s) 48.34
.

mHTF (kg/s) 25.00

Texh,in (◦C) 350

T7 (◦C) 310

∆Teva (◦C) 20

p4 (bar) 12.00

p1 (bar) 1.02

ηt 0.85

ηp 0.70Entropy 2021, 23, x FOR PEER REVIEW 9 of 16 
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Figure 6 shows the variation in the objective functions with turbine inlet pressure
for working fluids. The exergy efficiency (Figure 6a) was maximized and cost per ex-
ergy unit (Figure 6b) minimized at a special value of turbine inlet pressure, while the
environmental impact decreased with the increase in the turbine inlet pressure. These
results exhibit the same characteristics as those shown in the previous work [12]. Figure 6
shows that the best exergetic and exergoeconomic performances were observed for the
cyclohexane /toluene mixture, while the best exergoenvironmental performance was for
the benzene/toluene mixture.
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Variations in the performances of the ORC cycle with the heat transfer fluid tempera-
ture were given in Figure 7 for both mixtures. It can be seen that as the heat transfer fluid
temperature increased, the exergy efficiency and the environmental impact increased. On
the other hand, the increase in the heat transfer fluid temperature caused a decrease in the
cost. Figure 7 also indicates that when the temperature was below 270 ◦C, both mixtures
offerred the same performance.
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5.2. Optimization Results

A parametric optimization was conducted using the MOPSO (multi-objective particle
swarm optimizer) algorithm. Particle swarm optimization is one of the most efficient
evolutionary optimization algorithms widely used to resolve multi-objective optimization
problems. This technique is based on the evolution of a population of solutions called
particles that move within the search space. The basic parameters of the algorithm are
specified according to the values presented in [12].

Figures 8 and 9 show the Pareto frontier of the multi-objective optimization using
cyclohexane/toluene and benzene/ toluene at different mass fractions. All Pareto fron-
tier points are potentially an optimum solution. Therefore, one optimal solution must
be selected.

In the present study, the final optimum design point and the optimal zeotropic mixture
were selected through a fuzzy-based mechanism [31]. Thermodynamic properties and
optimization results for the zeotropic mixture are indicated in Tables 4 and 5. It should be
noted that the best results were found for both mixtures with a concentration of 0.9/0.1.
Referring to Table 5, the exergy efficiency of the ORC using cyclohexane/toluene was
higher than that of using benzene/toluene. This is because the cyclohexane/toluene
mixture exhibited the highest turbine inlet pressure. As mentioned in a previous work,
a higher turbine inlet pressure working fluid provided the highest values of power and
exergy efficiency [12]. On the other hand, a cyclohexane/toluene mixture provides the
best result from the viewpoint of exergoeconomics, while the best exergoenvironmental
performance was obtained for the benzene/toluene mixture.
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Figure 9. Pareto front for ORC with the benzene/toluene mixtures.

When comparing performances of pure and mixture fluids, it can be found that the
zeotropic mixtures exhibited low turbine inlet pressure, which may be desirable because
high pressures lead to mechanical constraints and, therefore, expensive equipment may be
needed [32]. It can also be seen that the exergetic performances of zeotropic mixtures were
slightly higher than pure cyclohexane and pure benzene.

Compared to pure toluene, a significant increase in the exergy efficiency was observed;
the exergetic performance improved 53.0% and 43.5% when the toluene was mixed with
cyclohexane and benzene, respectively.
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Table 4. Thermodynamic proprieties of mixture fluids under optimum conditions.

Cyclohexane/Toluene (90%/10%) Benzene/Toluene (90%/10%)

T
(◦C)

p
(bar)

.
m

(kg/s)
h

(kJ/kg)
T

(◦C)
p

(bar)

.
m

(kg/s)
h

(kJ/kg)

1 81.7 1.02 19.70 −0.936 81.2 1.02 18.39 −0.814

2 82.3 13.9 19.70 1.2849 81.7 12.39 18.39 0.9407

3 204.2 13.91 19.70 299.43 193.1 12.39 18.39 235.93

4 204.9 13.91 19.70 541.09 194.2 12.39 18.39 529.47

5 140.1 1.02 19.70 454.56 119.4 1.02 18.39 442.89

6 82.8 1.02 19.70 356.65 82.7 1.01 18.39 392.43

7 299.5 - 25 757.74 298.4 - 25 754.95

8 224.2 - 25 567.28 213.1 - 25 539.04

9 131.3 - 25 332.29 144.7 - 25 366.19

10 132.3 - 25 334.82 145.7 - 25 368.72

11 25.0 1.02 50.33 104.92 25.0 1.02 52.17 104.92

12 58.5 1.02 50.33 244.89 58.15 1.02 52.17 243.51

13 67.6 1.02 50.33 283.24 62.4 1.02 52.17 261.29

From Table 5, we also can see that the zeotropic mixtures of cyclohexane/toluene and
benzene/toluene had the best exergoeconomic performances in comparison with pure
fluids. The improvement in exergoeconomic performance for cyclohexane and benzene
when they were mixed with toluene was 4.9%, while the improvement was 14.6% and 13.0%
if toluene was mixed with cyclohexane and benzene. On the other hand, the zeotropic
mixtures also showed a significant improvement in exergoenvironmental performance.
The improvement was 8.2% and 10.2% for cyclohexane and benzene, respectively, while
the improvement was 14.8% and 18.8% for toluene if it was mixed with cyclohexane and
benzene, respectively.

Table 5. Thermodynamic proprieties of mixture fluids under optimum conditions.

Parameters
Cyclohexane/

Toluene
(90/10)

Benzene/
Toluene
(90/10)

Cyclohexane
[12]

Benzene
[12]

Toluene
[12]

p4 (bar) 13.91 12.39 15.12 14.43 12.96

T7 (◦C) 299.5 298.4 296.8 297.1 310.0

∆Teva (◦C) 20.0 20.0 20.0 20.0 21.1

∆Tcon (◦C) 24.3 24.6 37.0 34.6 26.1
.
Eexh,in (MW) 5.799 5.799 5.799 5.799 5.799
.
Eexh,out (MW) 1.272 1.567 1.383 1.736 2.431

εsys (%) 27.5 25.9 27.1 25.6 18.0

cp,sys ($/GJ) 17.25 17.58 18.14 18.49 20.21

bp,sys (mpts/GJ) 136 130 148 144 160

In Table 6, the results obtained from the exergy, exergoeconomic and exergoenviron-
mental analyses are reported. The results of exergy analysis indicate that the highest exergy
destruction for both working fluids occurred in the heat exchangers.



Entropy 2021, 23, 954 14 of 17

Table 6. Exergetic, exergoeconomic, and exergoenvironmental analysis results.

Turbine
Preheater–
Evaporator
Assembly

Desuperheater–
Condenser
Assembly

PumpORC PumpHTO IHE

Cyclohexane/Toluene
.
ED (kW) 219.4 623.5 982.2 7.3 46.6 463.2
.
CD ($/h) 2.37 4.45 10.62 0.46 2.89 2.39

.
Z ($/h) 85.03 4.49 354.70 1.41 1.84 23.36

.
Z +

.
CD ($/h) 87.40 8.94 365.32 1.87 4.73 25.75

.
BD (mPts/h) 93 213 418 4 23 139

.
Y (mPts/h) 17 67 13,643 4 6 1358

.
Y +

.
BD (mPts/h) 110 280 14,061 8 28 1497

Benzene/Toluene
.
ED (kW) 216.4 684.6 876.0 5.4 45.1 435.6
.
CD ($/h) 2.36 4.89 9.53 0.34 2.85 2.20

.
Z ($/h) 81.09 3.95 224.41 1.14 1.84 21.40

.
Z +

.
CD ($/h) 83.45 8.84 233.94 1.48 4.69 23.60

.
BD (mPts/h) 87 215 352 2 21 120

.
Y (mPts/h) 15 53 8214 3 6 1164

.
Y +

.
BD (mPts/h) 102 268 8566 5 27 1284

Based on the exergoeconomic analysis, the heat exchangers had the highest cost
rate (

.
CD) as a result of high exergy destruction, while the larger investment cost (

.
Z)

corresponded to the condenser–desuperheater assembly and the turbine. These two com-
ponents are the most important from an exergoeconomic viewpoint, as they have a higher
(

.
Z +

.
CD) value.
In terms of exergoenvironmental analysis, the heat exchangers had a larger environ-

mental impact (
.
BD) among the ORC components. The results also indicate that much of

the component-related environmental impact (
.

Y) came from these components. According
to the value of (

.
Y +

.
BD), more attention is needed on these components.

6. Conclusions

In this research paper, exergy, exergoeconomic, and exergoenvironmental analyses
were applied in order to evaluate the performance of the ORC system using zeotropic
mixtures as working fluids. Parametric studies were carried out to evaluate the influence
of operational parameters on the exergetic, economic, and environmental performances of
the evaluated system. Multi-objective optimization was applied to ensure the optimum
performances of the ORC system with two zeotropic mixtures (cyclohexane/toluene and
benzene/toluene). A comparison between performances of pure and mixture working
fluids was discussed and the following conclusions were obtained:

- The application of zeotropic mixtures as a working fluid for ORC led to an increase
in exergetic, exergoeconomic, and exergoenvironmental performances compared to
using their pure constituents;

- The heat exchangers were the most important ORC system components based on the
exergy, exergoeconomic, and exergoenvironmental points;
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- The mass fraction of working fluids within a zeotropic mixture, turbine inlet pres-
sure, and heat transfer fluid temperature had a significant effect on the exergetic,
exergoeconomic, and exergoenvironmental performance of the ORC system;

- Cyclohexane/toluene (mass fraction 90/10) and benzene/toluene (mass fraction
90/10) are recommended as the optimal mixtures for the selected operating conditions;

- The mixture of cyclohexane and toluene will be a better choice only if energetic and
economic criterions are considered. However, the mixture benzene/toluene is a
beneficial choice to fulfill the environmental criteria.

Author Contributions: Conceptualization, Z.F. and D.T.; methodology, T.M.; software, Z.F.; valida-
tion, D.T.; formal analysis, Z.F.; investigation, Z.F.; resources, Z.F.; writing—original draft preparation,
Z.F.; writing—review and editing, T.M.; visualization, Z.F.; supervision, T.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A area (m2)
.
B environmental impact rate (Pts/h)
b environmental impact per unit of exergy (Pts/GJ)
.
C cost rate ($/h)
c cost per exergy unit ($/GJ)
cp heat capacity (kJ/kg K)
.
E exergy rate (kW)
h specific enthalpy (kJ/kg)
M weight of equipment (kg)
.

m mass flow rate (kg/s)
p pressure (bar)
Q heat flow rate (kW)
T temperature (◦C, K)
U overall heat transfer coefficient (W/m2 K)

.
W power (kW)
.

Y component-related environmental impact (Pts/h)
.
Z capital investment cost rate ($/h)
Abbreviations
HTF heat transfer fluid
IHE intermediate heat exchanger
LMTD logarithmic mean temperature difference
MOPSO multi-objective particle swarm optimizer
ORC organic Rankine cycle
Subscripts
0 reference state
1,2, . . . ,i system state points
con condenser
D destruction
dusp desuperheater
eva evaporator
exh exhaust gas
F fuel
in inlet
k kth component
out outlet
P product
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p pump
pre preheater
sys system
t turbine
w water
wf working fluid
Greek letters
ε exergy efficiency (%)
η visentropic efficiency(%)
ρ density (kg/m3)
ω life cycle inventory associated with the production of 1 kg of material (mpts/kg)
δ thickness (m)
n lifetime of the system (year)
τ annual plant operation with full capacity (h)
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