Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reduction of Artifacts Based on Fluctuation in cECG Time Series
Method for Artifacts Reduction
Algorithm 1: Reduction of Artifacts in cECG Time Series |
Input: cECG time series |
1. Divide the signal into non-overlapping segments SL = 0.5 s. |
2. Estimate the fluctuation for each segment |
3. Form array FD from estimated fluctuation for each segment |
4. Determine: the minimum value cECGMIN, maximum value cECGMAX, and the second uncentered moment M |
5. Calculate TH1 |
6. Calculate TH2 |
7. Calculate TH3 |
8. if the difference between difference of half cECGMAX and cECGMIN and square root of M is less than 1 |
if element in array FD is larger than TH1 do |
eliminate observed segment in cECG |
if difference between current element in array FD and next element larger than TH2 |
eliminate next segment in cECG |
end if |
if difference between current element in array FD and previous element larger than TH2 |
eliminate previous segment in cECG |
end if |
end if |
end if |
9. Calculate the mean value of FD and standard deviation of FD |
10. if difference between the mean value of FD and SD(FD) is larger than TH3 do |
if element in array FD is less than TH3 do |
eliminate observed segment in cECG |
end if |
end if |
Output: cECG time series with reduced artifacts |
2.3. Binarized Entropy (BinEn)
2.4. Classifiers
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wartzek, T.; Eilebrecht, B.; Lem, J.; Lindner, H.; Leonhardt, S.; Walter, M. EKG on the Road: Robust and Unobtrusive Estimation of Heart Rate. IEEE Trans. Biomed. Eng. 2011, 58, 3112–3120. [Google Scholar] [CrossRef]
- Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive applications. Pers. Ubiquitous Comput. 2011, 15, 707–715. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I. Knowledge Based Health Monitoring During Driving. In Proceedings of the International Conference on Human-Computer Interaction, Las Vegas, NV, USA, 15–20 July 2018. [Google Scholar]
- Park, S.J.; Subramaniyam, M.; Hong, S.; Kim, D.; Yu, J. Conceptual Design of the Elderly Healthcare Services In-Vehicle using IoT. In Proceedings of the Conference: WCX™ 17: SAE World Congress Experience, Detroit, MI, USA, 4–6 April 2017. [Google Scholar]
- Baek, H.J.; Lee, H.B.; Kim, J.S.; Choi, J.M.; Kim, K.K.; Park, K.S. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state. Telemed. J. Health 2009, 15, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Gromer, M.; Salb, D.; Walzer, T.; Madrid, N.M.; Seepold, R. ECG sensor for detection of driver’s drowsiness. Procedia Comput. Sci. 2019, 159, 1938–1946. [Google Scholar] [CrossRef]
- Jung, S.-J.; Shin, H.-S.; Chung, W.-Y. Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transport. Syst. 2014, 8, 43–50. [Google Scholar] [CrossRef]
- Koh, D.-W.; Lee, S.-G. An Evaluation Method of Safe Driving for Senior Adults Using ECG Signals. Sensors 2019, 19, 2828. [Google Scholar] [CrossRef] [Green Version]
- Jing, D.; Liu, D.; Zhang, S.; Guo, Z. Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment. Int. J. Transp. Sci. Technol. 2020, 9, 366–376. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Chung, W.-Y. Detection of Driver Braking Intention Using EEG Signals During Simulated Driving. Sensors 2019, 19, 2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, L.G.; Mozos, O.M.; Ferrández, J.M.; Antelis, J.M. EEG-Based Detection of Braking Intention Under Different Car Driving Conditions. Front. Neuroinform. 2018, 12, 00029. [Google Scholar] [CrossRef]
- Ford Develops Heart Rate Monitoring Car Seat. Available online: https://www.dicardiology.com/content/ford-develops-heart-rate-monitoring-car-seat (accessed on 26 May 2011).
- Perret-Guillaume, C.; Joly, L.; Benetos, A. Heart rate as a risk factor for cardiovascular disease. Prog. Cardiovasc. Dis. 2009, 52, 6–10. [Google Scholar] [CrossRef]
- Jo, S.H.; Kim, J.M.; Kim, D.K. Heart Rate Change While Drowsy Driving. J. Korean Med. Sci. 2019, 34, e56. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Lee, J.-Y.; Kong, S. Driver EKG Measuring System With a Conductive Fabric-Based Dry Electrode. IEEE Access 2018, 6, 415–427. [Google Scholar] [CrossRef]
- Nowak-Brzezińska, A.; Łazarz, W. Qualitative Data Clustering to Detect Outliers. Entropy 2021, 23, 869. [Google Scholar] [CrossRef]
- Czaplik, M.; Eilebrecht, B.; Walocha, R.; Walter, M.; Schauerte, P.; Leonhardt, S.; Rossaint, R. The reliability and accuracy of a noncontact electrocardiograph system for screening purposes. Anesth. Analg. 2012, 114, 322–327. [Google Scholar] [CrossRef]
- Wartzek, T.; Czaplik, M.; Antink, C.H.; Eilebrecht, B.; Walocha, R.; Leonhardt, S. UnoVis: The MedIT public unobtrusive vital signs database. Health Inf. Sci. Syst. 2015, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, P. Open source EKG analysis. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002. [Google Scholar]
- Kiencke, U.; Schwarz, M.; Weickert, T. Signalverarbeitung: Zeit-Frequenz-Analyse und Schätzverfahren; Oldenbourg Verlag: Munich, Germany, 2008; pp. 1–430. [Google Scholar]
- Serteyn, A.; Vullings, R.; Meftah, M.; Bergmans, J.W.M. Motion Artifacts in Capacitive EKG Measurements: Reducing the Combined Effect of DC Voltages and Capacitance Changes Using an Injection Signal. IEEE Trans. Biomed. Eng. 2015, 62, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Jeong, J.J.; Kim, S.H.; Kim, S.W. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive EKG Sensors. Sensors 2016, 16, 715. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L.; Raghuvanshi, D.K. Review of noise removal techniques in EKG signals. IET Signal. Process. 2020, 14, 569–590. [Google Scholar] [CrossRef]
- Mert, A.; Akan, A. Detrended fluctuation analysis for empirical mode decomposition based denoising. In Proceedings of the European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014. [Google Scholar]
- Škorić, T.; Bajić, D. Redukcija artefakata EKG signala snimanog beskontaktnim elektrodama tokom vožnje. In Proceedings of the International Symposium on INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 18–20 March 2020. [Google Scholar]
- Gtec Product. Available online: https://www.gtec.at/product/ (accessed on 14 November 2021).
- Philips Product. Available online: https://www.philips.nl/healthcare/product/HC862451/iu22-xmatrix (accessed on 14 November 2021).
- UnoViS: The MedIT Public Unobtrusive Vital Sign Database. Available online: https://www.medit.hia.rwth-aachen.de/publikationen/unovis/ (accessed on 3 March 2021).
- Xie, L.; Li, Z.; Zhou, Y.; He, Y.; Zhu, J. Computational Diagnostic Techniques for Electrocardiogram Signal Analysis. Sensors 2020, 20, 6318. [Google Scholar] [CrossRef]
- Buendía-Fuentes, F.; Arnau-Vives, M.A.; Arnau-Vives, A.; Jiménez-Jiménez, Y.; Rueda-Soriano, J.; Zorio-Grima, E.; Osa-Sáez, A.; Martínez-Dolz, L.V.; Almenar-Bonet, L.; Palencia-Pérez, M.A. High-Bandpass Filters in Electrocardiography: Source of Error in the Interpretation of the ST Segment. ISRN Cardiol. 2012, 2012, 706217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based clssifier. Comput. Math. Appl. 2008, 55, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Phys. A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Gu, C.; Weng, T.; Yang, H. Unbiased detrended fluctuation analysis: Long-range correlations in very short time series. Phys. A Stat. Mech. Its Appl. 2018, 505, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Bryce, R.; Sprague, K. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škorić, T.; Mohamoud, O.; Milovanović, B.; Japundžić-Žigon, N.; Bajić, D. Binarized cross-approximate entropy in crowdsensing environment. Comput. Biol. Med. 2017, 80, 137–147. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, T.M. Instance-Based Learning. In Machine Learning, 1st ed.; McGraw-Hill Science: New York, NY, USA, 1997; pp. 196–230. [Google Scholar]
- Hvitfeldt, E.; Silge, J. Dense neural networks. In Supervised Machine Learning for Text Analysis in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; pp. 250–282. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization; Proc. ICLR (Poster): San Diego, CA, USA, 2015. [Google Scholar]
- Li, L.; Doroslovački, M.; Loew, M.H. Approximating the Gradient of Cross-Entropy Loss Function. IEEE Access 2000, 8, 111626–111635. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Škorić, T.; Šarenac, O.; Milovanović, B.; Japundžić-Žigon, N.; Bajić, D. On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments. Complexity 2017, 2017, 8365685. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Sun, X.; Zhang, K. Driving Distraction Analysis by EKG Signals: An Entropy Analysis. In Proceedings of the International Conference on Internationalization, Design and Global Development, Orlando, FL, USA, 9–14 July 2011. [Google Scholar]
Number of Measurements in Each Group | cECG1 | cECG2 | cECG3 | Reference Signal | |
---|---|---|---|---|---|
CAR | 31 | 0.19 ± 0.67 [V] | 0.29 ± 0.89 [V] | 0.21 ± 0.69 [V] | 0.81 ± 0.93 [V] |
BED | 20 | 1.18 ± 2.22 [V] | 1.85 ± 2.64 [V] | 1.66 ± 2.58 [V] | 0.37 ± 0.52 [V] |
Number of Measurements in Each Group | cECG1 | cECG2 | cECG3 | Reference Signal | |
---|---|---|---|---|---|
CAR | 31 | 1556.93 ± 2166.13 [s] | 1556.93 ± 2166.13 [s] | 1556.93 ± 2166.13 [s] | 1556.93 ± 2166.13 [s] |
BED | 20 | 312.45 ± 10.54 [s] | 312.45 ± 10.54 [s] | 312.45 ± 10.54 [s] | 312.45 ± 10.54 [s] |
cECG1 | cECG2 | |
---|---|---|
cECG with large amount of artifacts | 26 | 25 |
cECG with moderate amount of artifacts | 2 | 3 |
cECG without artifacts | 3 | 3 |
ML Technique | Accuracy | Sensitivity | Specificity | Positive Prediction | Negative Prediction |
---|---|---|---|---|---|
KNN1 | 65.64 | 14.28 | 82.87 | 21.87 | 74.23 |
KNN2 | 88.21 | 69.40 | 94.52 | 80.95 | 90.20 |
KNN3 | 92.68 | 77.55 | 97.95 | 92.68 | 92.86 |
DDNN1 | 53.33 | 20.41 | 64,38 | 16.13 | 70.68 |
DDNN2 | 92.31 | 93.88 | 91.78 | 79.31 | 97.81 |
DDNN3 | 92.82 | 95.83 | 91.84 | 79.31 | 98.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škorić, T. Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects. Entropy 2022, 24, 13. https://doi.org/10.3390/e24010013
Škorić T. Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects. Entropy. 2022; 24(1):13. https://doi.org/10.3390/e24010013
Chicago/Turabian StyleŠkorić, Tamara. 2022. "Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects" Entropy 24, no. 1: 13. https://doi.org/10.3390/e24010013
APA StyleŠkorić, T. (2022). Reduction of Artifacts in Capacitive Electrocardiogram Signals of Driving Subjects. Entropy, 24(1), 13. https://doi.org/10.3390/e24010013