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Abstract: Symmetric positive definite (SPD) data have become a hot topic in machine learning.
Instead of a linear Euclidean space, SPD data generally lie on a nonlinear Riemannian manifold. To
get over the problems caused by the high data dimensionality, dimensionality reduction (DR) is a key
subject for SPD data, where bilinear transformation plays a vital role. Because linear operations are
not supported in nonlinear spaces such as Riemannian manifolds, directly performing Euclidean DR
methods on SPD matrices is inadequate and difficult in complex models and optimization. An SPD
data DR method based on Riemannian manifold tangent spaces and global isometry (RMTSISOM-
SPDDR) is proposed in this research. The main contributions are listed: (1) Any Riemannian manifold
tangent space is a Hilbert space isomorphic to a Euclidean space. Particularly for SPD manifolds,
tangent spaces consist of symmetric matrices, which can greatly preserve the form and attributes of
original SPD data. For this reason, RMTSISOM-SPDDR transfers the bilinear transformation from
manifolds to tangent spaces. (2) By log transformation, original SPD data are mapped to the tangent
space at the identity matrix under the affine invariant Riemannian metric (AIRM). In this way, the
geodesic distance between original data and the identity matrix is equal to the Euclidean distance
between corresponding tangent vector and the origin. (3) The bilinear transformation is further
determined by the isometric criterion guaranteeing the geodesic distance on high-dimensional SPD
manifold as close as possible to the Euclidean distance in the tangent space of low-dimensional SPD
manifold. Then, we use it for the DR of original SPD data. Experiments on five commonly used
datasets show that RMTSISOM-SPDDR is superior to five advanced SPD data DR algorithms.

Keywords: dimensionality reduction; tangent space; symmetric positive; definite matrices; isometry

1. Introduction

The past few decades have witnessed the rapid development of machine vision, in
which machine learning methods based on different mathematical platforms take various
forms of image inputs. The most common form is the vector data flattened by a two-
dimensional gray image or multi-channel color image [1–3]. This method is rough and
simple on data processing and, although it has achieved a certain effect on some models, its
problem is destroying the inherent position information and geometry structure of images.
Another typical form is to keep the two-dimensional or higher-dimensional tensor data of
images. There are lots of learning methods that take this data form as inputs [4–6] and the
mathematical platform they all use involves tensor algebra. In addition, the convolutional
neural network [7,8], as a branch of deep learning, has attained great achievements in pro-
cessing tensor form for image classification. Though the position and statistics information
of original image pixels are well maintained with tensor data as inputs, these methods
cannot excavate the inherent geometric relations from the manifolds on which the data
are located. On the other hand, taking the convolution neural network as an example, the
excessively high computational complexity is also a drawback of the methods using tensor
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data. The last form is symmetric positive definite (SPD) data. Due to their ability to capture
higher-order statistical information and excellent feature expression capacity, SPD data
have been widely concerned and applied. Examples of mature applications include joint
covariance descriptors for image sets and video frames [9–11], region covariance matrices
for posture analysis [12,13], pedestrian detection [14,15] and texture discrimination [16–18].
Although SPD data provide many advantages and good properties for machine vision
tasks, the applications are faced with certain challenges:

1. SPD manifold is not a vector space and does not have the concepts of metric and
inner product itself, so the traditional algorithms based on Euclidean space are not
feasible here. It is not only unreasonable but also inadequate to apply the principles of
Euclidean spaces to analyze SPD manifolds, for example, to directly use the Frobenius
inner product to measure the similarity and dissimilarity between two SPD matrices.

2. If the original dimensionality of SPD data is relatively high, there must be lots of
redundant information, which not only affects the calculation speed, but may also
affect the discrimination effect. In addition, it is well known that high-dimensional
spaces can lead to curse of dimensionality, which is embodied in the exponential
increase in the geometric volume of the space as the dimensionality increases, making
available data extremely sparse. Further, sparsity is a problem for any method that
requires statistical significance. Moreover, the high-dimensional feature space is of
little significance to the distance metric. Since most classifiers rely on Euclidean
distance or Mahalanobis distance, classification performance decreases with the
increase in dimensionality.

In order to overcome challenge (1), we can equip the SPD manifold with a Riemannian
metric to explain the geometric properties of SPD matrices by the Riemannian geometry.
The similarity and dissimilarity between SPD samples can be effectively calculated by the
derived corresponding geodesic distance under the assigned Riemannian metric. Some
outstanding studies [19–22] have achieved satisfactory results in this regard. Another
treatment method is to embed SPD manifolds to reproducing kernel Hilbert spaces (RKHS)
by kernel tricks, then adopt the kernel-based learning methods [21,23,24]. For problem (2),
the general solution is dimensionality reduction (DR), or low-dimensional embedding.

This paper proposes a DR algorithm of SPD data based on Riemannian manifold
tangent spaces and isometry (RMTSISOM-SPDDR). Different from existing supervised DR
methods, our algorithm is unsupervised, which greatly saves the costs due to the fact that
the labelling process for supervised learning methods is bound to consume time and effort.
In summary, our contributions lie in the followings:

(1) By using Riemannian manifold geometry, high-dimensional SPD data are mapped to
the tangent space at the identity matrix, which makes linear operations possible and
preserves the data form and attributes of original SPD data to the maximum extent.

(2) We embedded the mapped data into a simple low-dimensional tangent space through
bilinear transformation, so as to effectively avoid the problems caused by curse of
dimensionality such as over-fitting and high calculation costs.

(3) The bilinear transformation is determined by the proposed isometric criterion to
maintain the distance relationship before and after DR. This is an unsupervised
process, no manual labeling is required, which greatly saves labor and time costs.

The structure of this paper is as follows: In the Section 2, we introduce relevant prelim-
inary knowledge needed for this paper, including notations, basic concepts of Riemannian
manifolds. In the Section 3, some related works are briefly summarized. The Section 4 is
our main part; in this section, we explain the proposal and solution of RMTSISOM-SPDDR
in detail, with the algorithm flow and complexity analysis. The Section 5 mainly carries on
comparative analysis of some advanced algorithms and introduces the connections and
differences between them and RMTSISOM-SPDDR. In Section 6, sufficient experiments
are conducted to verify the superiority of RMTSISOM-SPDDR. In Section 7, we make a
summary of the whole paper.
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2. Notations and Preliminaries
2.1. Notations

The basic notations in the paper are presented in Table 1.

Table 1. Notations and corresponding descriptions in this paper.

Notations Descriptions

Tp(M) The tangent space of the differential manifold M at p
Gp(M) The differentiable function germ of the differential manifold M at p
SymD

++ The entire D× D SPD matrices
SymD The entire D× D symmetric matrices

X Capital letter denotes an SPD matrix
Φ Greek capital letter denotes a tangent vector of an SPD manifold

2.2. Preliminaries

Riemannian manifolds are based on the concepts of differential manifolds and tangent
spaces. For the content of differential manifolds and tangent spaces, please refer to the
Appendix A. A generalized differential manifold is a topological space, but there is no
distance metric or linear operations between its elements. Tangent spaces of a differential
manifold support linear operations, but lack of distance metric between tangent vectors.
In order to support machine learning, the differential manifold must be equipped with a
Riemannian metric to make it a Riemannian manifold.

The Riemannian metric is a symmetric, positive definite, smooth second order tensor
field of a differential manifold. Let Γ2

(
Tp(M)

)
represent the second order tensor space of

the tangent space Tp(M), where Γ2(M) = ∪
p∈M

Γ2
(
Tp(M)

)
. Then the second order tensor

field is defined as ω2 : M→ Γ2(M) , for any p ∈ M, ω2(p) ∈ Γ2
(
Tp(M)

)
. If ω2 satisfies

the following properties, for any Φp, Θp ∈ Tp(M)
(1) symmetric: ω2(p)

(
Φp, Θp

)
= ω2(p)

(
Θp, Φp

)
(2) positive definite:
ω2(p)

(
Φp, Φp

)
≥ 0 and ω2(p)

(
Φp, Φp

)
= 0⇔ Φ = 0

(3) smooth: ω2 is smooth on M
Then, ω2 is called a Riemannian metric on M and (M, ω2) a Riemannian manifold.
By utilizing the Riemannian metric ω2, the length of any smooth curve ρ : (−ε, ε)→ M

on M can be defined as

L(ρ) =
ε∫
−ε

√
ω2(p(t))(ρ′(t), ρ′(t))dt (1)

Then, the geodesic distance between any two points on M is further defined, for any
p, q ∈ M, as

geoD(p, q) = min{ L(ρ)|ρ : (−ε, ε)→ M, ρ(−ε) = p, ρ(ε) = q} (2)

Since the symmetric positive definite second order tensor field ω2(p) on the tangent
space Tp(M) is the inner product of Tp(M), once the Riemannian metric is defined, the
inner product of the tangent space at each point of the Riemannian manifold is defined.
Hence, tangent spaces of Riemannian manifolds are inner product spaces, which are
finite-dimensional, namely, Hilbert spaces.

3. Related Works

In this section, we briefly review related works on discriminant analysis and di-
mensionality reduction (DR) of SPD manifolds. In recent years, the wide applications of
multimedia and big data make SPD data occur in more and more occasions and attract
attention of an extensive range. As mentioned in the Section 1, the applications of SPD data
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face some challenges, the most prominent of which are caused by the high dimensionality,
for example, the overfitting caused by the case that the sample size is far smaller than
the data dimensionality, the increase of computational complexity and the information
redundancy caused by high-dimensional data. All these problems seriously affect the
effective and reliable applications of SPD data on various occasions. In order to effectually
solve above problems, the processing methods of SPD data in almost all relevant studies
can be categorized into three kinds. First, the original SPD manifold is embedded into
RKHS by an implicit mapping to utilize various kernel learning methods. Second, in
order to use the machine learning models built on Euclidean spaces or to perform linear
operations on SPD, the original SPD manifold is flattened to a Euclidean space, so as to
make use of Euclidean methods. Third, by learning a mapping, the original SPD manifold
is directly projected into a lower-dimensional one. These three methods can be said to be
the basic methods. Other methods are the derivation or combination of these methods.

There is a lot of research on embedding SPD data into RKHS. This method can not
only overcome the defect that original SPD manifolds do not support linear operations,
but also be applicable to different occasions by choosing different kernel functions due
to the diversity of kernel functions. Wang et al. [24] proposed a discriminant analysis
method of multiple manifolds. It first constructs image sets into an SPD manifold and a
Grassmann manifold, then embeds the obtained SPD manifold and Grassmann manifold
into RKHS by Riemannian kernel and projection kernel, respectively, and, finally, carries
out weighted discriminant analysis on them. A kernel-based sparse representation of
Lie group and dictionary learning were proposed in [21] and successfully applied in face
recognition and texture analysis. Huang et al. [25] mapped the source Euclidean space
and Riemannian manifold to a common Euclidean subspace, which is implemented by a
corresponding higher-dimensional RKHS. Through this mapping, the problem of learning
the metric cross two heterogeneous spaces can be reduced into the problem of learning
the Euclidean metric in the target Euclidean space. One of the advantages of using the
kernel methods mentioned above is the multiplicity and selectivity of the kernel. However,
choosing an impertinent kernel often results in performance degradation. In [26], a kernel
learning method is used to overcome the kernel selection problem of classification on
the Riemannian manifold. It presents two guidelines for jointly learning the kernel and
classifier with the multi-kernel learning method.

Flattening SPD data into Euclidean forms is also a very classical method. Based
on a spatio-temporal covariance descriptor, Sanin et al. [27] proposed a new motion and
gesture recognition method, as well as a weighted Riemannian locally preserving projection
method. The method requires linear operations; the first thing to do in this work is to
perform tangential transformation on the spatio-temporal covariance descriptor, namely
SPD data. Vemulapalli et al. [28] focused on logarithmic Euclidean Riemannian geometry
and proposed a data-driven method for learning the Riemannian metric of SPD matrices.
Huang et al. [9] used neural network structure. In this work, the input SPD matrix is
converted into a more ideal SPD matrix by the design of the bilinear mapping layer and the
nonlinear activation function is applied to the new SPD matrix by the eigenvalue correction
layer. Finally, the data of the hidden are mapped to a Euclidian space in the output layer.
A common problem with all of these works is that they inevitably destroy the geometry
of SPD manifolds. In order to overcome this limitation, [10] proposed a method, LEML,
to directly learn the logarithm of SPD matrix. By learning a tangent mapping, LEML can
directly convert the matrix logarithm from the tangent space to another tangent space with
more distinguishable information. Under the tangential mapping framework, the new
metric learning can be reduced to the optimization seeking a Mahalanobis-like matrix,
which can be solved by traditional metric learning techniques. Then, a more concise and
efficient method, α-CML, was proposed based on the improvement of LEML in [29].

In many cases, SPD data are awfully high-dimensional, so how to effectively represent
high-dimensional SPD data in low-dimensional space becomes particularly important.
For SPD data, DR is usually performed by seeking a full column rank projection matrix.
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In [18], a direct DR method from high-dimensional SPD manifolds to low-dimensional ones
is proposed. The projection generates a low-dimensional SPD manifold with maximum
distinguishing ability through the orthogonal constraint and weighted affiliative similarity
metric based on the manifold structure. Under the framework of the neural network, Dong
et al. [30] made use of two layers (2D full connection layer and symmetric cleaning layer) to
embed original SPD data into a subspace with lower dimension and better differentiation.
On the basis of PCA [31], established a common component analysis (CCA) for multiple
SPD matrices. This method attempts to find a low-dimensional common subspace but
ignores the Riemannian geometry of the SPD manifold. From the perspective of geometric
structure, Harandi et al. [32] used bilinear transformation to realize a supervised DR
algorithm of SPD data and another unsupervised one. The supervised method gathers
samples of the same class and separates samples of different classes at the same time
to obtain a low-dimensional embedding representation with strong discrimination. In
consideration of the maximum variance unfolding (MVU) algorithm [33], the unsupervised
method maps SPD samples to a lower-dimensional SPD manifold in line with the criterion
of maximum variance. Under the guidance of the nonparametric estimation theory, ref. [34]
proposed a DR method of SPD which makes use of estimated probability distribution
function (PDF) to construct an affinity matrix so as to achieve the maximum separability
with respect to categories from the perspective of probability.

4. The Proposed Method

In this paper, the proposed dimensionality reduction (DR) method based on tangent
spaces and isometry first maps the original SPD data to the tangent space at the identity
matrix; then, the bilinear transformation between manifolds is transferred to the tangent
spaces. In the tangent space after DR, Euclidean metric is adopted to measure the distance
between the data points after DR, while the bilinear transformation is determined by the
isometric criterion. Specifically, we aim to keep the distance between data points in the
tangent space after DR as close as possible to the corresponding geodesic distance on the
original SPD manifold. With this idea in mind, we then derive the model.

4.1. The Isometric Transformation between SPD Manifolds and Their Tangent Spaces

SPD data are a kind of non-Euclidian data which can form a differential manifold
under a certain structure. In particular, the tangent space of an SPD manifold is a symmetric
matrix space, which can be regarded as the minimum linear extension set of the SPD
manifold, that is, the minimum linear space containing the SPD matrices. In principle,
machine learning algorithms developed in the symmetric matrix space are also suitable for
its SPD subset.

As mentioned earlier, there is no distance metric on a differential manifold or its
tangent spaces. A Riemannian metric must be endowed so as to obtain a Riemannian
manifold. At present, there are several commonly used Riemannian metrics. The affine
invariant Riemannian metric (AIRM) is adopted in this paper; for any X ∈ SymD

++, the
inner product of the tangent space TX

(
SymD

++

)
at point X is defined as follows:

〈Φ, Θ〉X =
〈

X−1/2ΦX−1/2, X−1/2ΘX−1/2
〉

F
, ∀Φ, Θ ∈ TX

(
SymD

++

)
(3)

Particularly, the identity matrix is an SPD and the affine invariant inner product of its
tangent space TID

(
SymD

++

)
is as follows:

〈Φ, Θ〉ID
=
〈

I−1/2
D ΦI−1/2

D , I−1/2
D ΘI−1/2

D

〉
F
= 〈Φ, Θ〉F, ∀Φ, Θ ∈ TX

(
SymD

++

)
(4)

The Euclidean distance between tangent vectors derived from the inner product is

‖Φ−Θ‖2
ID

= 〈Φ−Θ, Φ−Θ〉F, ∀Φ, Θ ∈ TX

(
SymD

++

)
(5)
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The geodesic distance on the SPD manifold defined by the AIRM is

geoD(X, Y) = ‖log
(

Y−1/2XY−1/2
)
‖

F
, ∀X, Y ∈ SymD

++ (6)

Over here, log : SymD
++ → SymD . For any X ∈ SymD

++, by eigen-decomposition, we
can have X = Udiag(λ1, . . . , λD)UT . Hence,

log(X) = Udiag(log(λ1), . . . , log(λD))UT (7)

It is obvious that log(X) has the same size as X. Besides, we note that the injection
log(·) is monotonic, which does not change the order of eigenvalues. Hence, it realizes the
transformation with the minimum change of properties compared with original data.

If we intend to transfer learning tasks from the original SPD manifold to its tangent
space, we first need to transform original data from the manifold to one of its tangent
spaces. This paper selects the tangent space at identity TID

(
SymD

++

)
and log transformation.

For any X ∈ SymD
++,

geoD(X, ID) = ‖log
(

I−1/2
D XI−1/2

D

)
‖

F
= ‖log(X)‖F (8)

where ‖log(X)‖F is the Euclidean distance between log(X) and the origin point. Hence,
log is actually an isometric transformation; the geodesic distance between SPD data and
the identity matrix is equal to the Euclidean distance between its tangent vector and the
origin of the tangent space.

4.2. The Bilinear Transformation between Tangent Spaces

This paper studies the DR of SPD data. At present, the bilinear transformation of SPD
matrices is the most commonly used method in DR algorithms of SPD data:

fW : SymD
++ → Symd

++

For X ∈ SymD
++,

fW(X) = WTXW ∈ Symd
++ (9)

where W ∈ RD×d, WTW = Id, D � d.
Obviously, fW is a transformation between two SPD manifolds. Since the SPD man-

ifold is not a Euclidean space, it is difficult to directly solve fW , no matter the modeling
or optimization.

Due to the fact that the tangent space of an SPD manifold contains the SPD manifold
itself, this paper proposes a DR model of bilinear transformation based on tangent spaces
at identities of SPD manifolds:

gW : TID

(
SymD

++

)
→ TId

(
Symd

++

)
For any Θ ∈ TID

(
SymD

++

)
,

gW(Θ) = WTΘW ∈ TId

(
Symd

++

)
(10)

Over here, W ∈ RD×d, WTW = Id, D � d.

Remark 1: gW is a transformation between tangent spaces of SPD manifolds, that is, a trans-
formation between two Euclidean spaces. It is obviously much easier to build DR algorithms on
Euclidean spaces.

Remark 2: If we just consider DR between tangent spaces, the constraint WTW = Id is unnec-
essary. Any matrix W ∈ RD×d can make gW(Θ) implement DR of the symmetric matrix Θ.
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However, our objective is to reduce data dimensionality for SPD matrices. By adding the constraint
WTW = Id, it can be guaranteed that gW |SymD

++
= fW on the SPD manifold.

The advantage of the DR method based on tangent spaces of SPD manifolds proposed
in this paper is that the DR between SPD manifolds is realized by the DR between Euclidean
tangent spaces. A brief schematic diagram of the DR process is shown in Figure 1.
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Figure 1. Schematic diagram of DR for SPD data. First, original SPD data are mapped to the tangent
space at identity. Subsequently, the bilinear transformation between tangent spaces is determined in
line with a specific criterion. Finally, the bilinear transformation learned from tangent spaces is taken
to realize the DR of SPD data.

4.3. Dimensionality Reduction of SPD Data Based on Tangent Spaces of SPD Manifolds
and Isometry
4.3.1. Isometry Modeling

The DR scheme of SPD data based on tangent spaces of SPD manifolds and bilinear
transformation described in Section 4.2 is only a framework. Moreover, it is necessary to
determine the bilinear transformation matrix W according to a certain criterion. Different
criteria generate different DR algorithms. In this paper, an isometric criterion is proposed
to keep the distance between data points in the tangent space after DR close to the geodesic
distance on the original SPD manifold as much as possible.

For a given set of data on an SPD manifold,

Xi ∈ SymD
++, i = 1, . . . , N

Since SymD
++ is a Riemannian manifold, the geodesic distance between two SPD

matrices Xi and Xj (under AIRM) is

gij = geoD
(
Xi, Xj

)
= ‖log

(
X−1/2

j XiX
−1/2
j

)
‖

F
, 1 ≤ i, j ≤ N (11)

After log transformation, the set of data is transformed to another set of data in
TID

(
SymD

++

)
:

log(Xi) ∈ TID

(
SymD

++

)
, i = 1, . . . , N

Afterwards, by the bilinear transformation between TID

(
SymD

++

)
and TId

(
Symd

++

)
,

we have
WT log(Xi)W ∈ TId

(
Symd

++

)
, i = 1, . . . , N

Because the tangent space TId

(
Symd

++

)
is a Euclidean space, the Euclidean distance

between any two tangent vectors WT log(Xi)W and WT log
(
Xj
)
W is

dij = ‖WT log(Xi)W −WT log
(
Xj
)
W‖F= ‖W

T(log(Xi)− log
(
Xj
))

W‖F = ‖WTΦijW‖F (12)
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where Φij = log(Xi)− log
(
Xj
)
, 1 ≤ i, j ≤ N.

The so-called isometric criterion is that the geodesic distance gij is equal to the Eu-
clidean distance dij.

N

∑
i=1

N

∑
j=1

(
gij − dij

)2 →
WTW=Id

min (13)

4.3.2. Objective Function

This subsection derives the objective function of the model.
For convenience, we construct two distance matrices, as follows:

G =

 g11 . . . g1N
...

. . .
...

gN1 . . . gNN

, D =

 d11 . . . d1N
...

. . .
...

dN1 . . . dNN

 (14)

According to the isometric criterion, W is selected to minimize the difference between
the geodesic distance on the manifold and the distance in the tangent space at identity.
Hence, the following model is obtained:

Ŵ = arg min
W
‖G− D‖2

F s.t. WTW= Id (15)

For ∀gij ∈ G and ∀dij ∈ D, let εij =
(

gij − dij
)2

= g2
ij + d2

ij − 2gijdij; we expect that gij

and dij are as close as possible and, replacing gij with dij, we have εij ≈ g2
ij − d2

ij
Let

G2 =

 g2
11 . . . g2

1N
...

. . .
...

g2
N1 . . . g2

NN

, D2 =

 d2
11 . . . d2

1N
...

. . .
...

d2
N1 . . . d2

NN

 (16)

Then,
Ŵ = arg min

W
‖G− D‖2

F (17)

can be represented in another form:

Ŵ = arg min
W
‖G2 − D2‖2

F (18)

Let the centering matrix be Γ,

Γ =

(
ID −

1
D

(
eeT
))

(19)

where e = [1, 1, . . . , 1]T ∈ RD, ID is a D × D identity matrix.
Use (19) to center the objective function and obtain

Ŵ = arg min
W
‖− 1

2 Γ
(
G2 − D2)Γ‖2

F

= arg min
W
‖− 1

2 ΓG2Γ−
(
− 1

2 ΓD2Γ
)
‖

2

F

= arg min
W
‖ρG − ρD‖2

F

(20)

Over here, ρG = − 1
2 ΓG2Γ, ρD = − 1

2 ΓD2Γ.
It can be proved that ρG and ρD are both inner matrices [35], d2

ij = (ρD)ii + (ρD)jj −
2(ρD)ij.
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According to the properties of linear algebra and matrix trace, Equation (20) can be
further rewritten as

Ŵ = arg min
W

[
−2tr

(
ρGρD

T
)
+ ‖ρG‖2

F + ‖ρD‖2
F

]
(21)

In consideration of

dij = ‖Θi −Θj‖F = ‖WT(log(Xi)− log
(
Xj
))

W‖F ≤ ‖Xi − Xj‖F (22)

hence,
‖ρD‖2

F ≤ ‖ρS‖2
F (23)

where

S2 =

 s2
11 . . . s2

1N
...

. . .
...

s2
N1 . . . s2

NN

, sij = ‖Xi − Xj‖F, ρS = −1
2

ΓS2Γ (24)

It can be seen that the objective function has an upper boundary:

Ŵ = arg min
W

[
−2tr

(
ρGρD

T)+ ‖ρG‖2
F + ‖ρG‖2

F

]
≤ arg min

W

[
−2tr

(
ρGρD

T)+ ‖ρG‖2
F + ‖ρS‖2

F

] (25)

Since G2 and S2 are unrelated to W, we can further simplify the objective function as

Ŵ = arg min
W

− 2tr
(
ρGρD

T)
= arg min

W
− 2

N
∑

i=1

N
∑

j=1
(ρD)ij(ρG)ij

(26)

In consideration of

2(ρD)ij = ‖Θi‖2
F + ‖Θj‖2

F − ‖Θi −Θj‖2
F (27)

substitute (27) into (26),

Ŵ = arg min
W

− 2
N
∑

i=1

N
∑

j=1
‖Θi‖2

F(ρG)ij +
N
∑

i=1

N
∑

j=1
‖Θi −Θj‖2

F(ρG)ij

= arg min
W

− 2
N
∑

i=1
‖Θi‖2

F

N
∑

j=1
(ρG)ij +

N
∑

i=1

N
∑

j=1
‖Θi −Θj‖2

F(ρG)ij

(28)

On account of
N

∑
j=1

(ρG)ij = 0 (29)

we have

Ŵ = arg min
W

N
∑

i=1

N
∑

j=1
‖Θi −Θj‖2

F(ρG)ij

= argmin
N
∑

i=1

N
∑

j=1
‖WT log(Xi)W −WT log

(
Xj
)
W‖2

F(ρG)ij

= argmin
N
∑

i=1

N
∑

j=1
tr
(

WT(log(Xi)− log
(
Xj
))

WWT(log(Xi)− log
(
Xj
))TW

)
(ρG)ij

(30)

So far, we have derived the objective function of the model and what we need to do
next is optimizing the function.
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4.4. Solution to RMTSISOM-SPDDR

In this subsection, we solve the derived objective function. Obviously, this is a convex
optimization problem, but this objective function does not correspond to a closed-form so-
lution, so we are supposed to find its local optimal solution Ŵ through an iterative method.

Let the tth iteration yield Ŵt, then the result of the t+1th iteration can be expressed as

Ŵt+1 = argmin
N
∑

i=1

N
∑

j=1
tr
(

WT(log(Xi)− log
(
Xj
))

ŴtŴt
T
t
(
log(Xi)− log

(
Xj
))TW

)
(ρG)ij

= argmaxtr
(
WT LW

) s.t. WTW= Id (31)

Over here,

L = −
N

∑
i=1

N

∑
j=1

(ρG)ij
(
log(Xi)− log

(
Xj
))

ŴtŴT
t
(
log(Xi)− log

(
Xj
))T (32)

The eigenvalue decomposition of L is needed and Ŵt+1 is obtained by taking the
eigenvectors corresponding to the maximum d eigenvalues. The entire algorithm flow of
RMTSISOM-SPDDR is shown in Algorithm 1.

Algorithm 1. Procedures of RMTSISOM-SPDDR.

Input: N training samples X = {X1, X2, . . . , XN}, Xi ∈ SymD
++, target dimension d and the maximum iteration times maxIter.

Output: bilinear transformation matrix W ∈ RD×d.
1: Map SPD data into the corresponding tangent space at identity using Eqution (7);

2: Construct Riemannian metric matrix using Equation (16);
3: Construct the inner product matrix ρG using Equation (20);
4: Initialize Ŵ0= ID(:, 1 : d), namely, the first d columns of ID ∈ RD×D;
5: while t = 1: maxIter
Calculate L using Equation (32);
Do eigen-decomposition of L to obtain the bilinear transformation matrix Ŵt;
end while
6: return Ŵt.

4.5. Complexity Analysis

In this subsection, we analyze the computational complexity of RMTSISOM-SPDDR.
The complexity of the algorithm comes from five aspects—the mapping from the SPD
manifold to its tangent space at identity, the construction of the Riemannian metric matrix,
the calculation of the inner matrix ρG, the construction of L and the eigen-decomposition of
L. First of all, the mapping from the SPD manifold to the tangent space at identity requires
eigen-decomposition of each data point and taking the logarithm of its eigenvalues. This
process can be realized by the built-in function eig in MATLAB and the time complexity
of the implementation is O

(
ND3log(D)

)
. Secondly, the construction of the Riemannian

metric matrix requires calculating the geodesic distances of data pairs. Note, it is a sym-
metric matrix which needs to calculate N(N + 1)/2 times. Hence, the corresponding
time complexity is O(N(N + 1)/2) = O

(
1
2 N2 + 1

2 N
)
= O

(
N2). The calculation of ρG

involves, first, squaring each element of the Riemannian metric matrix, then multiply-
ing it left and right by the centering matrix, so the time complexity of this procedure is
O
(

N2 + N4) = O(N4). Besides, the construction of L requires four matrix multiplications
and N2 matrix additions, the time complexity is O

(
N2(d2D4)). Finally, the complexity of

the eigen-decomposition for L is O
(

D3log(D)
)
.

Since these five processes are cascaded, the final time complexity of RMTSISOM-
SPDDR is O

(
ND3log(D) + N2 + N4 + N2(d2D4)+ D3log(D)

)
.
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5. Comparison with Other State-of-the-Art Algorithms

In this section, we introduce five state-of-the-art DR algorithms of SPD data, including
PDDRSPD [34], PSSSD [36], DARG-Graph [37], SSPDDR [32] and LG-SPDDR [38], in
summary. Here, we also point out the differences and connections between RMTSISOM-
SPDDR and these algorithms.

These DR algorithms for comparison all belong to supervised learning and affinity,
in which data labels are needed. In contrast, RMTSISOM-SPDDR is unsupervised and
on the basis of global isometry. Except for LG-SPDDR, the DR of all other comparison
algorithms is based on direct bilinear transformation between SPD matrices, while the DR
of RMTSISOM-SPDDR is based on the bilinear transformation between tangent vectors of
SPD matrices. LG-SPDDR utilizes exp transformation for the dimensional-reduced tangent
vectors to map them back to a low-dimensional manifold, which means its framework is
different from ours.

5.1. SSPDDR

In SSPDDR [32], a supervised DR method of SPD data is proposed, where the metric
δ
(
Xi, Xj

)
is given to measure the similarity among SPD data. Moreover, the bilinear

transformation is employed to the DR process:

X ∈ SymD
++ ⇒WTXW ∈ Symd

++

Over here, W ∈ RD×d, WTW = Id and D � d. We can easily know that, if X is an
SPD matrix, WTXW is an SPD matrix as well.

In SSPDDR, the transformation matrix W can be determined as follows:

N

∑
j=1

N

∑
i=1

a
(
Xi, Xj

)
δ
(

WTXiW, WTXjW
)
→

WTW=Id

min (33)

Over here, a
(
Xi, Xj

)
= aw

(
Xi, Xj

)
− ab

(
Xi, Xj

)
and

aw
(
Xi, Xj

)
=

{
1 Xi and X j are adjacent and have the same label
0 others

(34)

ab
(
Xi, Xj

)
=

{
1 Xi and X j are adjacentbut have different labels
0 others

(35)

SSPDDR indicates that if Xi and Xj are adjacent and intraclass, their compactness is
maximized in the process of DR, or else their separability is minimized. If Xi and Xj are
not adjacent, their relationship will be neglected in DR.

5.2. PDDRSPD

In PDDRSPD [34], labeled SPD data { (Xi, ci)|i = 1, . . . , N} are given, in which ci is
the label of Xi,.ci ∈ {1, . . . , L}.

For each class, PDDRSPD firstly calculates its mean vector and covariance matrix. Sub-
sequently, based on nonparametric estimation, it estimates the Gaussian density functions
{ fc(X)|c = 1, . . . , L}.

The framework of PDDRSPD is similar to [32], but the affinity coefficients is
quite different:

N

∑
j=1

N

∑
i=1

a
(
Xi, Xj

)
δ
(

WTXiW, WTXjW
)
→

WTW=Id

min (36)
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Over here a
(
Xi, Xj

)
= aw

(
Xi, Xj

)
− ab

(
Xi, Xj

)
and

aw
(
Xi, Xj

)
=


(λw−1)| fc(Xi)− fc(Xj)|

∑
X∈Nw(Xi)

| fc(Xi)− fc(X)| Xj ∈ Nw(Xi)

1 i = j
0 others

(37)

where c represents the common label of Xi and Xj, Nw(Xi) represents the set of λw samples
belonging to the same class as Xi and farthest from Xi.

ab
(
Xi, Xj

)
=


λb fcj(Xj)

λs ∑
X∈Nb(Xj)

fcj (X)
cj ∈ Cb(Xi)

0 others

(38)

Over here, Cb(Xi) =
{

ci1 , . . . , ciλb

}
and

fci1
(Xi) ≥ . . . ≥ fciλb

(Xi)︸ ︷︷ ︸
λb

≥ . . . ≥ fciL
(Xi) (39)

Nb
(
Xj
)

is the set of λs SPD matrices belonging to the same class as Xj and correspond-
ing to largest Gaussian density values.

5.3. LG-SPDDR

In LG-SPDDR [38], a DR method for SPD data is proposed as

X ∈ SymD
++ ⇒ YW = exp

(
WT log(X)W

)
∈ Symd

++

where W ∈ RD×d, D � d.
To be specific, LG-SPDDR is implemented by three procedures:

• The given SPD data X are firstly mapped from the original SPD manifold SymD
++ to

the corresponding tangent space TID

(
SymD

++

)
= SymD and turn into log(X) ∈ SymD;

• Subsequently, log(X) is dimensional-reduced by the bilinear transformation, transformed

into another tangent space TId

(
Symd

++

)
= Symd and turns into WT log(X)W ∈ Symd;

• Finally, through the exp-transformation, WT log(X)W is remapped back into a new
low-dimensional SPD manifold Symd

++ and turns into exp
(
WT log(X)W

)
∈ Symd

++.

LG-SPDDR determines the transformation matrix W as follows:

N

∑
j=1

N

∑
i=1

a
(
Xi, Xj

)
δ
(

YW
i , YW

j

)
→

W∈RD×d
min (40)

Over here, the definition of affinity coefficients a
(
Xi, Xj

)
is similar to [32].

Remark 3: In spite of the claim that LG-SPDDR is based on Lie groups and Lie algebra, it seems to
be irrelevant to the multiplication of Lie groups and the Lie bracket of Lie algebra.

5.4. PSSSD

PSSSD [36] is a supervised metric learning method. Both the bilinear transformation
and label information are taken into account in the learning process. Its core idea is a
framework for learnable metric, in which:



Entropy 2021, 23, 1117 13 of 27

(1) A set of divergences measuring the similarity between two SPD matrices have
been given:

D(αm ,βm)
(
Xi‖Xj

)
=

1
αβ

log


∣∣∣∣∣∣∣
αm

(
XiX−1

j

)βm
+ βm

(
XiX−1

j

)αm

αm + βm

∣∣∣∣∣∣∣
 (41)

αmβm 6= 0, αm + βm 6= 0

Over here, αm and βm are all learnable, m = 1, . . . , M.
(2) It exploits multiple transformation matrices to map original SPD manifold to

multiple submanifolds:

Wm ∈ RD×d, WT
mWm = Id, m = 1, . . . , M

(3) To measure the difference between two SDP matrices Xi and Xj, the learnable
metric is defined as

DΘ(Xi‖Xj
)
= dT

ijΦdij, dij =

 D(α1,β1)
(
WT

1 XiW1‖WT
1 XjW1

)
...

D(αM ,βM)
(
WT

MXiWM‖WT
MXjWM

)
 ∈ RM (42)

Over here, Φ ∈ RM×M is a learnable SPD matrix. Hence, entire learnable parameters
can be represented by

Θ = {Φ, W1, . . . , WM, α1, . . . , αM, β1, . . . , βM} (43)

The metric DΘ(•‖•) is finally specified as

1
|S| ∑

(i,j)∈S
yijmax

(
DΘ(Xi, Xj

)
− ζS , 0

)2
+

1
|H| ∑

(i,j)∈H

(
1− yij

)
max

(
ζH −DΘ(Xi, Xj

)
, 0
)2
→
Θ

min (44)

where S represents the set of data pairs having the same label and H represents the set

of data pairs having different labels; yij =

{
1 I f Xi and X j are similar
0 otherwise

, ζS and ζH are

similarity thresholds.
The objective of LG-SPDDR indicates that, if Xi and Xj are similar to each other and

belong to the same class, the metric DΘ(Xi, Xj
)

is minimized. In contrast, if Xi and Xj are
similar but belong to the different classes, DΘ(Xi, Xj

)
is maximized.

Strictly speaking, PSSSD is essentially not a DR algorithm. To compare it with
RMTSISOM-SPDDR, the matrix W =

[
W1 . . . WM

]
∈ RD×Md is used for DR.

5.5. DARG-Graph

Let g = N (µ, Σ) be a Gaussian distribution, µ ∈ RD be its mean vector and Σ ∈ RD×D

be its covariance matrix. In DARG-Graph, a number of metrics δ
(

gi, gj
)

to measure the
difference between two Gaussian distributions gi and gi are given.

In DARG-Graph [37], the DR of a Gaussian distribution is proposed as follows:

g = N (µ, Σ)⇒ gW = N
(

WTµ, WTΣW
)

where W ∈ RD×d and WTW = Id, D � d. We can easily know that gW is a Gaussian
distribution as well.
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The transformation matrix W is specified as follows:

N

∑
j=1

N

∑
i=1

a
(

gi, gj
)
δ
(

gW
i , gW

j

)
→

WTW=Id

min (45)

Over here, a
(
Xi, Xj

)
= aw

(
Xi, Xj

)
− ab

(
Xi, Xj

)
and

aw
(

gi, gj
)
=

e−
δ(gi ,gj)

σ2 δ
(

gi, gj
)
< ε and have the same label

0 others
(46)

ab
(

gi, gj
)
=

e−
δ(gi ,gj)

σ2 δ
(

gi, gj
)
< ε but have di f f erent labels

0 others
(47)

Note that RMTDISOM-SPDDR is a DR algorithm for SPD data, not for Gaussian
distributions. When comparing our algorithm with DARG-Graph, we let vector µ = 0. Σ
in N (µ, Σ) is an SPD matrix. Hence, the DR of Gaussian distributions is converted to the
DR of SPD data.

6. Experiments

In this section, we compare RMTSISOM-SPDDR with five state-of-the-art algorithms
by evaluating the performance of algorithms on five commonly used benchmark datasets.
This section will introduce the datasets and the setting of experimental parameters, present
the experimental results and further discuss the effectiveness of our algorithm.

6.1. Datasets Description and Experiment Settings

Dataset overview: Since we conduct experiments on five datasets and the process-
ing of different datasets is not the same, it is not appropriate to list all descriptions
here. We explain the specific description of each dataset one by one in the following
corresponding subsections.

Parameter setting: The parameters that need to be adjusted for RMTSISOM-SPDDR
include the target dimension d of the SPD data after DR and the maximum iteration number
maxIter of iterative optimization. For d, the specific setting is related to the dimensionality
of original SPD manifolds on which different datasets are located. It can be observed from
the different experimental charts how we set it. For maxIter, we uniformly set it as 50, in
this paper, for three reasons. Firstly, in our experimental results, under different target
dimensions on all datasets, RMTSISOM-SPDDR converged before 50 iterations consistently.
Hence, too many iterations are uneconomical for the calculation cost. Secondly, it is
insignificant to improve performance by more iterations, which may result in overfitting,
making worse performance. Thirdly, although the optimization process iterated for 50
times, the optimal result may occur before the 50th iteration. Our program recorded
the classification result of each iteration and we selected the optimal result as the final
experimental result. In addition, the classifier used in the experiments was the kNN
classifier. For other algorithms, parameter settings are all shown in Table 2.

Table 2. Parameter settings of five comparison algorithms.

Methods Parameter Settings

SSPDDR None
PDDRSPD λw = 3, λb = 3, λs = 3

DARG-Graph σ = 1
LG-SPDDR kw = 5,kb = 20

PSSSD ζS = 1, ζD = 10
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6.2. The Experiment on the Motion Dataset

Our first experiment was conducted on the Motion dataset. In this subsection, we
successively introduce Motion and the experimental development and present results of
RMTSISOM-SPDDR and other algorithms on this dataset. Subsections for other datasets
keep the same narrative structure and we do not repeat this description.

6.2.1. The Description of Motion

Motion is derived from the human motion sequences in the HDM05 database [39],
which was produced by a system based on optical mark technology. Experimenters worn
a suit with 40–50 retro-reflective markers, which were tracked by 6–12 calibrated high-
resolution cameras, resulting in clear and detailed motion capture data. The database
consists of 14 kinds of motions, such as walking, running, jumping, kicking, etc. Partial
samples of Motion are shown in Figure 2. Motion includes 306 image sets, each of which
consists of 120 images. By the method in [24], they were made into 93 × 93 SPD matrices.
We adopted the same partition method as [32] and obtained SPD matrices for training and
testing, respectively, with the ratio of 2:3.
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6.2.2. The Experimental Results on Motion

On Motion, we carried out classification experiments for the proposed algorithm
(RMTSISOM-SPDDR) and other five comparison algorithms, respectively, and tested
the convergence performance of RMTSISOM-SPDDR. Subsequent experiments on other
datasets also followed the same development and we do not repeat this description in the
other subsections.

From the classification results on Motion shown in Figure 3, we can see, under each
target dimension selected, the classification accuracy of RMTSISOM-SPDDR is generally
more than 70% and far ahead of all comparison algorithms. Especially under the target
dimensions of 48, 43, 38 or 33, the accuracy of RMTSISOM-SPDDR is 6 percentage points
higher than that of the comparison algorithm ranked second (LG-SPDDR). On the whole,
the fluctuation of the classification accuracies of RMTSISOM-SPDDR under different target
dimensions is relatively small compared with other algorithms.

To evaluate the convergence performance of RMTSISOM-SPDDR under different
target dimensions on Motion, we obtained Figure 4. The loss function decreased the most
in the second iteration, then became stable. Among these four curves, the convergence
was the fastest when d = 43 or d = 53 and it basically converged at the fifth iteration.
When d = 33 or d = 63, the loss function continued to decline in 50 iterations, but the
rangeability was very small after 25 iterations. It was unnecessary to continue iterations
after 50 iterations. On the one hand, the decline of the loss function in continuous iterations
was insignificant, compared with the calculation cost paid. On the other hand, excessive
pursuit of the decline of the loss function may lead to overfitting. When the embedding
dimension was equal to 33, the loss value fluctuated greatly, but the overall trend still
declined. RMTSISOM-SPDDR still shows satisfactory convergence performance on Motion.
It is worth noting that the lower the target dimension, the smaller the absolute value of the
loss function, which means that we need less computation.
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6.3. The Experiment on the Traffic Dataset
6.3.1. The Description of Traffic

The Traffic video dataset is derived from the UCSD traffic dataset [40], which contains
254 freeway video sequences recorded by a fixed camera from a freeway in Seattle. These
sequences can be roughly divided into three traffic conditions (heavy, medium, light; see
Figure 5). The three traffic conditions correspond to 44, 45 and 165 sequences, respectively.
Each frame was converted to a grayscale image whose size was adjusted to 125 × 125
pixels. We used HoG features [41] to represent frames of a traffic video. In this way,
one feature vector corresponded to one frame. In order to acquire the SPD data needed,
the feature vectors were normalized and corresponding covariances were calculated. In
the experiments on Traffic, we selected 190 sequences for training and the remaining
64 sequences as the test set.
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6.3.2. The Experimental Results on Traffic

Figure 6 presents the results of the classification experiments on Traffic. The classifi-
cation accuracies of RMTSISOM-SPDDR are not all the way ahead of other comparison
algorithms. This is mainly reflected in the three dimensions of 45, 40 and 30, in which the
accuracies of DARG are higher than ours. The possible reason might be that the scene is
relatively complex, while DARG firstly adopts a Gaussian mixed model to extract data
features, so as to obtain more discriminant information in high dimensions. However, in
cases of low dimensions, the accuracies of DARG drop sharply, while ours still remain
at a high level. For SPD data, we have already discussed the problems caused by their
high dimensionality, so the DR of SPD data is the objective we are committed to. In such
a case, RMTSISOM-SPDDR shows superiority in the data classification under low target
dimensions, which not only meets the requirements of reducing data dimensionality, but
also maintains high classification performance.
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From Figure 7, the convergence performance of selected target dimensions is as
follows: From the horizontal comparison, we find that the convergence curves under
these four dimensions tended to be stable after the 10th iteration. It can be observed
that RMTSISOM-SPDDR also converged fast on Traffic. Similarly, we find, from the
horizontal comparison, that the loss function still decreased under different dimensions,
which is reasonable.
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6.4. The Experiment on the ICT-TV Database
6.4.1. The Description of ICT-TV

The ICT-TV Database [42] consists of two video datasets of TV series, namely, “Big
Bang Theory” (BBT) and “Prison Break” (PB), which are shown in Figures 8 and 9. ICT-TV
consists of facial video shots taken in these two TV series, namely, 4667 shots in BBT and
9435 shots in PB. The pictures in the shots are stored with the size of 150 × 150 pixels. [30]
were followed to preprocess these datasets. We adjusted all detected facial images to
48 × 60 pixels, then adopted histogram equalization, so as to reduce the effect caused by
light. All facial frames were flattened into vector representations, on which PCA was
performed. Hence, a set of 100-dimensional vectors were obtained which were applied to
generate symmetric positive definite kernel matrices. For classification, we utilized the
facial videos of 5 main characters in BBT and 11 main characters in PB, respectively.
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6.4.2. The Experimental Results on ICT-TV

Because the size of the datasets (BBT and PB) belonging to the ICT-TV database was
excessively large, we segmented them to conduct experiments. We divided BBT (or PB)
evenly into 10 sub-datasets. For each sub-dataset, training set and test set were divided
from these samples with the ratio of 1:1. Finally, 10 experiments were conducted on these
sub-datasets and took average results as final classification accuracies.

As can be seen from Figure 10, all algorithms showed high classification accuracies on
BBT, while the result of RMTSISOM-SPDDR is higher than that of comparison algorithms in
most dimensions. With the decrease in the target dimension, the performance of algorithms
decreases. This may indicate that the lower the dimension is, the more information of the
original data is lost, leading to a decline in classification.
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The results of classification experiments on PB are shown in Figure 11. We can see
that RMTSISOM-SPDDR is the most outstanding. This is mainly reflected in the fact that,
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under most target dimensions, our algorithm achieves the highest classification accuracy,
while in the case of d = 20, the accuracy of SSPDDR is the highest, followed by ours.
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Convergence diagrams of RMTSISOM-SPDDR on BBT are shown in Figure 12. They
indicate that our algorithm basically reflects preferable convergence performance. For each
dimension, the curve was highly similar, generally leveling off after 15–20 iterations and
there was almost no fluctuation.
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Convergence diagrams of RMTSISOM-SPDDR on PB are shown in Figure 13. It is
similar to the cases on BBT. The longitudinal comparison indicates that fifteen iterations
were enough to bring the loss function down to an approximately minimum level and the
fluctuation since then was very little.
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6.5. The Experiment on the ETH-80 Dataset
6.5.1. The Description of ETH-80

ETH-80 is a benchmark image set for recognition [43]. It covers eight categories (cars,
cups, horses, dogs, cows, tomatoes, peas, apples). One category is comprised of ten objects,
each of which consists of 41 pictures taken from different angles of an object, adjusted to
43 × 43 pixels. As shown in Figure 14, objects of the same category are different in terms
of physical attributes, such as visual angle, color, texture distribution and shape. For this
dataset, we made it into SPD data according to [24]. Specifically, let Mi be the mean image

of the ith image set, Mi =
1
ni

ni
∑

j=1
Cij, where ni is the number of images in the ith image set, Cij

is the jth image in the ith image set. Then, the SPD data corresponding to the ith image set

can be calculated by X∗i = 1
ni−1

ni
∑

j=1

(
Cij −Mi

)(
Cij −Mi

)T . Further, we added a correction

term to X∗i so as to guarantee its positive definiteness, that is, Xi = X∗i +
tr(X∗i )

λ I, λ = 105.
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Each image set corresponds to an SPD matrix. In the experiment, we evenly divided image
sets to training sets and test sets with the ratio of 1:1.
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6.5.2. The Experimental Results on ETH-80

It can be seen, form Figure 15, that, under each dimension selected, the classification
accuracy of RMTSISOM-SPDDR is generally higher than that of the comparison algorithms
and remains at a high level (above 80%). When RMTSISOM-SPDDR reduces the original di-
mension to different target dimensions, the fluctuation of classification accuracy is relatively
small and the dimension can be reduced as much as possible without losing performance.
Comparatively speaking, the results of DARG-graph and SSPDDR fluctuate greatly, which
means there is a trade-off between classification accuracy and target dimension.
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Figure 16 presents results of convergence experiments on ETH-80. The longitudinal
comparison shows that the value of loss function gradually decreases with the increase
in iteration times. Surprisingly, on ETH80, the second iteration leads to the largest drop
and subsequent fluctuations are so small to be ignored. This may be because the initial
projection matrix for this dataset was already near the local optimal solution. Moreover,
the depression of the optimal solution is relatively deep, so that the results of subsequent
iterations do not deviate from the optimal solution. From the horizontal comparison, we
find that the loss function still tends to decrease under different target dimensions. Hence,
our algorithm consistently shows excellent performance.
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7. Discussions and Conclusions

(1) As a non-Euclidean data form, SPD data have in-depth applications in machine
learning. Compared with vector representation, SPD data can more effectively extract
higher-order statistical information. Generally, in order to avoid the problems of
high computational complexity and sparse distribution in high-dimensional SPD
manifolds, we hope to reduce the dimensionality of SPD data while maintaining
useful and representative information. However, the nonlinear manifold structure
results in difficulties in learning tasks where linear operations are needed.

(2) SPD data equipped with a Riemannian metric generally constitute a Riemannian
manifold. For Riemannian manifolds, we have known that all tangent spaces are
complete finite-dimensional Hilbert spaces, namely, Euclidean spaces. Hence, this
paper transfers learning tasks from original SPD manifolds to their tangent spaces.
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(3) The tangent space of an SPD manifold is a symmetric matrix space. From the perspec-
tive of data form and attributes, it can be proved to be the minimum linear extension
of the original manifold. Inspired by this, we map SPD data into the tangent space at
identity by the isometric transformation (log).

(4) A framework is proposed for SPD data dimensionality reduction (DR). RMTSISOM-
SPDDR realizes the procedure through the bilinear transformation between tangent
spaces at identity matrices. These tangent spaces are Hilbert spaces and the required
bilinear transformation can be determined to a specific criterion and then taken as the
DR transformation for the original SPD manifold.

(5) This paper specifies the bilinear transformation by the global isometric criterion.
The so-called isometric criterion means that the geodesic distance on the original
high-dimensional SPD manifold is equal to the corresponding Euclidean distance in
the tangent space of the low-dimensional SPD manifold. This preserves the distance
relationship between data points well.

(6) In comparison to many existing state-of-the-art algorithms, such as PDDRSPD [34],
PSSSD [36], DARG-Graph [37], SSPDDR [32] and LG-SPDDR [38], there are three
differences between them and our proposed method (RMTSISOM-SPDDR). First, most
of these algorithms are based on the bilinear transformation between two manifolds,
while the proposed RMTSISOM-SPDDR is based on the bilinear transformation
between the tangent spaces of the two manifolds. The tangent spaces are finite Hilbert
spaces, i.e., Euclidean spaces, which can support more complex DR models. Second,
all of these algorithms utilize local analysis, while the proposed RMTSISOM-SPDDR
is based on global isometry, providing a different perspective. Finally, all of these
algorithms are supervised, while the proposed RMTSISOM-SPDDR is unsupervised.
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Appendix A. Differential Manifolds and Tangent Spaces

The so-called topological manifold [44] is a topological space which is locally home-
omorphic to a Euclidean space Rn. If M is an n-dimensional topological manifold, there
must be a local coordinate system {(Ui, ϕi)|i ∈ U}, where Ui is an open set of M, ϕi is
a homeomorphic mapping from Ui to an open set of Rn and M = ∪

i∈I
Ui. (Ui, ϕi) is then

called a local coordinate of M.
With regard to any two local coordinates of the topological manifold M, (U, ϕ) and

(V, ξ), which satisfy U ∩ V 6= φ, ξ ◦ ϕ−1 : ϕ(U ∩V)→ ξ(U ∩V) is a mapping between
two open sets of Rn. If ξ ◦ ϕ−1 is infinitely differentiable, M will be called a differential
manifold [44]. Differentiable functions, smooth curves and tangent vectors can be defined
on differential manifolds.

Let f : U f → R (U f is an open set of M) and (U, ϕ) be a local coordinate of M which

satisfies U ∩ U f 6= φ. f ◦ ϕ−1 : ϕ
(

U ∩U f

)
→ R is a function which is called the pull-
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back function of f defined in Rn. If f ◦ ϕ−1 is infinitely differentiable, then we call f a
differentiable function.

Similarity, let ρ : (−ε, ε)→ M be a curve on M, t0 ∈ (−ε, ε). It follows that ρ(t0) ∈ M.
If ρ(t0) ∈ U for any local coordinate (U, ϕ), the function ϕ ◦ ρ : ρ−1(ρ(−ε, ε) ∩U)→ ϕ(ρ(−ε, ε) ∩U)
is infinitely differentiable, ρ will be infinitely differentiable at t0. If ρ is infinitely differen-
tiable at each point of (−ε, ε), then ρ is called a smooth curve on M.

Suppose p ∈ M, Gp(M) represents the set of entire differentiable functions defined
in the domain containing p on M. Let Φp : Gp(M)→ R . If Φp satisfies the following two
condition, for any f , g ∈ Gp(M) and α, β ∈ R,

1. Linear: Φp(∂ f + βg) = αΦp( f ) + βΦp(g)
2. Leibniz Law: Φp( f g) = f (p)Φp( f ) + g(p)Φp( f )

then, Φp is called a tangent vector of p.
Smooth curves can also be used to represent tangent vectors. Let ρ : (−ε, ε)→ M be

a smooth curve on M. If t0 ∈ (−ε, ε), then ρ(t0) ∈ M. Define: ρ′(t0) : Gρ(t0)(M)→ R , for
any f ∈ Gρ(t0)

,

ρ′(t0)( f ) =
d( f ◦ ρ)(t)

dt

∣∣∣∣
t=t0

(A1)

It can be proved that ρ′(t0) satisfies linear and Leibniz laws. ρ′(t0) is consequently
called a tangent vector of ρ(t0). Moreover, we can prove it the other way around, for any
tangent vector Φp of p, there must be a smooth curve ρ that goes through p, such that
ρ′(t0) = Φp, where ρ(t0) = p.

Moreover, let Tp(M) represent the entire tangent vectors at p, define(
Φp + Θp

)
( f ) = Φp( f ) + Θp( f );

(
αΦp

)
( f ) = αΦp( f ) (A2)

then Tp(M) can form a linear space.
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