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Abstract: The consensus regarding quantum measurements rests on two statements: (i) von Neu-
mann’s standard quantum measurement theory leaves undetermined the basis in which observables
are measured, and (ii) the environmental decoherence of the measuring device (the “meter”) un-
ambiguously determines the measuring (“pointer”) basis. The latter statement means that the
environment monitors (measures) selected observables of the meter and (indirectly) of the system.
Equivalently, a measured quantum state must end up in one of the “pointer states” that persist in the
presence of the environment. We find that, unless we restrict ourselves to projective measurements,
decoherence does not necessarily determine the pointer basis of the meter. Namely, generalized
measurements commonly allow the observer to choose from a multitude of alternative pointer bases
that provide the same information on the observables, regardless of decoherence. By contrast, the
measured observable does not depend on the pointer basis, whether in the presence or in the absence
of decoherence. These results grant further support to our notion of Quantum Lamarckism, whereby
the observer’s choices play an indispensable role in quantum mechanics.

Keywords: quantum measurements; decoherence; pointer states; Quantum Lamarckism; the observer
in quantum mechanics

1. Introduction

Attempts to banish the observer from quantum mechanics have motivated
approaches [1–4] whereby the environment observes a quantum system. These approaches
“objectivize” quantum measurement theory by substituting the environment-induced deco-
herence of a quantum observable for its unread (nonselective) measurement. In the simplest
version of these approaches introduced by von Neumann [5], the environment and the
system are entangled by their interaction, and the environment is then ignored (traced
out), decohering the reduced state of the system. Subsequent theory, notably Zurek’s, has
pleaded the case for “the environment as the observer” by stressing the importance of
system-environment correlations in determining the information obtainable on the system
through the notions of “einselection” [4,6] and “the environment as a witness” [7,8] and
the mechanism of enforcing classicality [9–11].

These approaches must cope with the issue that the decomposition of a (closed) “super-
system” into an open quantum system and its environment is often neither unique nor inevitable,
but rather a matter of expediency and choice for the observer: Depending on the computational
and experimental resources, the observer can choose which degrees of freedom pertain
to the system to be measured (or otherwise manipulated) and which ones are part of the
inaccessible environment (“bath”). However, even after this choice has been made, the ob-
server must choose what observable of the system to measure and how frequently. We
have long stressed that einselection, which singles out the states of a quantum system that
are resilient to decoherence, is restricted to long time scales compatible with the Markovian
(memoryless) assumption concerning the environment (bath) response [12]. Conversely,
it excludes much shorter non-Markovian time scales that are restricted to the memory or
correlation time of the bath response [13], a time scale that is often overlooked.
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However, as we have shown, this division of time scales is invalid when the quantum
system is subject to monitoring by the observer, even if such monitoring is considered
non-intrusive, corresponding to quantum nondemolition (QND) measurements that leave
the quantum observable of the system intact [12,13]. Nevertheless, the ensuing system–bath
dynamics may drastically deviate from the course prescribed by decoherence or dissipation
or even from the course prescribed by dynamical control [14–20].

Such measurement-induced dynamics may steer the system to a final state where it is
heated up (in the Zeno regime) or cooled down (in the anti-Zeno regime [21]) irrespective of
the bath temperature [22,23]. The observer’s ability to steer the evolution of open systems
is the basis for our fundamental approach we have dubbed Quantum Lamarckism [24]
whereby the system evolution is dictated not merely by decoherence or bath effects but by
its functional adaptation to the observer’s choices.

Here we seek further support for the view embodied by Quantum Lamarckism that
the observer cannot be banished from quantum mechanics. We do so by exploring the
choices available to the observer in selecting the pointer basis of a meter in the presence
of decoherence.

In the standard (von Neumann) quantum-measurement theory [5] an observable of a
system S is measured by coupling the system S to a “meter” M and then measuring the
latter. Namely, S is observed via M. von Neumann’s theory is moot concerning the choice
of basis for M and the effects of decoherence on M. By venturing beyond von Neumann’s
theory, Zurek investigated [3,4,6] what happens when the observable (pointer) of M differs
from the “standard pointer”, which commutes with the state of M after the S-M interaction,
and what are the consequences of decoherence of M. His investigations can be briefly
summarized by the following points:

(a) The measured observable of S is uniquely determined by the measured observable
of M.

(b) Decoherence “dynamically selects” the pointer basis of M.
(c) As a consequence of (a) and (b), the decoherence of M “dynamically selects” the mea-

surable observables of S and M [3], which leads to Zurek’s notion of einselection [4,6].

Our analysis shows that the pointer-basis selection for a quantum meter in the presence
of decoherence is not necessarily restricted by einselection. We find that, unless we restrict
ourselves to projective measurements of the observable by the meter, decoherence does
not in general select the pointer basis of M (Section 2). Under mild conditions, there is
a multitude of alternative pointer bases the observer can choose from, all of which are
capable of providing the same information on the observable by means of generalized
measurements, regardless of decoherence. By contrast, the selection of the pointer basis of
M does not affect the measured observable, which remains unique, whether in the absence
or in the presence of decoherence (Section 3). We illustrate these results for the case of a
qubit meter decohered by a bath when this meter measures a two-level system (Section 4).
These results are discussed as arguments in favor of the central role of the observer in
quantum mechanics in the spirit of Quantum Lamarckism [24] (Section 5).

2. Quantum Pointer Resilient to Decoherence

Let us consider a measurement of an observable Ŝ of system S by a meter M that
is subject to decoherence by a bath B. Although our analysis can be completely general,
we choose for simplicity the S-M interaction (via Hamiltonian HSM) to be much stronger
(hence faster) than that of M-B (via Hamiltonian HMB). The measurement process then
consists of three distinct stages:

(1) S and M interact over time interval τM that is long enough to entangle the two,
but short enough to ignore the effects of B. The observable of the system S to be measured
is represented in the basis of its (orthonormal) eigenstates |Sn〉, as

Ŝ = ∑
n

εn|Sn〉〈Sn|, (1)
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whereas the unknown initial state of the system S is

|ψS(0)〉 = ∑
n

cn|Sn〉. (2)

The initial factorized state of S and M then evolves over the time interval (0, τM) to a state
that obeys the Schmidt decomposition,

|ψSM(0)〉 = ∑
n

cn|Sn〉 ⊗ |M〉 → |ψSM(τM)〉 = ∑
n

cn|Sn〉 ⊗ |Pn〉, (3)

where the meter states also satisfy orthonormality.
For a proper measurement of the observable Ŝ we impose the back-action evasion

(quantum non-demolition) condition [25],

[Ŝ, HSM(t)] = 0, (4)

on the system-meter (SM) coupling Hamiltonian HSM(t). Moreover, we assume that τM
is sufficiently short, so that the system Hamiltonian HS can be neglected during the S-M
interaction (the impulsive limit). We also neglect the meter Hamiltonian.

A measurement in the basis of the meter states |Pn〉 collapses the system state to an
eigenstate |Sn〉 and thereby yields the eigenvalue εn of Ŝ with the probability |cn|2. The
meter observable has then the form

P̂ = ∑
n

bn|Pn〉〈Pn|, (5)

which we dub the standard pointer, since it effects ideal (projective) measurements of the
system. The corresponding meter state, obtained from Equation (3) upon tracing over S,
is then

ρM(τM) = ∑
n
|cn|2|Pn〉〈Pn|. (6)

(2) On a much longer time scale, t� 1/γ� tc where 1/γ is the decoherence time of
the meter (M) and tc is the correlation (memory) time of the decohering bath (B) [12,13], we
choose a nondegenerate meter variable Q̂ which satisfies the back-action evasion condition
for the M-B interaction,

[Q̂, HMB(t)] = 0, (7)

where HMB(t) is the M-B coupling Hamiltonian. This condition ensures that the eigenstates
|Qn〉 of Q̂ are invariant under decoherence. In order to conform to Zurek’s analysis [3,6–8],
we take HMB to commute with HSM. Then the standard pointer P̂ of stage 1 can be shown
to be identical with Q̂. Upon tracing out B, we then arrive at the S-M state that is stationary
and diagonal in the bases {|Sn〉} and {|Qn〉} as t→ ∞,

ρSM(t) → ρ∞
SM = ∑

n
|cn|2|Sn〉|Qn〉〈Sn|〈Qn|. (8)

Namely, decoherence eliminates the off-diagonal elements of the joint S-M state and acts as
a nonselective measurement without a readout of the measurement results of the meter
by the bath. Since now the standard pointer coincides with Q̂, this means that the bath
performs a non-selective measurement of the system.

(3) At stage 3, which follows the decoherence stage 2, projective measurement of the
meter is performed on ρ∞

SM in the {|Qn〉} basis. This measurement is assumed to be fast
(impulsive), so that the evolution of the meter during the measurement may be neglected.
Then, a measurement of Q̂ yields a selective projective measurement of the observable Ŝ.
Namely, an eigenvalue εn of |Sn〉 is obtained with probability |cn|2.

These results adhere to Zurek’s view regarding the pointer basis [3,6–8]: They show
that decoherence determines a meter state that is diagonal in the basis {|Qn〉}, and only



Entropy 2022, 24, 106 4 of 9

this basis can yield projective measurements of the system. Decoherence dynamically
selects a unique “resilient” basis {|Qn〉}, whereas any pointer basis differing from {|Qn〉}
cannot yield projective measurements of the system. The question we raise is: Does this
advantageous property single out Q̂ as the only appropriate pointer?

3. Alternative Quantum Pointers

To answer this question, consider the general case where the standard pointer P̂
does not commute with Q̂, which is invariant under the action of HMB. This means that
P̂ and Q̂ are determined independently, by the non-commuting Hamiltonians HSM and
HMB. Moreover, we consider a selective measurement of a meter variable R̂ arbitrarily
chosen by the observer. Generally, R̂ commutes neither with P̂ nor with Q̂. Whereas in
von Neumann’s theory the S-M correlation (stage 1) is directly followed by a selective
measurement of the meter (stage 3), we here adopt Zurek’s procedure whereby stage 3 is
preceded by a nonselective measurement of the meter caused by decoherence (stage 2)

At t→ ∞, i.e., after the completion of decoherence, we then have

ρSM(∞) = ∑
k,l,n

cnc∗l 〈Qk|Pn〉〈Pl |Qk〉 |Sn〉〈Sl | ⊗ |Qk〉〈Qk|. (9)

Now the meter state becomes

ρ′M = TrS ρSM(∞) = ∑
n

p′n |Qn〉〈Qn|. (10)

The column vector of the probabilities ~p′ = {p′n} is given by

~p′ = E′~c, (11)

E′ being the decoherence matrix with the elements

E′ = {E′mn} = {|〈Qm|Pn〉|2}. (12)

The matrix E′ is doubly stochastic, i.e., it satisfies

∑
m

E′mn = ∑
n

E′mn = 1. (13)

A comparison of the state (10) at stage 2 with the state (6) at stage 1 shows that
decoherence rotates the eigenbasis of the meter state from {|Pn〉} to {|Qn〉} and changes
the eigenvalues from |cn|2 to p′n. Since E′ is doubly stochastic, ~p′ is majorized by ~c. As
a result, the state (10) is more mixed with a higher von Neumann entropy (i.e., is more
randomized) than (6), unless {|Qn〉} coincides with {|Pn〉}. Yet, does this randomization
preclude the use of P̂, the standard pointer, or any other pointer, for measuring the system
observable Ŝ?

To find out, consider that at stage 3 subsequent to stage 2, the meter undergoes a
projective measurement in some basis {|Rn〉} of an observable R̂ arbitrarily chosen by the
observer. An observation of the mth outcome in this basis results in the (unnormalized)
post-measurement state of the system that is generally mixed. It can be written in the
operator-sum representation, as

ρ′S,m = ∑
k

M̂mk|ψS(0)〉〈ψS(0)|M̂†
mk, (14)

in terms of the Kraus operators

M̂mk = 〈Rm|Qk〉∑
n
〈Qk|Pn〉 |Sn〉〈Sn|. (15)
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The measurement probabilities are then

pm = Tr ρ′S,m = 〈ψS(0)|Êm|ψS(0)〉, (16)

with
Êm = ∑

k
M̂†

mk M̂mk = ∑
n

Emn |Sn〉〈Sn|. (17)

The set of operators Êm is known as a POVM (positive operator-valued measure) [26]. Here
the POVM matrix E = {Emn} is given by

E = E′′E′, (18)

where
E′′ = { |〈Rm|Qn〉|2 }. (19)

The POVM operators (17) are diagonal in the basis {|Sn〉}, which means that the
system observable that is measured is invariably Ŝ, irrespective of the choice of the meter basis
{|Pn〉}, {|Qn〉}, or {|Rn〉}. This result stands contrary to the notion that the measurable
system observable depends on the pointer.

Among the multitude of alternative pointer bases, the basis that conforms to Zurek’s
analysis is the one that coincides with the decoherence-invariant basis,

|Rn〉 = |Qn〉. (20)

Equations (12), (18) and (19) then yield the POVM matrix

E = { |〈Rm|Pn〉|2 }, (21)

whereas Equations (14) and (15) entail a pure post-measurement state, ρ′S,m = |ψ′S,m〉〈ψ′S,m|,
where [3]

|ψ′S,m〉 = M̂m|ψS(0)〉 = ∑
n
〈Rm|Pn〉cn|Sn〉 (22)

with M̂m = ∑n〈Rm|Pn〉 |Sn〉〈Sn|.
Only under condition (20), decoherence gives rise to a nonselective measurement that

does not affect the results of a subsequent selective projective measurement of the meter,
since both are performed in the same basis. In all other pointer bases {|Rn〉}, decoherence
affects the measurement results and/or the post-measurement states of the system, usually
(partially or completely) randomizing them. However, as shown below, in most cases
decoherence does not erase the information on the system, whereas in some cases it can
even be beneficial for measurements.

Returning to the general case, we can rewrite (16) in the form

~p = E~c, (23)

where ~p and~c are column vectors with the components pn and |cn|2, respectively. Then~c
can be obtained by inverting (23),

~c = E−1~p, (24)

i.e., all |cn|2 can be extracted from the measurement results, provided E−1 exists.
This inversion condition holds iff the rows (or, equivalently, columns) of E are linearly

independent, or, equivalently, iff the POVM operators Êm are linearly independent. Then
decoherence does not degrade the information obtainable on the system observable. The
inversion condition holds iff the determinants of both E′ and E′′ are nonzero. We can then
fully recover the original vector~c prior to the decoherence, even though the vector ~p has
been generally affected by decoherence.
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Conversely, when all the POVM operators Êm are proportional to each other, we find
that they are proportional to the identity operator with the coefficient 1/d, where d is the
system dimensionality. This means that

Emn = 1/d. (25)

Inserting (25) into (23) yields that in such cases the measurement results are completely
random, pm = 1/d, and reveal no information on the system.

In particular, in the absence of decoherence measurements provide no information on the
system, when [cf. (21) and (25)]

|〈Rm|Pn〉|2 = 1/d, (26)

namely, the actual ({|Rn〉}) and standard ({|Pn〉}) pointer bases (5) are mutually unbiased.
In the presence of decoherence, Equations (12), (18), (19) and (25) imply that the

decoherence can completely erase the information on the system, but only when the
decoherence-invariant {|Qn〉} basis is mutually unbiased with either the standard pointer
{|Pn〉} or the actual-pointer {|Rn〉} basis.

Surprisingly, decoherence is advantageous for measurements in mutually unbiased
bases {|Pn〉} and {|Rn〉}. In the absence of decoherence, a pair of such bases provides
improper measurements that do not yield information on the system. However, when
decoherence occurs in the basis {|Qn〉}, which is mutually biased with both {|Pn〉} and {|Rn〉},
information is not erased by a measurement in the latter two bases. This effect is counter-intuitive,
since decoherence in the meter obliterates information on the system, at least partially.
Nevertheless, decoherence can turn improper measurements into proper ones, since decoherence
rotates the meter-state eigenbasis {|Pn〉} into the basis {|Qn〉}, which is not mutually
unbiased (and thus can be dubbed mutually biased) with {|Rn〉}.

There can be intermediate cases, where the number of linearly independent POVM
operators is greater than 1 but smaller than d. In such cases, the results of projective
measurements cannot be completely reconstructed, but the POVM still provides partial
information on the system by restricting the values of |cn|2.

4. Qubit Meter Decohered by a Bath

As an illustration of the foregoing general analysis, let us consider a two-level system
(TLS) that is being measured by a qubit meter, having degenerate energy eigenstates
|0〉, |1〉. Measurements in the basis of TLS energy eigenstates {|g〉, |e〉} are performed via a
time-dependent TLS-meter interaction Hamiltonian of the form

HSM = (π/2)h(t)|e〉〈e|( ÎM − σ̂M
x ). (27)

Here ÎM is the identity operator of the meter, σ̂M
x = |0〉〈1|+ |1〉〈0|, and h(t), satisfying∫ ∞

−∞ h(t) = 1, is a smooth temporal profile of the TLS coupling to the qubit meter during
the measurement that occurs in the interval centered at t = 0 with duration τM. A possible
(but not unique) choice is the form [22]

h(t) =
1

2τM cosh2(t/τM)
. (28)

This form of HSM corresponds to the controlled-not (CNOT) entangling operation [26]

ÛCN = e−i
∫ ∞
−∞ dtHSM(t). (29)

If the measurement duration τM is much shorter than all other time scales, tending to the
impulsive limit τM → 0, then its action is well approximated by the operator ÛCN.



Entropy 2022, 24, 106 7 of 9

The meter–bath interaction is taken to be

HMB = |1〉〈1| ⊗ B̂1 + |0〉〈0| ⊗ B̂0, (30)

where B̂1 and B̂0 are bath operators that have orthogonal eigenstates. We may then describe
stages (1) and (2) of the measurement process in Section 2 as follows:
(1) Stage 1 yields in a Schmidt-decomposed S-M correlated state:

(ce|e〉+ cg|g〉)|0〉 → ce|e〉|1〉+ cg|g〉|0〉. (31)

(2) Stage 2 produces the reduced S-M density matrix. This state pertains to the standard
pointer basis of M {|0〉, |1〉}, which satisfies the back-action evasion condition (7), and hence
its states are invariant under the decoherence. At times much longer than the decoherence
times, this state attains the diagonal form,

ρSM → |ce|2|e〉〈e||1〉〈1|+ |cg|2|g〉〈g||0〉〈0|. (32)

(3) At stage 3, the following cases merit consideration:
(i) The actual pointer basis {|Rn〉} coincides with {|Pn〉} and {|Qn〉}. The measure-

ments of the system are then projective, and decoherence does not affect them, as shown in
Section 2.

(ii) {|Rn〉} is an arbitrary pointer basis, given by

|R0〉 = a|0〉+ b|1〉, |R1〉 = b∗|0〉 − a∗|1〉, |a|2 + |b|2 = 1. (33)

In the present case, |Pn〉 = |Qn〉, Equations (12), (18) and (19) yield again (21), which for a
qubit meter becomes

E =

(
|a|2 |b|2
|b|2 |a|2

)
. (34)

In this case, the measurement results are the same as in the absence of decoherence,
although the meter decoherence affects the possible post-measurement states of the system,
which are now mixed. In the present case, they are

ρ′0 = |a|2|cg|2|g〉〈g|+ |b|2|ce|2|e〉〈e|,
ρ′1 = |b|2|cg|2|g〉〈g|+ |a|2|ce|2|e〉〈e|. (35)

When |a| 6= |b|, E has a nonzero determinant, and~c in (11) can be evaluated from the
POVM probabilities p0, p1,

|cg|2 =
p0 − |b|2
1− 2|b|2 , |ce|2 =

p1 − |b|2
1− 2|b|2 . (36)

(iii) The pointer bases with |a| = |b| = 1/
√

2 do not provide any information on the
system, since the determinant of E then vanishes. These pointer bases have the form{

(|0〉+ eiχ|1〉)/
√

2, (|0〉 − eiχ|1〉)/
√

2
}

, (37)

where χ is an arbitrary phase. Such pointer bases lie in the xy-plane of the Bloch sphere
and are all unbiased with respect to the standard pointer basis. These pointers yield the
random probabilities

p0 = p1 = 1/2. (38)

Result (38) contradicts the claim that a Stern–Gerlach magnet with a field gradient in
the direction z can measure the spin in the direction y. In fact, since a pointer basis of the
form (37) does not provide any information on the system, it is inadequate and cannot be
used for a spin measurement in any direction.
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5. Discussion

Pointer states have been defined by Zurek [3,6–8] as the ones that are minimally
entangled with the bath following their interaction. To find them, one quantifies the
entanglement generated between the system and the bath by the von Neumann entropy
obtained for the reduced density matrix of the system ρΨ(t) [initialized from ρΨ(0) =
|Ψ〉〈Ψ|]. The pointer states are then obtained by minimizing the entropy over |Ψ〉 and
demanding robustness under time variation.

When the dynamics is dominated by the system Hamiltonian, the pointer states
defined as above coincide with the energy eigenstates of this Hamiltonian and conform
with the view that decoherence induced by the bath “observes” the system and selects its
pointer states. Similar conclusions apply to a meter that is coupled to a bath and measures
the system.

As we have shown, a pointer basis is not uniquely selected by decoherence: there is a broad
variety of pointer bases pertaining to a meter under the influence of a bath that still allow
us to extract complete or, at least, partial information on the system. The possibility to
extract the full information on the system via generalized measurement, notwithstanding
the randomness of the meter observable due to decoherence, is our main result.

We note that an ideal von Neumann measurement does not reveal the phases of the
superposition coefficients even without decoherence, so that the resilience of the meter
basis to decoherence does not resolve the fundamental issue of quantum measurements
that prompted von Neumann to introduce the projection postulate [5]. However, we may
rotate the meter basis at different angles, and, for each angle, repeat the measurement on
unmeasured portions of the ensemble, thereby acquiring information on the phases within
an accuracy limited by the Cramer–Rao bound of estimation theory [27]. As shown by us,
this bound is accessible in practice by measurements of the state decoherence combined
with suitably optimized dynamical control [28]. Hence, for each rotation angle of the meter
we may invoke the same considerations as the ones outlined in the present analysis. Thus,
our conclusions apply in general to the acquisition of quantum information in noisy or
dissipative media [29].

Zurek’s Quantum Darwinism [9–11] asserts that the measured information is prolifer-
ated in the environment in many copies, the observer being one of the many parts of the
environment. We find, in contrast, that irrespective of the number of copies, the observer
can open channels of information extraction from the system that are not constrained by the
environment, by appropriately choosing the meter basis. Thus, the observer may override
decoherence in almost any chosen measuring (pointer) basis. This observer’s choice can
deprive resilient pointer states of their privileged status.

The present analysis gives further support to our “quantum Lamarckian” thesis [24]
regarding the indispensable role of the observer. By contrast, we conclude that decoherence
is neither an inevitable natural order nor a fundamental selection mechanism, but merely a
reflection of the limitations of the observer’s resources. For a growing variety of systems
and observables, the observer’s manipulations of the system–bath complex may render the
notion of decoherence superfluous.

Author Contributions: Conceptualization, A.G.K. and G.K.; methodology, A.G.K.; formal analysis,
A.G.K. and G.K.; writing, G.K. and A.G.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by DFG (FOR 2724), QUANTERA (PACE-IN) and EU FET-OPEN
(PATHOS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Entropy 2022, 24, 106 9 of 9

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Joos, E.; Zeh, H.D.; Kiefer, C.; Giulini, D.; Stamatescu, J.K.I.O. Decoherence and the Appearance of a Classical World in Quantum

Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2003.
2. Schlosshauer, M.A. Decoherence and the Quantum-to-Classical Transition; Springer: Berlin/Heidelberg, Germany, 2007.
3. Zurek, W.H. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 1981,

24, 1516–1525. [CrossRef]
4. Zurek, W.H. Environment-induced superselection rules. Phys. Rev. D 1982, 26, 1862–1880. [CrossRef]
5. von Neumann, J. Mathematical Foundations of Quantum Mechanics; Prinston University Press: Prinston, NJ, USA, 1955.
6. Zurek, W.H. Einselection and decoherence from an information theory perspective. Ann. Phys. 2000, 11-12, 855–864. [CrossRef]
7. Ollivier, H.; Poulin, D.; Zurek, W.H. Objective properties from subjective quantum states: Environment as a witness. Phys. Rev.

Lett. 2004, 93, 220401. [CrossRef]
8. Ollivier, H.; Poulin, D.; Zurek, W.H. Environment as a witness: Selective proliferation of information and emergence of objectivity

in a quantum universe. Phys. Rev. A 2005, 72, 423113. [CrossRef]
9. Blume-Kohout, R.; Zurek, W.H. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly

stored quantum information. Phys. Rev. A 2006, 73, 062310. [CrossRef]
10. Blume-Kohout, R.; Zurek, W.H. Quantum Darwinism in quantum Brownian motion. Phys. Rev. Lett. 2008, 101, 240405. [CrossRef]

[PubMed]
11. Zurek, W.H. Quantum Darwinism. Nat. Phys. 2009, 5, 181–188. [CrossRef]
12. Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002.
13. Kurizki, G.; Kofman, A.G. Thermodynamics and Control of Open Quantum Systems; Cambridge University Press: Cambridge,

UK, 2022.
14. Kofman, A.G.; Kurizki, G. Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the

continuum. Phys. Rev. Lett. 2001, 87, 270405. [CrossRef]
15. Kofman, A.G.; Kurizki, G. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 2004,

93, 130406. [CrossRef]
16. Kurizki, G.; Zwick, A. From coherent to incoherent dynamical control of open quantum systems. Adv. Chem. Phys. 2016,

159, 137–217.
17. Gordon, G.; Erez, N.; Kurizki, G. Universal dynamical decoherence control of noisy single- and multi-qubit systems. J. Phys. B

2007, 40, S75–S93. [CrossRef]
18. Gordon, G.; Kurizki, G.; Kofman, A.G. Universal dynamical control of decay and decoherence in multilevel systems. J. Opt. B

2005, 7, S283–S292. [CrossRef]
19. Viola, L.; Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 1998, 58, 2733–2744.

[CrossRef]
20. Vitali, D.; Tombesi, P. Heating and decoherence suppression using decoupling techniques. Phys. Rev. A 2001, 65, 012305.

[CrossRef]
21. Kofman, A.G.; Kurizki, G. Acceleration of quantum decay processes by frequent observations. Nature 2000, 405, 546–550.

[CrossRef] [PubMed]
22. Erez, N.; Gordon, G.; Nest, M.; Kurizki, G. Thermodynamic control by frequent quantum measurements. Nature 2008,

452, 724–727. [CrossRef] [PubMed]
23. Álvarez, G.A.A.; Rao, D.D.B.; Frydman, L.; Kurizki, G. Zeno and anti-Zeno polarization control of spin ensembles by induced

dephasing. Phys. Rev. Lett. 2010, 105, 160401. [CrossRef]
24. Kurizki, G.; Kofman, A.G. Quantum Lamarckism: Observation, control and decoherence. Phys. Scr. 2018, 93, 124003. [CrossRef]
25. Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997.
26. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.
27. Paris, M.G.A. Quantum estimation for quantum technology. Int. J. Quantum Inf. 2009, 07, 125–137. [CrossRef]
28. Zwick, A.; Alvarez, G.A.; Kurizki, G. Maximizing information on the environment by dynamically controlled qubit probes. Phys.

Rev. Appl. 2016, 5, 014007. [CrossRef]
29. Gordon, G.; Kurizki, G. Dynamical protection of quantum computation from decoherence in laser-driven cold-ion and cold-atom

systems. New J. Phys. 2008, 10, 045005. [CrossRef]

http://doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevD.26.1862
http://dx.doi.org/10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K
http://dx.doi.org/10.1103/PhysRevLett.93.220401
http://dx.doi.org/10.1103/PhysRevA.72.042113
http://dx.doi.org/10.1103/PhysRevA.73.062310
http://dx.doi.org/10.1103/PhysRevLett.101.240405
http://www.ncbi.nlm.nih.gov/pubmed/19113606
http://dx.doi.org/10.1038/nphys1202
http://dx.doi.org/10.1103/PhysRevLett.87.270405
http://dx.doi.org/10.1103/PhysRevLett.93.130406
http://dx.doi.org/10.1088/0953-4075/40/9/S04
http://dx.doi.org/10.1088/1464-4266/7/10/012
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevA.65.012305
http://dx.doi.org/10.1038/35014537
http://www.ncbi.nlm.nih.gov/pubmed/10850708
http://dx.doi.org/10.1038/nature06873
http://www.ncbi.nlm.nih.gov/pubmed/18401404
http://dx.doi.org/10.1103/PhysRevLett.105.160401
http://dx.doi.org/10.1088/1402-4896/aae518
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1103/PhysRevApplied.5.014007
http://dx.doi.org/10.1088/1367-2630/10/4/045005

	Introduction
	Quantum Pointer Resilient to Decoherence
	Alternative Quantum Pointers
	Qubit Meter Decohered by a Bath
	Discussion
	References

