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Abstract: The development of smart cars with e-health services allows monitoring of the health
condition of the driver. Driver comfort is preserved by the use of capacitive electrodes, but the
recorded signal is characterized by large artifacts. This paper proposes a method for reducing
artifacts from the ECG signal recorded by capacitive electrodes (cECG) in moving subjects. Two
dominant artifact types are coarse and slow-changing artifacts. Slow-changing artifacts removal
by classical filtering is not feasible as the spectral bands of artifacts and cECG overlap, mostly in
the band from 0.5 to 15 Hz. We developed a method for artifact removal, based on estimating the
fluctuation around linear trend, for both artifact types, including a condition for determining the
presence of coarse artifacts. The method was validated on cECG recorded while driving, with the
artifacts predominantly due to the movements, as well as on cECG recorded while lying, where the
movements were performed according to a predefined protocol. The proposed method eliminates
96% to 100% of the coarse artifacts, while the slow-changing artifacts are completely reduced for the
recorded cECG signals larger than 0.3 V. The obtained results are in accordance with the opinion
of medical experts. The method is intended for reliable extraction of cardiovascular parameters to
monitor driver fatigue status.

Keywords: cECG filter; movement artefacts; binarized approximate entropy; KNN; DDNN

1. Introduction

The automotive industry has been making efforts to develop smart health systems, as
part of supporting smart cars that can communicate with each other, transmit data to the
cloud, and use smart e-health service systems [1–5]. Measurement of electrocardiograms
(ECG), electroencephalograms (EEG), and respiratory activities, as well as assessment of
the parameters of these time series in real-time, would contribute to the insight into the
health condition of the driver while driving. The driver’s ECG, as well as the parameters
derived from this signal, enable the assessment of alarming traffic situations such as driver
fatigue [6], drowsiness [7], prediction of infarction development (of particular importance
for the older group of drivers) [8], and EEG signal measurement contributes detection of
driver fatigue [9], as well as prediction of emergency braking situations to activate the brake
pedal when drivers are not able to react at the appropriate speed [10,11]. An additional
motivation is the current demographic situation and the significant presence of older drivers
in traffic. Ford has developed a car seat for heart rate monitoring (HR) [12]. Capacitive
electrodes are installed in the car seat for non-contact (without direct contact with the skin)
measurement of ECG signals through the driver’s clothing [1]. The main goal of this system
was to monitor HR as an important parameter for assessing the health status of drivers [13],
or the presence of drowsiness in drivers [14]. In addition to the capacitive electrodes that
are built into the car seat, in Reference [15], a steering wheel covered with a conductive
fabric-based dry electrode material is proposed, while Reference [5] describes a solution
that additionally uses sensors built into the steering wheel and belt. The signals are sent
via Bluetooth® and processed on the built-in computer. A car seat equipped with Internet
of Things (IoT) sensors for measuring ECG and EEG signals with a suitable transmitter
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that sends physiological data to the database for further processing and prediction of the
driver’s health has been developed [3,4].

Limiting factors are specific conditions in which signal measurements are performed,
i.e., recording while driving in a car, measurement without direct contact with the driver
(recording over clothes made of different materials), and the dominant presence of move-
ments, as well as the distractions while driving. The measured signals have very small
amplitudes, with the dominant presence of artifacts that represent an obstacle to a reliable
assessment of health parameters.

The presence of artifacts in the signals, as well as the estimation of parameters without
a priori signal processing, can lead to the generation of false alarms or isolation of false
outliers, which is becoming a relevant topic in database processing [16]. Recording by a
capacitive electrode in clinical conditions, while the subjects were sitting still, was analyzed
to determine the possibility of clinical application [17]. Detection of cardiac arrhythmia,
however, is not reliable due to the impossibility of reliable identification of P and T waves,
mostly due to the presence of movement artifacts [17]. Therefore, medical experts have
pointed out that it is necessary to improve the algorithm for the reduction of artifacts in
ECG signals recorded by capacitive electrodes [17]. For this reason, various efforts are being
made to reduce artifacts. The initial proposal was to eliminate all beats that would have
atypical values (below 30 beats/min or over 120 beats/min), i.e., these signal segments
would be treated as artifacts [18]. The authors themselves stated that this very simple ap-
proach is not good enough for a realistic estimate of the signal parameters [18]. In addition,
this approach removes the parameters that indicate the occurrence of unwanted pathologies.
In Reference [1], an algorithm for artifact reduction based on principal component analysis
(PCA) was proposed, with mandatory pre-processing of data to construct an appropriate
training data set for PCA. The use of a training data set with a dominant presence of arti-
facts could lead to inaccurate classification by PCA, so pre-processing of signals recorded
while driving is a mandatory step [1]. Rough signal preprocessing was performed based
on the QRS complex quality assessment to reduce the number of artifacts in the data. QRS
complexes were detected using open-source ECG analysis (OSEA) [19], and values that
were many times higher than expected (so-called “outliers”) were categorized based on a
threshold representing the product of parameters describing the amplitude and standard
deviation of QRS complexes [1]. After pre-processing of the data, the final elimination of
the artifacts was performed based on the calculated eigenvalues, and, for that purpose, the
threshold based on the Hotelling T square value, described in Reference [20], was used.
The authors pointed out that the algorithm needs to be improved because it also eliminates
QRS complexes of small amplitudes compared to noise [1].

One of the available algorithms for the assessment and detection of cECG signal
artifacts is based on the injected signal and modeling of the capacitive system [21]. The
model has been tested only in laboratory conditions and in simulations [21], so further
confirmation in real systems is necessary [22]. Hardware upgrades have also been pro-
posed [22], i.e., it is necessary to install an additional electrode that would provide motion
information to form a reference signal for active noise cancellation (ANC), including an
adaptive filter. There are many methods developed for the reduction of artifacts for the
traditional measurement of ECG signals with direct contact with the patient’s body and
with the application of a gel. In the review paper of Reference [23], these techniques are
categorized as techniques based on Empirical mode decomposition (EMD), wavelet trans-
forms, hybrid models, deep-learning models, and various filters. However, for artifacts on
cECG signals, EMD and wavelet-based techniques did not yield adequate results due to the
dominant presence of large amplitudes and irregular motion noise characteristics, which
was also observed in Reference [22]. Hopes have been pinned on a modified noise reduction
method, Detrended Fluctuation Analysis (DFA)-EMD, based on the idea that, in addition
to decomposing signals into intrinsic mode functions (IMF), the DFA parameters for each
IMF should be estimated to characterize the IMF, as a carrier noise or information [24].
In Reference [25], however, it was stated that the DFA-EMD method failed to mitigate
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the presence of artifacts in the cECG signal recorded while driving, due to the dominant
presence of very large amplitudes of the artifacts.

The aim of this paper is to develop a method for reducing artifacts from ECG signals
recorded by capacitive electrodes (cECG) in moving subjects. The basic idea of the proposed
method is that quantified signal fluctuation around a linear trend of fixed-length segments
can detect segments with artifacts. It is assumed that segments with a very high or very
low value of fluctuations correspond to segments with coarse and slowly changing artifacts
(frequency range from 0.5 to 15 Hz), respectively. We expect that the assessment of an
acceptable level of fluctuation will indicate coarse and slowly changing artifacts and enable
their elimination. Then, the reliability of cardiovascular parameters estimated from cECG
signals without artifacts would increase, as well as the accuracy of classification techniques.

2. Materials and Methods
2.1. Materials

Acquisition of cECG time series while driving was performed using 6 electrodes built
into the car seat. The electrodes are arranged on three levels of two electrodes in the upper
part of the car seat (a detailed photograph is given in References [1,18]). Three electrodes
with the most reliable measurements were manually selected [18]. The process of recording
the cECG signal involved 6 volunteers (male, aged 39.8 ± 26.2 years) who drove in the
city (about 2 h of recording), on the highway (about 8.8 h of recording), and the polygon
in Belgium (about 2.5 h of recording) [18]. Thirty-one measurements were performed,
comprising three cECG signals (designated as cECG1 = Electrode1 − Electrode2, cECG2 =
Electrode2 − Electrode3, and cECG3 = Electrode3 − Electrode1), as well as the reference ECG
signal. Thus, each measurement while driving, whether driving on a highway, polygon, or
city, provided four simultaneously recorded signals: cECG1, cECG2, cECG3, and a reference
signal, a total of 124 signals. The reference signal was measured using the equipment of the
biosignal amplifier g. Bsamp from g.tec medical engineering GmbH Schiedlberg, Austria
(details in Reference [26]) [18]. An A/D converter (NI-USB6259) was used for capacitive
electrodes (cECG1, cECG2, and cECG3) and reference measurements, with an amplitude
resolution of 16 bits per sample and sampling frequency of 1000 Hz [1], except for two
signals with a sampling frequency of 200 Hz [18].

The cECG time series, recorded while lying on the bed, was performed using 12 built-in
electrodes in the bed, from which three ones with the highest quality of measurements were
automatically selected [18]. cECG1, cECG2, and cECG3 were formed in the same way as
measurements recorded during driving by three automatically selected measurements. Ten
volunteers (aged 27.8 ± 4.3 years) participated in the recording procedure. They moved
according to a certain protocol to simulate movements during sleep and generate coarse
artifacts [18]. In the first half of the measurement, the volunteers moved every 60 s, while,
in the second half of the measurement, they were asked to lie for 120 s, then to move for
60 s, and then lie down again for 120 s [18]. In this experiment, the sampling frequency
was 400 Hz. The reference signal was measured by an MP70 (details in Reference [27]) of
Philips (Eindhoven, the Netherlands) [18].

The database with all experimental recordings is publicly available [28], and the
experiment is described in detail in Reference [18]. All volunteers gave written consent [18].

Duration of recording and amplitudes value of cECG time series, publicly avail-
able [28], are shown in Tables 1 and 2.

Table 1. Absolute amplitude of cECG [V], expressed as a mean ± standard deviation SD.

Number of
Measurements
in Each Group

cECG1 cECG2 cECG3
Reference

Signal

CAR 31 0.19 ± 0.67 [V] 0.29 ± 0.89 [V] 0.21 ± 0.69 [V] 0.81 ± 0.93 [V]
BED 20 1.18 ± 2.22 [V] 1.85 ± 2.64 [V] 1.66 ± 2.58 [V] 0.37 ± 0.52 [V]
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Table 2. Duration of extracted ECG segments [s], expressed as a mean ± standard deviation SD.

Number of
Measurements
in Each Group

cECG1 cECG2 cECG3
Reference

Signal

CAR 31 1556.93 ±
2166.13 [s]

1556.93 ±
2166.13 [s]

1556.93 ±
2166.13 [s]

1556.93 ±
2166.13 [s]

BED 20 312.45 ± 10.54
[s]

312.45 ± 10.54
[s]

312.45 ± 10.54
[s]

312.45 ± 10.54
[s]

Table 1 shows the mean values of the absolute signal amplitudes ± standard deviation
(SD) recorded capacitive electrodes. It is noticeable that the intensity of recorded cECG
signals while driving is very low, while its duration is very large (Table 2). cECG1, cECG2,
and cECG3 have the same length because they are recorded simultaneously, while driving
or moving on the bed.

Manual notation of R peaks (maximum in the QRS complex) was performed by
two medical experts independently. If there was a difference of opinion, the R peaks
were marked as NaN [18]. Results of peaks detection by OSEA software (described in
Reference [19]) were analyzed in Reference [18] and are available in Reference [28].

Examples of the raw cECG signals from two sets are shown in Figure 1a,b. Red
markers point to the annotated R peaks according to medical experts. The original purpose
of the labeled R peaks was to assess the accuracy of algorithms for automatic detection
of R peaks in cECG, such as OSEA software, and the possibility of reliable estimation
of HR [1,18]. The results confirmed the possibility of a reliable assessment of HR while
driving in the case of eliminating time intervals with artifacts [1]. Our aim is to eliminate
the artifacts and prepare the signal for further analysis. The beat-to-beat HR time series is
one of the targets.
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Figure 1. An example of a cECG time series recorded (a) while driving in car, (b) while lying on the
bed, (c) enlarged part of useful segments during driving, and (d) enlarged part of useful segments
while lying. Red rectangles indicate R peaks marked by medical experts; an example of coarse
artifacts is marked by the green rectangular border in (a,b); examples of slow-changing artifacts
are marked by the blue rectangular border in (a–c). An example of the useful signal segment that
is similar to the useless segment is marked by the brown rectangular border in (c). Slow-changing
artifacts were determined by checking the overall accuracy in eliminating useless signal segments.
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Two types of artifacts are distinguished: coarse artifacts, which occur as ampli-
tude peaks but different amplitude values (examples are marked by green rectangles
in Figure 1a,b), and slow-changing artifacts that are very similar to the useful part of a
signal (examples are marked by blue rectangles in Figure 1a–c). Figure 1c,d show enlarged
useful segments that medical experts have marked while driving and lying on the bed,
respectively. The signal segment is treated as useful if R peaks can be detected by medical
experts, or as useless if the R peaks, due to artifacts, cannot be detected. There are no
manually marked artifact types in the publicly available database [28], neither coarse nor
slow-changing artifacts.

After visual inspection, we noted that the cECG time series also differs in the number
of coarse artifacts. Figure 2 shows the cECG time series (a) with a moderate amount of
artifacts and (b) without coarse artifacts, while Figure 1a corresponds cECG time series
with a very large amount of coarse artifacts. In accordance with the opinion of medical
experts, useful parts of the cECG time series have been marked in red. Table 3 shows the
number of recordings for each observed group during driving. The cECG3 time series is not
included in the analysis because there is no publicly available notation of the useful part of
the signal. The total number of cECG time series per groups is small, but the long duration
of recording (Table 2) enabled reliable signal analysis. Unfortunately, it is noted that a few
of the cECG time series are into groups of cECG with a moderate amount of artifacts, and
without artifacts, as a consequence of recordings conditions during driving. cECG1, cECG2,
and cECG3 time-series recorded while lying on the bed belong to a group of cECG with a
large amount of artifacts due to moving subjects according to the protocol (total number of
cECG is 60).
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Table 3. Number of cECG per observed groups during driving.

cECG1 cECG2

cECG with large amount of artifacts 26 25
cECG with moderate amount of artifacts 2 3

cECG without artifacts 3 3

The signal-to-noise ratio is expressed as SNR = 10· log
(

Ps
Pn

)
, where Ps corresponds to

the power of cECG time series comprising only the useful segments according to the expert
opinion, and Pn corresponds to the power of all segments that were declared as useless.
The signal segment is treated as useful if R peaks are labeled, or as useless if the R peaks
are not labeled by medical experts. Its mean value is equal −40.01 ± 33.64 dB for cECG1,
and −30.99 ± 23.39 dB for cECG2, during driving. The power of time series is estimated as
the sum of squared amplitude divided by length of time series. The negative value of SNR
is a consequence of very high amplitude values of the coarse artifacts if compared to the
useful parts of the signal. The high SD is a consequence of the different amounts of coarse
artifacts in time series.

We also analyzed the power distribution over the frequency bands of slow-changing
artifacts in cECG1 and cECG2 during driving. The power distribution averaged over ten
signals is shown in Figure 3. The signals comprise segments with slow-changing artifacts
manually extracted from cECG1 and cECG2. The ECG spectral components (0.05~150Hz),
on the other hand, are mainly concentrated in the range of 0.05~35 Hz [29] so that the
spectral overlap is observed, especially, for the frequency less than 15 Hz. For this reason,
classical band-pass filters cannot be implemented for artifact removal [30,31].
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2.2. Reduction of Artifacts Based on Fluctuation in cECG Time Series

The estimation of signal segment fluctuation was performed following the first part
of DFA procedure [32]. The samples of the cECG time series x of length N are denoted by
xk, k = 1, . . . N. In the first step, a vector of cumulative sums Y(i), i = 1,..., N is formed
from the elements obtained by summing i successive centralized samples of the time series
x [32]:

Y(i) =
i

∑
k=1

[xk − 〈x〉] i = 1, . . . . . . , N, (1)

where the k-th centralized sample is formed by subtracting the mean value of the time
series 〈x〉 from the k-th sample xk.

The vector of cumulative sums Y is divided into non-overlapping segments of the
same length [32]. Since the length of the vector of cumulative sums N need not be divisible
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by the number of segments, the last segment is usually shorter and needs to be omitted.
This is not a problem, as the time series are very long (Table 2), so removing one segment
would not compromise the reliability of the results. In the case of short time series, the
segmentation procedure is repeated twice, the first from the beginning, and then starting
from the end of the time series. The total number of observed segments is doubled. In this
way, the reliability of result would not be compromised. The short time series is defined as
series with less than 10,000 samples [33]. In the case of driving, it is only 10 s of recording.
So, the procedure of repeated segmentation from the other end of time series is not applied.

The vector of cumulative sums Y(i), i = 1, . . . . . . , N, is divided into N/SL segments of
length SL. The segments are denoted as Yj(k), j = 1, . . . , N

SL , where k denotes the samples
within a particular segment, k = 1, . . . , SL. Each segment is approximated by polynomial
of the v-th order pj,v that represents the trend of segment number j. Subtracting a trend
from a segment leads to a detrended segment [32]:

Yj,SL(k) = Yj(k)− pj,v(k), j = 1, . . . ,
N
SL

, k = 1, . . . , SL, (2)

and
pj,v(k) = av·Yj

v(k) + av−1·Yj
v−1(k) + . . . + a0, (3)

where av, av−1, a0polynomial coefficients on a segment; νpolynomial order.
The most common polynomial that is used for this method is linear (v = 1) [34], so we

implemented linear approximation.
The detrended fluctuation analysis function FD (j) of one segment of the time series is

calculated as the sum of the square value of the difference between the original value of the
time series and the trend of a given segment divided with SL [32]:

FD (j) =

√
1

SL
·∑SL

k=1

{
Y2

j,SL(k)
}

, j = 1, . . . ,
N
SL

. (4)

The basic idea of the proposed method is to use the estimated value of fluctuation FD
for the artifacts reduction. The FD values of extracted part of raw cECG signals recorded
while driving is presented in the upper panel of Figure 4. Figure 4 shows an example of an
extracted part of raw cECG from an available database, which is intended to show isolated
characteristic segments for analysis. As expected, larger value of FD (j) was obtained for the
segments with coarse artifacts, due to the expected larger deviation from the linear trend of
segments. However, we should be careful about establishing criteria for an acceptable level
of fluctuation, as the detrended fluctuation FD (j) of useless segments may be comparable
to the correct segments. The range of FD value depends on the time series, as described in
detail in the next section.

Figure 4 shows that R peaks detected by OSEA software (marked by black rectangles)
are in accordance with experts’ opinions in useful segments. In addition, the amplitudes of
the useful parts are very small compared to the coarse artifacts.

Unfortunately, the amplitudes of the useful parts are comparable to the parts of the
signal with slow-changing artifacts in which the cECG was not detected. One example of
such a case is isolated in Figure 1c. Figure 1c shows enlarged part of useful segments of
the signal shown in Figure 1a, marked by brown a rectangle, and the useless segment by
blue rectangle of comparable amplitude. So, artifact reduction cannot be performed on
amplitude values alone.

Appropriate cECG pretreatment, shown in Figure 1, would contribute to greater
accuracy of R peak detection algorithms, as well as parameters derived from cECG. So,
it presents the first step in developing an auxiliary tool that, based on the parameters
extracted (from other sources, not only cardiovascular), would detect possible fatigue in
the driver and trigger an alarm that would warn him.
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Method for Artifacts Reduction

In the first step of the algorithm, the time series x should be divided into a non-
overlapping segments of length SL. FD is estimated according to Equation (4) for each
segment.

Before artifact reduction, it is necessary to check the presence of coarse artifacts
in the time series. Namely, the existence of the coarse artifacts is not known a priori.
The parameters that influenced the formation of the criteria for checking the presence of
coarse artifacts are the maximum and minimum value of time series x (max(x), min(x),
respectively), and the square root of the second moment M. Comparing time series with a
large amount and the moderate amount of coarse artifacts to time series without coarse
artifacts (examples are given in Figure 1a, Figure 2a,c), we note that the difference between
the maximum and minimum value of time series x, max(x)-min(x), was larger for signals
with coarse artifacts compared to signals without coarse artifacts. Subtracting the square
root of the uncentralized second moment M, M = E

(
x2) = 1

N ∑N
k=1 x2

k , from this difference
made it possible to distinguish between signals with a large amount of coarse artifacts and
a moderate amount of coarse artifacts, as the value of M is larger for time series with more
coarse artifacts.

The final value of criterion for the presence of coarse artifacts was determined experi-
mentally:

((max(x)−min(x))/2) −
√

M > 1, M = E
(

x2
)
=

1
N

N

∑
k=1

x2
k , (5)

with max(x), min(x)-maximum, and minimum value of time series x, respectively, and M-
the second moment of time series x.
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Figure 5 shows the value of Equation (5) for all three observed groups of cECG (Table 3).
The value of Equation (5) is lower than 1 for signals without the presence of coarse artifacts
(below the gray line in Figure 5).
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For a large and moderate groups, the value of Equation (5) is larger than 1, with a
notable distinction between these two groups. All the cECG time series recorded during
lying on the bed fulfilled the condition for the presence of a large amount of artifacts
(Equation (5)), as expected (Figure 5b).

If the condition of Equation (5) is fulfilled, artifacts from time series should be reduced.
To reduce the presence of coarse and slow-changing artifacts, we have developed a set
of formulae for automatically estimating the level of detrended fluctuation of time series
segments as the criteria for the useful or useless segments.

The first threshold TH1 is intended to reduce the coarse artifacts.
Threshold value TH1 is equal to:

TH1 =

(√
((max(x)−min(x))/2)2 −M

)
· C ·median(FD) +

(SD(FD) + SD(x))
SD(FD) · SD(x)

· C1, (6)

where median(FD) is the median value of detrended fluctuation function of all segments
in time series, SD(FD) and SD(x) are the standard deviation of FD and x, respectively,
max(x), min(x)-maximum, and minimum value of time series x, respectively, and M- the

second moment, while value C is constant value from the range, C ∈ {0.15–0.35} 1
V2 and

C1 = 1 V.
Figure 6a shows median(FD) for cECG record during lying on the bed (gray) or driving

in the car (dark green). The median value is higher for signals with a large presence of
artifacts (marked by filled squares) compared to signals with moderate (marked by unfilled
squares) or no artifacts (marked by unfilled triangle) in both signal groups. The obtained
results are in accordance with the expectations motivated by Figure 4, where higher values
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of FD(j) were noticed in the segments in which coarse artifacts are present. In Figure 6b,c,
we note that the values of SD(FD) and SD(x) for signals with a moderate amount of artifacts
or without artifacts are smaller compared to the standard deviation of time series with a
large amount of coarse artifacts, which is also in line with expectations. SD(FD) and SD(x)
have a larger impact on the final value of TH1 value, while the influence of the median(FD)
is negligible for the signal with a moderate amount of artifacts. In the case of signals with a
large amount of coarse artifacts, the influence of median(FD) is larger compared to SD(FD)
and SD(x).
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Figure 6. Statistical parameters of the recorded cECG time series for different recording conditions:
driving car, lying in bed. (a) Median value of FD, (b) standard deviation SD(FD), and (c) standard
deviation of cECG time series.

The threshold evaluation includes an empirical parameter C. To find the most suitable
value, we analyzed the percentage of preserved R peaks and the percentage of eliminated
useless parts of the signal that might generate false. The results are presented in Figure 7,
for the range of values C ∈ {0.05 to 1}, and for the segment length SL = 0.5 s. The gray
rectangle with C values from 0.15 to 0.35 indicates the range of values for which the best
performances are achieved. Visual inspection of the cECG after the reduction of artifacts
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can determine the presence of coarse artifacts. We used strict criteria to assess the presence
of coarse artifacts, and a time series with at least one coarse artifact is treated as a time
series in which coarse artifacts are not successfully reduced. Within this range, 90% to 97%
of useful signal parts are preserved, and 96% to 100% coarse artifacts are eliminated. The
recommended value is the median point, C = 0.25. R peak annotations were available for
cECG groups recorded while driving and in bed.
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After elimination of all segments (i.e., excluding segments from further analysis) that
fulfilled condition FD(j) > TH1, we check adjacent segments for the possibility of coarse
artefacts partially spilling over the adjacent segments (an example of such segments is
marked with asterisks in Figure 4). To be on the safe side, FD(j) values of adjacent segments
are compared with the TH2.

TH2 =
TH1

2
. (7)

If FD(j) values exceed half of TH1 value, this segment is declared as useless, and it is
eliminated from cECG.

The third threshold, TH3, has a role to eliminate segments with very small deviation
from linear trend, i.e., slow-changing artifacts. If the square difference between the value
of the sample, and the estimated trend of sample is equal to or less than 0.01, and if this
condition is fulfilled for all samples in the segment, that segment is not treated as a carrier

of useful information. In that case, (Equation (4)) is equal to FD (j) =
√

1
SL
·SL·0.01 = 0.1, so

TH3 = 0.1. (8)

The problem of elimination of this type of artifact is expressed in cECG recorded
in cars, where the signal intensity is very low (Table 1), so, in this way, it is possible to
eliminate significant parts of the useful signal (compare part of cECG marked by blue and
red rectangles in Figure 1c). For these reasons, additional protection was introduced, and
the comparison with the TH3 threshold is made only if the difference between the mean
value of FD and SD(FD) is greater than TH3. In this way, the possibility of an incorrect
elimination of the useful signal segments is reduced. In the database [28], there is no
manual notation of slow-changing artifacts, and, since they are comparable to a useful part,
it is difficult to be identifiable visually. For these reasons, the success in eliminating slow-
changing artifacts is observed by the overall accuracy of the algorithm, i.e., by comparing
the useless segments according to the assessment of the algorithm with the useless segments
marked by the opinion of medical experts.

The pseudocode explaining Algorithm 1 is shown below.
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Algorithm 1: Reduction of Artifacts in cECG Time Series

Input: cECG time series
1. Divide the signal into non-overlapping segments SL = 0.5 s.
2. Estimate the fluctuation for each segment
3. Form array FD from estimated fluctuation for each segment
4. Determine: the minimum value cECGMIN, maximum value cECGMAX, and the second
uncentered moment M
5. Calculate TH1
6. Calculate TH2
7. Calculate TH3
8. if the difference between difference of half cECGMAX and cECGMIN and square root of M is less
than 1

if element in array FD is larger than TH1 do
eliminate observed segment in cECG

if difference between current element in array FD and next element larger than TH2
eliminate next segment in cECG

end if
if difference between current element in array FD and previous element larger than TH2

eliminate previous segment in cECG
end if

end if
end if

9. Calculate the mean value of FD and standard deviation of FD
10. if difference between the mean value of FD and SD(FD) is larger than TH3 do

if element in array FD is less than TH3 do
eliminate observed segment in cECG
end if
end if

Output: cECG time series with reduced artifacts

2.3. Binarized Entropy (BinEn)

We also analyzed a method that does not require artifacts removal. Such methods
are rare, almost non-existent. Binarized entropy (BinEn) [35] is one of them, developed
for another harsh environment—mobile crowdsensing systems—where the reduction of
artifacts is not feasible. A brief recapitulation of BinEn adapted to a single data set is below.

In the first step, time series x are binary differentially encoded and split into m-sized
binary vectors [35]:

c =
{

0 xi+1 − xi ≤ 0
1 xi+1 − xi > 0

}
i = 1, . . . . . . . . . N

Ci
m =

[
ci, ci+τ , . . . , ci+(m−1)·τ

]
, i = 1, . . . , N − (m− 1)·τ, (9)

where the delay τ is distances the elements of the vector from each other, and m is size
of vectors. In most applications τ = 1, m ∈ {1, 2, 3, 4} [35]. In the BinEn, the vectors are
binary, so the number of different vectors is 2m, and each vector can be assigned a decimal
number k [35]:

k =
m−1

∑
n=0

ci+n·τ ·2n. (10)
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N(m)
C represents the number of occurrences of a certain vector series in the observed

time series C [35]:

N(m)
C (k) = ∑N−(m−1)·τ

i=1 I
{
∑m−1

l=0 ci+l·τ ·2l = k
}

, k = 0, 1, . . . , 2m − 1. (11)

I{}—indicator function equal to one if the condition is met, and zero otherwise.
The estimation of probability mass function of observed vectors in C is equal to:

P̂(m)
C =

N(m)
C (k)

N − (m− 1)·τ . (12)

In the following step, it is necessary to find the distance d between each pair of vectors.
Distance d is calculated according to the Hamming distance [35]:

d
(

Ci
m, Cj

m

)
= ∑m−1

k=0 ci+k·τ ⊕ cj+k·τ = ∑m−1
k=0 I

{
ci+k·τ 6= cj+k·τ

}
i, j = 1, . . . , N − (m− 1)·τ, (13)

where ⊕ notes ex-or logic function, and I {.} indicators function. The distance d
(

Ci
m, Cj

m

)
between the vectors is a discrete variable that can have one of the m + 1 values, that is,
d
(

Ci
m, Cj

m

)
∈ {0, 1, . . . m} [35].

The matrix of Hamming distance is denoted by H(m) [35]. Elements of matrix H are
the distance between the vector whose decimal represents k and the vector whose decimal
represents n, (hk·n) [35]. The probability that vector Ci

m occurs in C is estimated based on
the value in matrix H, which gave information on which vectors are in distance less than r
from Ci

m, and Equation (11) that gave information about a number of vectors that are at the
same distance [35]:

p̂m
k (r) = Pr

{
d
(

Ci
m, Cm

)
≤ r
}

= 1
N−(m−1)·τ ·

2m−1
∑

n=0
N(m)

C (n)·I
{

h(m)
k·n ≤ r

}
= ∑2m−1

n=0 P̂(m)
C (n)·I

{
h(m)

k·n ≤ r
}

.

(14)

In the next step, value of summand Φ̂ is calculated as average of logarithm p̂m
k [35]:

Φ̂m
(r, N, τ) = 1

N−(m−1)·τ ·
2m−1

∑
k=0

N(m)
C (k)· ln

(
p̂m

k (r)
)

= ∑2m−1
k=0 P̂(m)

C (k)· ln
(

p̂m
k (r)

)
.

(15)

The final value of BinApEn is estimated on model of approximate entropy (detail in
Reference [36]) [35]:

BinApEn(m, r, N, τ) = Φ̂m
(r, N, τ)− Φ̂m+1

(r, N, τ). (16)

BinSampEn is a binarized version of sample entropy (proposed in Reference [37]),
which excludes self-similarity (comparison of vectors with themselves) [35]:

BinSampEn(m, r, N, τ) = −10· log

(
Φ̂m+1

(r, N, τ)

Φ̂m
(r, N, τ)

)
. (17)

2.4. Classifiers

The K nearest neighbors (KNN) algorithm is a simple supervised machine learning
algorithm that classifies data based on estimates of K the nearest neighbors [38]. The K
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nearest neighbors are found by the distance between test and training objects in feature
space [38]. The test object is classified into the appropriate class, in which the majority of
K neighbors belong [38]. We used Euclidean distances to determine K nearest neighbors,
the number of observed classes is two (driving in the city and driving on open roads). The
number of K is selected by cross-validation of 10% of training data sets (K = 5).

The Deep Dense Neural Network (DDNN) is a deep learning technique that includes
an input, output layer and a fully connected layer between those two layers [39]. We used
model custom architecture (15 fully connected layers with 128 units, followed by drop layer
output). The proposed architecture is very simple due to the existence of only two classes
and a small database (details described in Section 2.5). We used an Adam optimizer [40]
during DDNN training and cross-entropy as loss function [41]. The drop layer output is
used for the regularization procedure to reduce overfitting to the training data set. The
purpose of the experiment was to test the sensitivity of the classifier to the presence of
artifacts in the signal.

2.5. Statistical Analysis

Some of the illustrative results are presented as graphs showing mean ± standard
deviation. Statistical significance between observed groups was checked by t-test for paired
samples in MATLAB R2013a. We used significance level p < 0.01 for all compared groups.

To form a database of appropriate sizes for testing and training KNN and DDNN, we
divided the cECG2 time-series recorded while driving (large duration of time series, Table 2)
into non-overlapped parts with a duration of 50 s. We opted for cECG2 because it has a better
recording quality compared to cECG1 (higher amplitude, Table 1) and manual notation of
useful segments available in Reference [28]. The total number of signals was 648, out of
which 70% were used for the training set, and 30% for the test set. Data with a large amount
of coarse artifacts, a moderate amount of coarse artifacts, and without coarse artifacts are
uniformly arranged into a training set and a test set. For validation, we used only 10%
of the training data because of the small size database. In the case of DDNN, the model
has converged after several hundred epochs, so the number of observed epochs was set to
500. There are 2 classes in total, driving in the city and on the open road. We used a list of
features: the value of the R peak, the HR (estimated as inversion of time intervals between
adjacent R peaks), the BinEn of cECG time series, and pNN (percentage of successive
normal cardiac interbeat intervals), that corresponds the percentage of RR intervals greater
than 50 ms after reduction of artifacts (details are described in Reference [42]).

Classification performance is calculated according to the following expressions:

Accuracy =
TP + TN

TP + FP + FN + TN
, (18)

Sensitivity =
TP

TP + FN
, (19)

Specifity =
TN

FP + TN
, (20)

Positive prediction =
TP

TP + FP
, (21)

Negative prediction =
TN

TN + FN
. (22)

The classification performance was tested in the context of quantifying the success
of recognition of the driving location—open roads or city. In this context, TP denotes
the number of cases correctly identified as driving in the city, FP denotes the number of
cases incorrectly identified as driving in the city, TN denotes the number of cases correctly
identified as driving in open roads (highway or polygon), and FN denotes the number of
cases incorrectly identified as driving in open roads (highway or polygon).
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In the context of quantifying the success of the artifact reduction by the proposed method,
TP denotes the number of correctly identified useful segments (marked by medical experts),
TN denotes the number correctly identified useless segments (segments without R peaks and
categorized as artifacts according to experts), FP denotes the number of segments incorrectly
identified as useless, and FN denotes the number of segments incorrectly identified as useful.

3. Results and Discussion

Figure 8a,b comparatively show the mean value of the percentage of eliminated time
series by the proposed method, and the percentage of eliminated time series according to the
notion of medical experts. These results are in excellent accordance for all three groups of
cECG1, cECG2, and cECG3 time series recorded while lying on the bed (Figure 8a). The high
percentage of eliminated segments in time series while lying in bed is due to the movement
of volunteers required by protocol. The high values of standard deviations shown in Figure 8
show a great variability of the amount of artifacts in the recorded signals. Figures 1a and 2
show that the cECG time series contain different amounts of artifacts during driving. Besides,
the controlled movement of the volunteers in an experiment driving car affects the electrodes
in the upper part of the body more than it affects other electrodes [1].

The difference between the eliminated artifacts and medical expert’s opinion is larger
for cECG time series recorded during driving, due to the slow-changing artifacts (Figure 8a).
The elimination of slow-changing artifacts is complicated by the low intensity of the
recorded signal while driving (Table 1), which makes the difference between a useful and a
useless segment imperceptible (examples are marked in Figure 1c).

Figure 8b shows the high percentage of preserved R peaks marked by medical experts.
Included in the analysis are all cECG time series that are labeled by medical experts.
Unfortunately, notation of R peaks for cECG3 time series recorded during driving are not
available in Reference [28]. As a consequence of the fact that useful parts of the signal
are comparable to the parts of the signal with slow-changing artifacts, slow-changing
artifacts are partly survived, especially, while driving a car. Fortunately, the presence of
slow-changing artifacts does not significantly affect the estimation of the mean value of the
absolute amplitude cECG, which is confirmed in Figure 8c.

To check the presence of a significant difference between mean value of absolute
amplitude of cECG after the elimination of the artifact by the proposed method and after
the elimination of the artifact following the opinion of experts, we used a t-test for paired
samples. The presence of statistical significance was observed between the group of raw
recorded signals and signals after artifact elimination by the proposed method (Figure 8c,
marked *), as well as to signals after artifact elimination, by the opinion of medical experts
(Figure 8c, marked #). There is no statistical significance between the signals after the
reduction of artifacts by the proposed method and following the opinion of experts.

Figure 9c,d show examples of the cECG time series after artifacts reduction by the
proposed method in the car and on the bed, respectively.

Figure 10a,b show the percentage of preserved useful segments (segments with R peaks
according to medical experts), the percentage of eliminated useless segments (segments
without R peaks and categorized as artifacts according to experts), and overall accuracy
(Equation (18)), depending on length SL. A high level (95–100%) of preservation of the
useful segment of time series is achieved, as well as reduction of coarse artifacts (98–100%),
while the percentage of eliminated R peaks is around 10% (except for cECG1 recorded
during driving with the lowest amplitude intensity) for a length of 0.5 s (Figure 10c–d)
for all signal groups. Overall, accuracy is slightly lower for time series recorded while
driving (Figure 10a), due to the impossibility of eliminating slow-changing artifacts as a
consequence of the very low intensity of recorded time series (Table 1). In addition, it has
been shown that slow-changing artifacts, which are not eliminated from the time series, do
not significantly affect changes in statistical parameters (Figure 8c). The same problem was
observed in Reference [1], where the impossibility of detecting QRS complex in segments
that are comparable to noise.
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Figure 8. Comparative presentation of the mean value ± SD percentage of eliminated time series by the proposed method and by the opinion of experts: (a) cECG
time series recorded while lying on the bed, (b) cECG time series recorded while driving and (c) mean values of absolute amplitudes of cECG time series ± SD.
Statistical significance is observed between the raw cECG and cECG after elimination of the artifacts by the proposed method (marked *), as well as the cECG after
elimination, according to the experts (marked #). Statistical significance does not exist between the group of signals after elimination of the artifact by the proposed
method and in the opinion of experts. We used a t-test for paired samples, with significance levels p < 0.01 for all compared groups.
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lying on the bed, (c) cECG1 time series after elimination of artifacts by the proposed method, and
(d) cECG3 time series after elimination of artifacts by the proposed method.
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Figure 10. Demonstration of the success of eliminating artifacts and preserving the useful part of the
signal by the proposed method depending on SL. (a) cECG1, cECG2 recorded in the car, (b) cECG1,
cECG2, and cECG3 while lying on the bed, (c) the percentage of time series in which the coarse
artifacts are fully eliminated, depending on the SL, and (d) the percentage of lost R peaks after
artifacts reduction, depending on the SL.

To the best of our knowledge, there are two methods for reducing cECG signaling
artifacts of mobile subjects (described in detail in References [1,18]). These methods estimate
the duration of the interval between R peaks (detected by OSEA) in raw cECG and reject
atypical values as artifacts. In Reference [18], the HR value that is larger than 120 beats/min
and lower than 30 beats/min was treated as artifacts. The authors pointed out that, for
real application, the procedure should be improved [18]. In Reference [1], the possibility of
reliable estimation of HR during driving is investigated. The proposed method is based
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on QRS detection in raw cECG times series by OSEA software. It was noted that many
false-positive QRS were detected by OSEA, as a consequence of the shaped pulse of cECG
that is very similar to QRS complexes, so specific boundaries have been introduced [1].

A comparative analysis of the results of the proposed method the existing algorithms
is not possible. Our method eliminates the artifacts before extracting the parameters, such
as HR and QRS, and, more importantly, without predefined ranges. Thus, our method
enables detection of potential cardiovascular pathology from the corrected signals, which
is not possible in methods based on predefined ranges.

Statistical significance of entropy as a measurement of the complexity and unpre-
dictability of time series [43] was observed between groups of ECG recorded with and
without disturbing the driver while driving [44]. We test the possibility of applying bina-
rized approximated entropy (BinEn), a method developed for entropy estimation on signals
that do not require artifact elimination. We estimated BinEn for approximate entropy
(BinApEn) and sample entropy (BinSampEn) for different groups of parameters. Statistical
significance was observed in estimating BinApEn and BinSampEn between the raw signal
and the signal after artifact removal by the proposed method only for parameters (m = 3,
r = 1) for the cECG1 group recorded in the car (time series with the smallest amplitude in
Table 1). For other groups of signals with higher value of amplitudes, no statistical signifi-
cance was noticed. The possibility for BinEn to distinguish between cECG recorded while
driving in the city and on the open road (highway and polygon) after artifacts reduction is
shown in Figure 11e.
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Figure 11. BinApEn and BinSampEn for cECG of all observed groups. (a) Mean value of BinApEn
(m = 2, r = 2) ± SD, (b) mean value of BinApEn (m = 3, r = 1) ± SD, (c) BinSampEn (m = 2, r = 2) ± SD,
(d) BinSampEn (m = 3, r = 1) ± SD and (e) mean value of BinApEn ± SD and BinSampEn ± SD for
(m = 2, r = 2) and (m = 3, r = 1) of the cECG recorded during driving in the city and in the open road.
Statistical significance between BinEn of cECG after elimination of the artifacts during driving in the
city and the open road is marked by *.

The values of the threshold TH1 for cECG recorded during driving and while lying
on the bed are shown in Figure 12. Introducing a constant threshold or range of values
would not lead to an adequate result because the final value TH1 depends on the statistical
parameters of the time series. TH1 values are slightly lower for time series of lower intensity,
recorded in the car, but there are isolated cases whose threshold value is measurable with
the time series recorded while lying on the bed (higher intensity; see Table 1). In addition,
eliminating coarse artifacts based on the amplitude value (e.g., >4 V is a coarse artifact)
would not be a good solution because it is a value that would eliminate partly coarse
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artifacts in the case of a cECG recorded while driving, but, for cECG recorded during lying,
it would eliminate R peaks (Figure 1a,b).
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We use the KNN technique [38] and DDNN technique [39] to classify driving in city
conditions and in the open road (highway or on the proving ground). To investigate the
sensitivity of KNN and DDNN on artifacts, we compare results on raw cECG and cECG
after artifacts reduction. The list of features consists of the value of the R peak, the HR, and
the BinEn of cECG time series. Table 4 shows the impact of artifacts on the accuracy of
machine learning techniques. Results of the KNN technique [38] show that 23% accuracy
has been improved for cECG time series after artifact elimination (in Table 4, noted as
KNN2) and 39% for DDNN techniques [39] (in Table 4, noted as DDNN2). In addition,
55% growth was achieved for sensitivity and for positive prediction of 59%, while, for
the DDNN, it was even growth for 73.47%, 63.18%, respectively. The accuracy of KNN
classifications has increased after the expansion of the feature list with pNN50, a method
which requires the reduction of artifacts (in Table 4, noted as KNN3), but, for DDNN, it
was a slight increase of 0.51%. In addition, we can note the increase of all classification
performance for KNN3 in comparison to KNN2. DDNN is more sensitive to the presence
of artifacts compared to KNN, but it is also slightly accurate compared to KNN.

Table 4. Classification performance [%].

ML
Technique Accuracy Sensitivity Specificity Positive

Prediction
Negative

Prediction

KNN1 65.64 14.28 82.87 21.87 74.23
KNN2 88.21 69.40 94.52 80.95 90.20
KNN3 92.68 77.55 97.95 92.68 92.86

DDNN1 53.33 20.41 64,38 16.13 70.68
DDNN2 92.31 93.88 91.78 79.31 97.81
DDNN3 92.82 95.83 91.84 79.31 98.54

KNN1 for raw cECG. KNN2 for cECG after reduction artifacts. KNN3 for cECG after reduction artifacts with
extended features with pNN50. DDNN1 for raw cECG. DDNN2 for cECG after reduction artifacts. DDNN3 for
cECG after reduction artifacts with extended features with pNN50.

4. Conclusions

The main contribution of this paper is the development of a method for the reduction
of artifacts in cECG signals. The detailed analysis of cECG signals publicly available on [28]
reveals that medical experts have concluded that about 30% of the signals represent noise,
as well as that there are only a few cECG time series without coarse artifacts or with
a moderate amount of artifacts. Such domineering presence of artifacts is not aligned
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with the theoretical requirements according to which the signals should be stationary and
without the artifacts. Besides, transferring the recorded cECG signals to the cloud, without
prior reduction of the artifacts, would significantly increase the amount of transmitted
traffic, while data processing in the cloud would not be reliable. The proposed method
can be applied online. The first 50 s of cECG provide statistical parameters of FD and the
corresponding thresholds. Each subsequent recorded cECG segment affects the expansion
of the FD series of fluctuation values and updates the threshold value. To strengthen the
motivation for our work, we have also shown that, even in a small size database, it is
noticeable that the presence of artifacts weakens the performance of the classification of
KNN and DDNN machine learning techniques, which differentiate urban and other driving
conditions. Unfortunately, a small database can affect reliability in estimating the accuracy
of classification, especially of DDNN techniques. An alternative to reducing artifacts is to
develop methods that are resistant to the presence of artifacts. As an example, we have
shown binarized entropy that operates on binary differential coded raw signals and yields
good entropy estimates. The pseudocode is given for the easier implementation of the
algorithm, and the code is available on request.
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16. Nowak-Brzezińska, A.; Łazarz, W. Qualitative Data Clustering to Detect Outliers. Entropy 2021, 23, 869. [CrossRef]
17. Czaplik, M.; Eilebrecht, B.; Walocha, R.; Walter, M.; Schauerte, P.; Leonhardt, S.; Rossaint, R. The reliability and accuracy of a

noncontact electrocardiograph system for screening purposes. Anesth. Analg. 2012, 114, 322–327. [CrossRef]
18. Wartzek, T.; Czaplik, M.; Antink, C.H.; Eilebrecht, B.; Walocha, R.; Leonhardt, S. UnoVis: The MedIT public unobtrusive vital

signs database. Health Inf. Sci. Syst. 2015, 3, 1–9. [CrossRef] [PubMed]
19. Hamilton, P. Open source EKG analysis. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September

2002.
20. Kiencke, U.; Schwarz, M.; Weickert, T. Signalverarbeitung: Zeit-Frequenz-Analyse und Schätzverfahren; Oldenbourg Verlag: Munich,

Germany, 2008; pp. 1–430.
21. Serteyn, A.; Vullings, R.; Meftah, M.; Bergmans, J.W.M. Motion Artifacts in Capacitive EKG Measurements: Reducing the

Combined Effect of DC Voltages and Capacitance Changes Using an Injection Signal. IEEE Trans. Biomed. Eng. 2015, 62, 264–273.
[CrossRef] [PubMed]

22. Choi, M.; Jeong, J.J.; Kim, S.H.; Kim, S.W. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using
Adjacent Non-Intrusive EKG Sensors. Sensors 2016, 16, 715. [CrossRef]

23. Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L.; Raghuvanshi, D.K. Review of noise removal techniques in EKG signals. IET
Signal. Process. 2020, 14, 569–590. [CrossRef]

24. Mert, A.; Akan, A. Detrended fluctuation analysis for empirical mode decomposition based denoising. In Proceedings of the
European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014.
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