
����������
�������

Citation: Wysocki, M.; Ślepaczuk, R.

Artificial Neural Networks

Performance in WIG20 Index Options

Pricing. Entropy 2022, 24, 35. https://

doi.org/10.3390/e24010035

Academic Editors: Zoran H. Peric,

Vlado Delic and Vladimir Despotovic

Received: 29 November 2021

Accepted: 21 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Artificial Neural Networks Performance in WIG20 Index
Options Pricing

Maciej Wysocki 1 and Robert Ślepaczuk 2,*

1 Quantitative Finance Research Group, Faculty of Economic Sciences, University of Warsaw, Ul. Długa 44/50,
00-241 Warsaw, Poland; maciej.wysocki13@gmail.com

2 Quantitative Finance Research Group, Department of Quantitative Finance, Faculty of Economic Sciences,
University of Warsaw, Ul. Długa 44/50, 00-241 Warsaw, Poland

* Correspondence: rslepaczuk@wne.uw.edu.pl

Abstract: In this paper, the performance of artificial neural networks in option pricing was analyzed
and compared with the results obtained from the Black–Scholes–Merton model, based on the his-
torical volatility. The results were compared based on various error metrics calculated separately
between three moneyness ratios. The market data-driven approach was taken to train and test the
neural network on the real-world options data from 2009 to 2019, quoted on the Warsaw Stock
Exchange. The artificial neural network did not provide more accurate option prices, even though
its hyperparameters were properly tuned. The Black–Scholes–Merton model turned out to be more
precise and robust to various market conditions. In addition, the bias of the forecasts obtained from
the neural network differed significantly between moneyness states. This study provides an initial
insight into the application of deep learning methods to pricing options in emerging markets with
low liquidity and high volatility.

Keywords: option pricing; artificial neural networks; implied volatility; supervised learning; index
options; Black–Scholes–Merton model

1. Introduction

The history of neural networks (NNs) started in the early 1940s, when McCulloch and
Pitts [1] proposed the first computational model for NNs. Throughout the years, many
upgrades and improvements have been proposed. The popularity of NNs started to grow
in 1974, when Werbos [2] published his work about the backpropagation algorithm that
enabled the operational training of models. Machine learning (ML) techniques have been
broadly used in finance in many different applications, such as forecasting stock price
movements, pricing derivatives, the preventing credit frauds. NNs were applied for a
variety of tasks, such as algorithmic trading, modeling volatility, or speeding up processes
of calibrating parametric models.

Although the performance of NNs has already been described in different papers, most
of them focused on simulated markets or data from the New York Stock Exchange, with
the approach of boosting the performance of the Black–Scholes–Merton model (BSM). The
main aims of this paper were the exploration of deep learning possibilities in option pricing
and the analysis of the market data-driven approach for NNs training for a developing
market. None of the previous works have covered the topic of the machine learning (ML)
approach to pricing derivatives on emerging markets with relatively low liquidity and
high volatility. Considering previous results of NNs, these models might turn out to be a
solution for problems occurring in pricing contracts quoted on emerging markets. The goal
of this research was to design the proper architecture of the NN for a data-driven approach
and to test its performance in comparison with the traditional BSM model.

The first research hypothesis was that neural networks trained on real-world market
data could perform better than the Black–Scholes–Merton model in terms of pricing errors.

Entropy 2022, 24, 35. https://doi.org/10.3390/e24010035 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010035
https://doi.org/10.3390/e24010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1693-1438
https://orcid.org/0000-0001-5227-2014
https://doi.org/10.3390/e24010035
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010035?type=check_update&version=2

Entropy 2022, 24, 35 2 of 19

Similar to the standard machine learning development process, common evaluation metrics
were compared for both NN and BSM models to decide which of these two gave more
accurate prices. In order to verify the hypotheses and provide the most robust ML model,
the hyperparameters tuning for NN were conducted.

The assumption that NNs might, in fact, perform at least as well as the traditional
BSM model was based on many previous kinds of research, such as [3,4]. As these articles
stated, properly designed NNs trained on market data can significantly outperform other
models, including BSM.

The second hypothesis was that one could observe a difference in pricing errors of
the NN considering the moneyness ratio. For different moneyness states, there could be
various error distributions. The revealing pattern in error distribution might provide an
explanation of its magnitude. Moreover, for purposes of future NN architectures, such
analysis might be helpful when deciding whether options with particular characteristics
should be excluded from the training process.

Considering the properties of options and the differences between moneyness states, it is a
reasonable assumption that the pricing error will differ for every possibility. Kokoszczyński [5]
provided evidence from the Polish market that, indeed, different moneyness ratios and time
to maturities reveal patterns of the pricing error distribution. The same has been carried out
for the Japanese option market, regardless of the chosen model and its characteristics [6].

The rest of the paper is organized as follows. Firstly, a literature review is provided,
followed by a chapter consisting of the option pricing models included in the paper and
a methodology description with an introduction to NNs. The third chapter is devoted to
components of ANNs, as well as a description of proper network architecture development.
Subsequently, data description and its preprocessing for purposes of ANN fitting are
provided. The next chapter presents empirical results, model performance, and comparison.
Verification of main hypotheses, summary, and proposals for further research are placed in
the conclusion of this paper.

2. Literature Review

The paper entitled “The Pricing of Options Corporate Liabilities” published by F. Black
and M. Scholes [7], together with the paper “Theory of Rational Option Pricing”, written
by R. Merton [8], introduced the BSM model, providing a simple framework for practical
implementations, which gave reliable results. However, many of its assumptions were
quickly proven to be non-realistic.

Bates [9] provided a very exhaustive discussion of previous empirical research con-
cerning option pricing, especially the BSM model. The work of Bakshi et al. [10] revealed
inconsistency of the BSM model between different moneyness and maturities. Moreover, it
was shown that introducing stochastic volatility [11,12] and stochastic volatility jumps [13]
does indeed improve the performance of option pricing models.

Implied volatility was said to have huge predictive power in forecasting the future
volatility on the markets to address issues with biased volatility indicators. However,
the work of Canina and Figlewski [14] clearly stated that the implied volatility calculated
with the BSM model has practically no correlation with future volatility. Similar work of
Fleming [15] showed that implied volatility was a biased estimator; however, it did contain
valuable information about the future realized volatility. Although it was proven to be
biased, the implied volatility has an advantage over other estimators when used in the
BSM model, as shown in many previous works [16,17]

Park et al. [18] provided a comparison of a few ML algorithms—support vector regres-
sion (SVR), Gaussian process regression (GPR), and ANN with parametric methods—the
BS model, the Heston model, and the Merton model. It turned out that ML methods
significantly outperformed the BS model, as well as performed comparably well to other
parametric models, depending on moneyness and maturity. Similar conclusions were
stated by Wang [19] in an article that summarized the performance of SVR in currency
options pricing. Results of ML methods obtained on Hong Kong Derivatives Market [20]

Entropy 2022, 24, 35 3 of 19

also confirmed that the use of SVR and NN improved pricing accuracy and provided better,
more reliable results.

The very first papers concerning the use of ANNs for purposes of derivatives pricing
were the articles of Malliaris and Salchenberger [21] and Hutchinson et al. [22]. The results
from both papers were promising, as in the first work the ANNs managed to outperform
the BSM model. The second article investigated the hedging performance of the NNs.

The simplest approach to pricing options with NNs was feeding the network with
the price of the underlying asset and strike price without any processing along with the
other parameters used in the BSM model; this can be found in [23–25]. Nevertheless, this
approach was far less popular than the use of transformed spot price and strike price. The
most common transformation is a division of the underlying asset price by the strike price.
Such data preprocessing can be found in [26–29].

Yang et al. [4] proposed the use of the gated NNs that not only provide reliable prices
of the options, but also contain a guarantee of economically reasonable and rational results.
When it comes to portfolio hedging, the long short-term memory (LSTM) RNN was said to
be outperforming conventional methods [30].

Another approach to leverage the flexibility of deep learning methods was presented
in [31], where the author proposed a two-step approach, also called a stack of models. The
options were first priced using three different classical methods and these estimations were
then taken as an input to the ANN. The author was able to deliver evidence for a superior
pricing accuracy of such an approach over classical models.

3. Methodology and Option Pricing Models
3.1. Terminology and Metrics

An option is a contract giving the holder a right to purchase (a call option) or to sell
(a put option) a fixed amount of underlying asset at a specific date—the expiration date.
European style options are the ones that cannot be exercised before the day of expiration.

Moneyness describes an actual profit for the owner of an option, from exercising the
option immediately at that time. In-the-money (ITM) options are the ones that would have
positive intrinsic value if they were exercised today. Similarly, out-of-the-money (OTM)
options are the ones that would have negative intrinsic value if they were exercised today.
At-the-money (ATM) options fill in the last possibility, which is that the current price and
strike price are the same, so the theoretical profit is equal to zero. To classify options within
their current moneyness, the moneyness ratio (MR) is used, expressed as follows [5]:

MR =
S

K·e−r·τ (1)

where S is the spot price of the underlying, K is the strike price, r is the risk-free rate, and
τ is the time to maturity. For call options, moneyness ratio in the range [0; 0.95) refers to
OTM options, the moneyness ratio in the range [0.95; 1.05) means the option is ATM, and
options with MR higher than 1.05 are in-the-money. Put options are classified using the
same ranges but in reverse order, so that the first range is for ITM options and the last one
is for OTM options.

When it comes to the model evaluation and comparison between different methods,
error metrics must be introduced. Statistics used in this paper are typical for any work
concerning regression problems [32]:

• Mean absolute error (MAE)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (2)

• Mean square error (MSE)

Entropy 2022, 24, 35 4 of 19

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (3)

• Root mean square error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (4)

• Mean absolute percentage error (MAPE)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (5)

For each case Yi is the real value and Ŷi is the value calculated by the model.

3.2. Black–Scholes–Merton Model

The model used in this paper is the framework BSM model with the continuous
dividend paid by the underlying asset. The model is based on the partial differential
equation, namely the Black–Scholes Equation (7), as follows:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0 (6)

where V is the price of the option at time t, S is the price of the underlying at time t, r is
the risk-free interest rate, and σ is the standard deviation of the underlying asset’s returns.
The solution that is the price of either put or call price given by the model is sought to
satisfy Equation (6). The prices of European options can be obtained using the following
Formula (7):

Pc(St, τ) = St·e−q·τ ·N(d1)− K·e−r·τ ·N(d2) (7)

PP(St, τ) = K·e−r·τ ·N(−d2)− St·e−q·τ ·N(−d1) (8)

d1 =
lnln

(
St
K

)
+ (r− q)·τ

σ
√

τ
+

σ
√

τ

2
(9)

d2 =
ln ln

(
St
K

)
+ (r− q)·τ

σ
√

τ
− σ
√

τ

2
= d1 − σ

√
τ (10)

where PC is the price of the call option and PP is the price of the put option. In these
equations, an additional symbol, q, denotes the dividend rate, K stands for the strike price,
and N(·) is the cumulative distribution function of the standard normal distribution.

The one parameter that cannot be directly observed on the market is the volatility of
the underlying asset. In this paper the volatility estimator is based on the historical returns
from the underlying and calculated using the following formula:

HVn =
√

T

√
1

n− 1

n

∑
t=0

(ut − u)2 (11)

ut = ln
St

St−1
(12)

where ut is a logarithmic rate of return from the underlying asset, u is the mean of all
logarithmic returns in the sample, T is the number of trading days in a year, and n is the
size of the sample. Typically, T is equal to 252 trading days in the year. The memory of the
volatility process is chosen to be 60 days.

Entropy 2022, 24, 35 5 of 19

There are many other approaches to modeling volatility that could be used to obtain
estimators introduced to the BSM formulas, such as realized volatility [33], stochastic volatil-
ity [11,12], or implied volatility, calculated from observed market options prices [5,6,34].
An executive review of various volatility estimators can be found in [35].

3.3. Artificial Neural Network
3.3.1. Architecture of Artificial Neural Networks

The class of NNs used in this paper is the multilayer perceptron (MLP) [36,37], also
called the feedforward network, which consists of at least three layers of neurons: the
input layer, the output layer, and at least one hidden layer between them. There are
no restrictions for the number of layers or neurons in them, so one must find a proper
architecture depending on the data the NN is fed with. The very first layer of MLP is the
input layer, which consists of a data vector and a bias term from which the weighted sum
is calculated and then fed forward to the first hidden layer. In each layer of the network,
there is a chosen activation function that is responsible for the activation of the layer if
the output from the previous one exceeds the threshold of activation. The output of the
activation function from each neuron is then passed further to the next layer of nodes,
where the weighted sum is calculated again. This process continues until the output layer
is introduced where the output vector is calculated.

The basic component of ANNs is a neuron, also called a node. The neurons take
the input either from the initial data set or from the previous layer and combine it with
an optimal threshold, calculated using the activation function. These functions’ task is
introducing non-linearity to the model, as well as creating a differentiable transition as the
input changes. The neurons are attached to connections that are responsible for assigning
weights, in such a way that more valuable information has a higher weight. Between layers,
a full connection can exist, and a dropout could be introduced. Dropout is a technique used
for preventing the ANN from overfitting to the training dataset and it consists of dropping
out randomly selected nodes from a single layer.

Training an NN for regression problems relies on training the model on the example
of input and output pairs from the training dataset. The training process is conducted by
minimizing the differences between real and predicted values to maximize the accuracy
of the fitted values. The errors are expressed using a cost function which depends on the
type of the problem. The cost function is evaluated in every run and then the weights
in connections between the neurons are updated to optimize the function. Typically, the
learning process continues as long as the error is reduced; therefore, intentionally, the cost
function reaches its global extremum.

3.3.2. Backpropagation and Optimization

Backpropagation [2] is an algorithm used in training MLPs for supervised learning
problems. This method is designed to adjust the weights in a connection between neurons
in the way that the cost function is minimized. The algorithm calculates the loss function’s
gradient with respect to each weight during the training process. Starting from the output
layer, partial derivatives are calculated through every layer to the input layer and then
for each of them, the algorithm returns gradient with respect to adequate weights. The
main advantage of backpropagation is its efficiency, which allows the use of gradient-based
optimization techniques. Due to the backpropagation algorithm, training the NN can be
conducted as an iterative process of updating weights.

The gradient-based optimization techniques are designed to search for global optima
of a function in directions pointed by the gradients at the specific point. The most com-
mon technique is the gradient descent algorithm used for finding a local minimum of a
differentiable function. Nevertheless, there are many alternatives that could be used for
optimization purposes, such as stochastic gradient descent (SGD) or adaptive moment
estimation (ADAM), in which both the gradients and the second moment of the gradients
are calculated and used for weights updating [38].

Entropy 2022, 24, 35 6 of 19

3.3.3. Hyperparameters

The hyperparameters are a type of parameter that are arbitrarily set before the learning
process starts and do not change through the training phase. As the option pricing is a
supervised regression problem, the chosen loss function to be minimized was MAE.

The basic hyperparameters are the number of layers in an NN and the number of
neurons in each layer. Both must be defined at the beginning of architecture design.
Typically, NNs used for purposes of option pricing do not have too many layers [39] and
a search for the optimal number should be performed, rather using the trial-and-error
method [40]. Following this technique, the proper number of layers was found to be
six, including the input and the output layers. The search for the optimal number of
layers started from one hidden layer and, consequently, networks up to six hidden layers
were tested.

For the first stage of the NN architecture design, the number of nodes was chosen
along with the activation functions, a batch size, number of epochs, a dropout rate, and
an optimizer. At that point, the task was to find an initial set of parameters that were
performing well and were stable to use as a starting point in the tuning phase. The final
values of parameters were chosen in the process of hyperparameters tuning conducted for
all the following hyperparameters: batch size, dropout rate, optimizer, initializer, learning
rate, β1, and β2.

The batch size is the parameter defining how many examples are used in one backward
pass of the learning process. It defines how many samples from the training data are used
in one complete training pass through the network.

The dropout rate refers to ignoring randomly selected nodes during one pass of the
training phase in a certain layer. The dropouts are introduced for chosen layers to prevent
the algorithm from overfitting to the training data.

The optimizers are algorithms responsible for updating the attributes of NNs, such as
the weights and the learning rate, to reduce the error and minimize the loss function.

The initializers are functions, defining the way to set the initial random weights for
connections in each dense layer. Choosing a proper initialization technique is crucial, as
only proper weights allow optimizing the function in a rational amount of time. When the
initial weights are set incorrectly, the convergence to the global minimum is impossible.

The learning rate is responsible for controlling how much the weights are updated in
response to the evaluated cost function at every pass in the training process. Additionally, in
the case of the Adam optimizer, instead of adapting the learning rate based on the average
first moment, the average of the second moment of the gradients is used. The algorithm
calculates an exponential moving average of the gradient and the squared gradient, and
the parameters β1 and β1 control the decay rates of these moving averages.

The first stage of the NN architecture design was conducted as an iterative process of
training the NN with another combination of hyperparameters, until all possible sets of
the hyperparameters indicated in Table 1 were checked (5× 6× 1× 4× 2× 4 = 960). The
training was performed on 80% of the total dataset. Then, the results were summarized
and the set that resulted in the lowest value of loss function was chosen. This approach
allowed us to design an NN that gave stable and satisfactory results for that moment.

Table 1. Possible values of the hyperparameters investigated during the first stage.

Parameter Options or Range

Neurons (each layer) 250, 500, 1000, 1500, 2500
Batch Size 250, 500, 1000, 1500, 2000, 2500

Epochs 15
Dropout Rate 0, 0.05, 0.1, 0.2

Optimizer RMSProp, Adam
Activation Function ELU, ReLU, Softmax, Sigmoid

Note: Values of hyperparameters checked in the first stage of NN architecture development.

Entropy 2022, 24, 35 7 of 19

The hyperparameters tuning, performed on the same 80% of the total dataset, was
conducted in the following way. For each of the parameters a set of possible values was
chosen and then the network with framework architecture (Table 2) was trained using
different values of just one parameter, with other parameters set to be constant. Such
an approach allowed comparison between different hyperparameter values. Moreover,
changing only one hyperparameter at a time ensured that the changes in the results were
caused by the investigated parameter and not by the others.

Table 2. Hyperparameters of the neural network framework.

Parameter Chosen Option or Value

Neurons (each layer) 1000
Batch Size 1500

Epochs 15
Dropout Rate 0.1

Optimizer Adam
Activation Function ReLU

Note: The hyperparameters chosen as the optimal values from all the possibilities in Table 1.

3.3.4. Results of the Hyperparameters Tuning

The number of epochs was set to 5 so that the algorithm would be responsible for
updating weights 5 times during a single training process. The change in the number of
epochs from 15 to 5 was done after careful analysis of the initial learning process and its
error estimates. Moreover, reducing the number of epochs enabled the process of tuning of
parameters to substantially speed up. Table 3 contains all the ranges or possible options for
different parameters of the model. The activation function was not included in the tuning
process because none of the other activation functions, besides ReLU, enabled the gradient
to converge.

Table 3. Values of the hyperparameters investigated during the hyperparameters tuning.

Parameter Options or Range

Neurons (each layer) 500, 1000, 1500, 2000
Batch Size 1000, 1500, 2000

Dropout Rate 0.05, 0.1, 0.15, 0.2, 0.25
Optimizer SGD, Adam, Adamax, Adagrad, Adadelta, Nadam

Activation Function ReLU
Epochs 5

Initializer Random Normal, Random Uniform, Glorot Normal, Glorot Uniform,
Lecun Normal

Learning Rate 0.0001, 0.005, 0.001, 0.005, 0.01
β1 0.75, 0.8, 0.9, 0.95, 0.975
β2 0.95, 0.975, 0.999, 0.9999

Note: Hyperparameters values for the tuning phase aiming to improve the performance of NN.

The number of neurons was chosen to be the same for every layer. Although the initial
value of nodes was selected from a similar range, it was checked for different values once
again on the framework to confirm the results.

As clearly visible in Table 4, values were very similar in each case. The final number
of neurons at each layer was chosen to be 500, since, for that number, the cost function was
monotonically decreasing during the training process in contrast to other possible numbers
of neurons, for which either MAE or MSE were behaving in a non-monotonic way.

Entropy 2022, 24, 35 8 of 19

Table 4. Hyperparameters of the neural network framework.

Neurons MAE MSE

500 0.0232028 0.0025026
1000 0.0232188 0.0025038
1500 0.0232206 0.0025054
2000 0.0232127 0.0025038

Note: Final values of the error metrics calculated for different numbers of nodes for the hyperparameters tuning.
Other hyperparameters: batch size—1500; dropout rate—0.1; optimizer—Adam; activation function—ReLU;
learning rate—0.001; initializer—none.

When it comes to the batch size (Table 5), the optimal value was different from the one
chosen in the first stage. In the final model there are 1000 examples of input and output
data during one backward pass in the training process. Although the final values of MAE
and MSE were slightly higher than for the batch size set to 2000, the learning process for
the batch size equal to 1000 is more stable; therefore, this value was chosen.

Table 5. The batch size and error metrics evaluated after each training process.

Batch Size MAE MSE

1000 0.0231536 0.0024729
1500 0.0231796 0.0024737
2000 0.0231300 0.0024713

Note: Final values of the error metrics calculated for different batch sizes for the hyperparameters tuning. Other
hyperparameters: neurons—500; dropout rate—0.1; optimizer—Adam; activation function—ReLU; learning
rate—0.001; initializer—none.

The dropout rate was set to 0.2, because for that value, the process remained the most
stable among the others as well as the error metrics evaluated after the first epoch was
the lowest (Table 6). The stability of the process means that no sudden jumps upward or
downward of the error metrics were observed during the training process.

Table 6. The dropout rate and error metrics evaluated after each training process.

Dropout Rate MAE MSE

0.05 0.0232059 0.0025036
0.1 0.0232209 0.0025042

0.15 0.0232166 0.0025025
0.2 0.0232186 0.0025025

0.25 0.0232311 0.0025060
Note: Final values of the error metrics calculated for different dropout rates for the hyperparameters tuning.
Other hyperparameters: neurons—500; batch size—1000; optimizer—Adam; activation function—ReLU; learning
rate—0.001; initializer—none.

As the Table 7 presented, the worst results were obtained for Adadelta and SGD. Better
results were obtained using Nadam and the best results were obtained for Adam, Adamax,
and Adagrad. Since Adam provided reproducible results and it was the most popular one
in financial applications, it was chosen as the final optimizer.

Entropy 2022, 24, 35 9 of 19

Table 7. The optimizer and error metrics evaluated after each training process.

Optimizer MAE MSE

SGD 0.0235614 0.0025065
Adam 0.0232262 0.0025050

Adamax 0.0232267 0.0025074
Adagrad 0.0232103 0.0025060
Adadelta 0.0237524 0.0025160
Nadam 0.0232326 0.0025073

Note: Final values of the error metrics calculated for different optimizing methods for the hyperparameters tuning.
Other hyperparameters: neurons—500; batch size—1000; dropout rate—0.2; activation function—ReLU; learning
rate—0.001; initializer—none.

The highest MAE and MSE values were obtained for random and random uniform
normal initializing function (Table 8). Glorot normal and lecun uniform performed very
similarly. The final method of random weights assignment was chosen to be lecun normal,
due to its monotonically decreasing error metrics.

Table 8. The initializer and error metrics evaluated after each training process.

Initializer MAE MSE

Random Normal 0.0232714 0.0025059
Random Uniform 0.0232260 0.0025062

Glorot Normal 0.0232198 0.0025041
Glorot Uniform 0.0232212 0.0025027
Lecun Normal 0.0232197 0.0025050

Note: Final values of the error metrics calculated for different initializers for the hyperparameters tuning. Other hy-
perparameters: neurons—500; batch size—1000; dropout rate—0.2; optimizer—Adam; activation function—ReLU;
learning rate—0.001.

For the analysis of learning rate and β1 and β2 hyperparameters, another approach
was taken. These parameters were investigated together due to their similarity and the
roles that they have. All of them were parameters of the optimizer that influenced the
model flexibility—that is, they influenced how much the model was updated in every pass
of the training phase. Table 9 summarizes the best 5 runs out of 100. The parameters chosen
to be in the final architecture of the model are the learning rate at the level of 0.001, β1
equal to 0.9, and β2 equal to 0.9999.

Table 9. The learning rate, β1, β2, and error metrics evaluated after each training process.

Learning Rate β1 β2 MAE MSE

0.001 0.9 0.9999 0.0232107 0.0025051
0.005 0.8 0.9999 0.0232112 0.0025075
0.001 0.8 0.9999 0.0232116 0.0025121
0.001 0.8 0.95 0.0232172 0.0025096
0.001 0.9 0.975 0.0232194 0.0025064

Note: Values of error metric for 5 best runs of the NN with corresponding hyperparameters used in the run.
Other hyperparameters are: neurons—500, batch size—1000, dropout rate—0.2, optimizer—Adam, activation
function—ReLU, initializer—lecun normal.

The number of epochs was chosen to be 15, so the learning process took 15 repeats of
passing the entire set backward and forward through the algorithm. Different values of the
epoch were checked to find the number of epochs that allowed the network to converge.
The aim was to obtain a stable process of learning without visible overfitting. As Figure 1
shows, the learning process remained stable without any unexpected jumps or random
disruptions. The loss function stabilized with a final value around 0.02321 and the MSE
metric stabilized near 0.0025. The NN learned fast as the process started to remain stable at
the 5th epoch and then the loss function remained at similar values.

Entropy 2022, 24, 35 10 of 19

Figure 1. Error metrics estimated during the learning process with respect to the epochs. Values of
the MAE and the MSE metrics calculated after every epoch of training the NN with the following
hyperparameters: neurons—500; batch size—1000; dropout rate—0.2; optimizer—Adam; activation
function—ReLU; learning rate—0.001; β1—0.9; β2—0.9999.

4. Data Description

The dataset used in the research was gathered from stooq.com (accessed on 3 June
2020) and Warsaw Stock Exchange (WSE) and its core parts were daily quotes of WIG20
index European options and WIG20 index from the WSE.

4.1. Data Distribution

The quotes covered the period from the beginning of January 2009 to the end of
November 2019. Such a wide time frame of the data allowed many different conditions
on the market to be covered. The 3 month Warsaw Interbank Offer Rate (WIBOR3M) was
used as an estimator of the risk-free interest rate, similarly to that used in [5]. The options
included in the dataset were all of these quoted on the WSE, so the research covered many
different strike prices and maturities. For the modeling purposes, the time to maturity was
calculated in years, where one year was 252 trading days. As a dividend rate estimator,
a continuous dividend yield from the WIG20 index was used. The historical volatility
estimator was calculated using the method described in one of the previous chapters.

For modeling purposes, the close price was assumed to be the proper option’s price
and was then used as a true value. A number of the records in the collected dataset was
equal to 139,371, where 68,285 observations concerned the call options, and the remaining
71,086 observations concerned the put options. The dataset was then well balanced and
a large amount of data for both put and call options was included. Table 10 presents a
summary of the descriptive statistics for the whole dataset

Table 10. Summary statistics for selected variables.

Mean Standard
Deviation Minimum Median Maximum

Option Price 59.820 101.651 0.01 21.4 1580
WIG20 Index 2265.15 266.968 1327.64 2308.44 2932.62
Strike Price 2252.22 384.034 900 2275 3400

Interest Rate 0.027 0.013 0.016 0.017 0.058
Dividend Rate 0.029 0.011 0.011 0.030 0.060

Time to Maturity 0.352 0.330 0.000 0.250 1.460
Historical
Volatility 0.1847 0.073 0.0675 0.1656 0.5087

Note: Statistics calculated for the Polish market in years 2009–2019. All options quoted on the WSE during that
period are summarized.

Entropy 2022, 24, 35 11 of 19

The options prices were distributed in a very wide range between 0 and 1600. The
mean price was near 60 and the median price was 21, so the distribution was uneven
and outliers were probably introduced to the dataset. As seen in Figure 2, the intuition
concerning the outliers in the dataset was confirmed. Prices close to 0 dominated the
dataset; however, there were some observations with prices higher than 100.

Figure 2. Histograms of the options prices and comparison of market and strike prices. (a) The
histogram of option prices is strongly influenced by the accumulation of the observations near zero.
(b) The typical strike prices are between 1800 and 2500.

Table 11 summarizes descriptive statistics for put and call options distinguished
between three moneyness states. As is clearly visible, most of the observations were OTM
options. There were only around 7100 ITM calls and the same amount of ITM puts. For both
types, there were 25,000 observations ATM both calls and puts. Moreover, the prices were
the highest for ITM options, while both OTM and ATM were cheaper, as all the statistics
were smaller for them.

Table 11. Summary statistics for options concerning their moneyness.

Type Moneyness Number of
Options Mean Price Minimum

Price
Maximum

Price

Call
OTM 35,888 14.83 0.01 256.60
ATM 25,259 59.40 0.01 400.00
ITM 7138 265.30 30.00 1429.00

Put
OTM 40,771 17.11 0.01 289.00
ATM 23,219 64.58 0.01 468.00
ITM 7096 312.00 22.00 1580.1

Note: Summary statistics for all the options quoted on the WSE in years 2009–2019 with distinction between types
and moneyness.

4.2. Data Preprocessing for Neural Network

For purposes of modeling with an NN the dataset first had to be divided into two
subsets. The first, larger one is called the training or in-sample set, and it was used to train
the model. The second, smaller one is called the testing or out-of-sample set, and it was
used for validation purposes. A test sample was used to verify whether introducing the
model to the new data will result in at least comparable results, as well as check if there
was overfitting to the training sample. In this paper, 80% of the initial data was used as
the training set and the remaining 20% was used as testing data. There is no golden rule

Entropy 2022, 24, 35 12 of 19

specifying how to divide the data and the discussion on this topic continues [41]. Some
authors have said that the time series characteristic of the data should not be interfered
with, while others claim that the ability to catch different market conditions was more
important. In this paper the second approach was taken, and the data was split with respect
to varying price distribution. This means that the intent was to feature the training data
with as many different market conditions as possible.

The main aim of preprocessing was to change the distribution and range of the data.
Applying statistical models, such as NNs, typically requires such preparations with respect
to the characteristics and the abilities of the models. When it comes to the application
of NNs in option pricing, the typical transformation is normalizing the data [42] in the
following way:

XpreProcessed =
X− X√
Var(X)

(13)

where X denotes a vector of values for a single variable in the dataset and X denotes the
mean value. The same transformation has been used in this research in order to obtain
reliable and unbiased results by methods widely described in other papers.

The last issue, when it comes to modeling with the use of NNs, was choosing which
input the model should be fed with. One option was to feed the network with just spot
price, strike price, and time to maturity [43,44]. A more common approach was to use
option price, divided by strike price and time to maturity [18,45]. The most common
approach found in the literature is using spot price divided by strike price along with
time to maturity, interest rate, and volatility [24,31,46]. As this paper aimed to compare
the performance of a BSM model and NNs in pricing options, the ML model was chosen
to be introduced to the same data as that used in the BSM model. In other words, the
input variables were spot price, strike price, interest rate, continuous dividend rate, time to
maturity, and volatility. Moreover, the spot price was divided by the strike price. Similarly,
the output of the NN was chosen to be the option’s price divided by its strike price.

5. Empirical Results
5.1. Cross-Validation Results

The k-fold cross-validation was conducted to check if the overfitting was introduced
to the model as well as verify its abilities without using the out-of-sample dataset. This
method consists of randomly dividing the data set into k folds of equal size that are then
used to train and test the model [32]. The first group is left as out-of-sample data and the
remaining k-1 groups are used to train the model that is then validated on the data left and
the error metric is calculated. This procedure is then repeated k times and, as a result, there
are k estimates of test error that are then averaged and treated as an out-of-sample error
that could be compared with in-sample errors.

The number of folds that the in-sample data was divided into was set to 5. The
NN was trained 5 times on slightly different datasets, and each time, it estimated on the
remaining part of data. The results below summarize the errors calculated after validation
on a single fold.

The main conclusion from Table 12 was that no overfitting was detected; therefore, it
was confirmed that the model was designed correctly. The performance was very stable,
and errors remained low. It could be used to obtain the prices, without worries about bias
resulting from improper training; in addition, there is no need to redesign the architecture
of the NN or repeat the process of the hyperparameters tuning.

Entropy 2022, 24, 35 13 of 19

Table 12. Cross-validation training and testing errors.

Fold 1 2 3 4 5

Train MAE 0.023221 0.023141 0.023278 0.023200 0.023331
MSE 0.002539 0.002448 0.002521 0.002524 0.002496

Test MAE 0.023335 0.023624 0.023052 0.023298 0.022861
MSE 0.002418 0.002795 0.002436 0.002441 0.002501

Note: Values of the error metrics calculated after training of the NN on a partial dataset and testing on the data left
from the partition. The hyperparameters: neurons—500; batch size—1000; dropout rate—0.2; optimizer—Adam;
activation function—ReLU; learning rate—0.001; β1—0.9; β2—0.9999.

5.2. In-Sample Results

The in-sample results were the results obtained on the dataset (80% of all data) that
was used to train the neural network. The BSM model was the benchmark model, so its
results were summarized in the first order. There is no need for splitting the dataset when
using the BSM model, as it does not require any training. Nevertheless, the results obtained
with the BSM model were used as the first benchmark of the goodness of fit for the NN, as
well as an indicator of the possible error range. Table 13 summarizes the error metrics for
the prices obtained using the BSM model.

Table 13. Error metrics for the prices estimated using the BSM model.

Type Moneyness MAE MSE RMSE MAPE

Call OTM 11.293 436.624 20.896 1.2445
ATM 13.470 422.868 20.564 0.3764
ITM 19.709 766.129 27.679 0.0913

Put OTM 7.529 184.029 13.566 0.6277
ATM 12.779 409.507 20.236 0.2733
ITM 24.304 1197.690 34.608 0.0904

Note: The values of the error metrics for prices obtained using the BSM model, divided between types and
moneyness of the options in an in-sample period.

The first conclusion was that the quality of pricing with the use of the BSM model
differed a lot between the types of options as well as their moneyness. To conduct a
comparison of the pricing accuracy of the model, the mean average percentage error
(MAPE) was used. ITM options were much more expensive compared with OTM options,
which often had a price close to 0. MAPE allowed comparing the errors with the difference
in the price already taken into consideration. Both call and put OTM options were priced
with the highest percentage bias. For call options, the MAPE exceeded 1.22 when it came to
OTM options, while for put options, this was close to 0.62. ATM options were priced with
MAPE close to 0.37 for call options and 0.27 for put options. The ITM options were priced
with the lowest percentage bias, close to 0.09 for both calls and puts.

The obvious conclusion from Table 14 was that the accuracy of the pricing was not
stable between different moneyness states. The most reliable prices were obtained for the
ITM options. ITM call options were priced with MAPE around 0.9, while the same metric
for the OTM call options was close to 16.7. The OTM put options were priced with a mean
average percentage error close to 10.5, while for the ITM options, this metric was near 0.89.
The ATM call options were priced with the MAPE around 2.3, while this metric for the put
options was closer to 1.91.

Entropy 2022, 24, 35 14 of 19

Table 14. Error metrics for the prices estimated using the NN model.

Type Moneyness MAE MSE RMSE MAPE

Call OTM 22.763 758.021 27.532 16.758
ATM 39.516 2967.675 54.476 2.3205
ITM 242.46 78,512.48 280.201 0.9020

Put OTM 14.626 374.482 19.351 10.508
ATM 44.773 3683.993 60.696 1.9122
ITM 282.897 113,397 336.745 0.8903

Note: The values of the error metrics for prices obtained using the BSM model divided between types and
moneyness of the options within the in-sample period

When it comes to the comparison of the NN and the BSM model performance, the
MAE was used to compare the accuracy of pricing for the same types of options in the same
moneyness. Tables 13 and 14 revealed that the BSM model provided much more reliable
pricing than the NN. The OTM calls were priced by the deep learning model with MAE
close to 22.8, and for puts, this metric was around 14.6. The same options were priced by
the BSM model with MAE adequately 11.3 and 7.5. Similarly, for the ATM call options, the
NN pricing resulted in MAE around 39.5 and for the put options around 44.8. The BSM
model priced these options with the error metric adequately equal to 13.5 and 12.8. When it
comes to ITM options, the parametric model priced the calls with an error metric of nearly
19.7, and the puts with the error metric were close to 24.3. The NN priced the ITM call
options with MAE around 242.5 and the put options with MAE around 282.9. There was a
huge difference between the methods and the NN performed much worse in pricing the
ITM options.

Although the training process remained stable and no overfitting was detected in the
model, the resulting in-sample pricing performance was not satisfactory. So far, the prices
provided by the NN were less reliable than those from the BSM model, as the resulting
errors were higher for the deep learning model. Nevertheless, to verify the ML model, the
out-of-sample results had to be compared.

5.3. Out-of-Sample Results

The final verification of ML methods, such as NNs, can be based on the out-of-sample
results. For the out-of-sample results, the remaining 20% subset of the data was used. These
data were not used before, so that the NN could be fed with a new input that consisted of
27873 observations.

Table 15 shows that the error values varied depending on moneyness. Moreover,
similar conclusions could be drawn as for the in-sample data. The ITM options were priced
with the lowest MAPE, while the OTM options were priced with the highest error. The
OTM call options were priced with MAPE near to 1.23, while the MAPE for the OTM
put options was slightly above 0.6. The ATM options were priced with a similar MAPE,
which was close to 0.36 for the call options and 0.3 for the put options. The MAPE metric
was slightly above 0.09 for both ITM calls and ITM puts, which means that options in this
moneyness state were priced the most accurately.

Table 15. Error metrics for the BSM model prices.

Type Moneyness MAE MSE RMSE MAPE

Call OTM 11.009 404.216 20.105 1.234
ATM 13.835 445.259 21.101 0.3634
ITM 20.173 839.290 28.970 0.0915

Put OTM 7.950 201.196 14.184 0.6317
ATM 13.047 409.144 20.227 0.2927
ITM 23.863 1156.281 34.004 0.0939

Note: The values of the error metrics for prices obtained using the BSM model divided between types and
moneyness of the options in the in-sample period

Entropy 2022, 24, 35 15 of 19

The obtained results (Table 16) suggested that no overfitting was introduced to the
NN, because the out-of-sample metrics were comparable to in-sample ones. Moreover,
the results were similarly biased and not any optimistic, so it was concluded that the data
leakage was not a problem in this paper. The least reliable results, in terms of MAPE, were
obtained for the OTM options—both the calls and the puts. For the OTM call options, the
MAPE metric was above 17, while for the OTM put options, this error metric was equal to
10.5. The MAPE for the ATM options was equal 2.13 for the calls and 1.97 for the puts. For
both ITM calls and puts the MAPE was close to 0.9.

Table 16. Error metrics for the neural network out-of-sample prices.

Type Moneyness MAE MSE RMSE MAPE

Call OTM 22.993 767.184 27.698 17.124
ATM 39.781 2937.782 54.201 2.135
ITM 246.013 80,779.38 284.217 0.9041

Put OTM 14.742 381.378 19.529 10.505
ATM 44.745 3670.09 60.581 1.974
ITM 277.419 107,795.5 328.322 0.8897

Note: The values of the error metrics divided between types and moneyness of the options prices ob-
tained using the NN with the following hyperparameters: neurons—500; batch size—1000; dropout rate—0.2;
optimizer—Adam; activation function—ReLU; learning rate—0.001; β1—0.9; β2—0.9999.

Comparison of the results from Tables 15 and 16 showed that the BSM model priced
the options more accurately. The OTM call options were priced by the BSM model with
MAE close to 11 and the put options with MAE close to 8. When it comes to the neural
network, the error metric was adequately 23 and 14.7. The BSM model priced the ATM
calls with MAE near to 13.8 and puts with MAE close to 13. The same options were priced
by the NN with MAE adequately close to 40 and 44.75. The highest MAE was obtained for
the ITM options, as the NN priced the calls with MAE nearly 246 and puts nearly 277.4.
The same options were priced using the BSM model and the errors were close to 20 for the
calls and nearly 23.9 for the puts.

Figure 3 compared the market price with the corresponding model price obtained from
the BSM model (Figure 3a) and the NN (Figure 3b). The line y = x is a curve determining
the perfect pricing where the model price and the market price are the same. For the
BSM model, there were more dots below the curve, which means the model prices were
positively biased. Therefore, the model tended to overprice options, which means that the
prices obtained by the parametric model were higher than the corresponding real values.
Nevertheless, the dots follow the straight line. This conclusion, however, could not be
stated when it comes to the NN pricing. The non-parametric model tended to strongly
underprice the options, which resulted in prices cumulated in the range between 0 and
75. The NN prices were often close to 10, while the real price of the option exceeded 1000.
The OTM options that were priced with the lowest errors were the cheapest options. Even
though the non-parametric model was trained using the market data, it was not able to
catch the similarities to properly price options with varying moneyness and types.

Entropy 2022, 24, 35 16 of 19

Figure 3. The BSM model prices and market prices along with NN model prices and market prices
with curve y = x. The model prices from the BSM model from the out-of-sample data and the model
prices from the NN from the out-of-sample data with the corresponding market prices revealing the
bias of the models. (a) Prices from BSM model. (b) Prices from the NN model.

5.4. Discussion of the Results

There could be a few reasons for such unsatisfactory results when it comes to modeling
options prices with NNs. Firstly, the data used for the training purposes that was taken
from the real-world market consisted mostly of the OTM options. Above 61,000 observa-
tions from the training sample were the OTM options, while only 11,401 observations were
ITM options. Some authors suggest that filtering methods should be applied to the data to
prevent such problems [26,44,47]. There are different methods that could be applied, such
as selecting only ITM options or selecting only options that satisfied various maturity con-
straints. In this paper, the intention was to compare the pricing of options with parametric
and non-parametric methods; therefore, no filtering was introduced. The BSM model was
designed to provide prices that are more or less accurate, and the obtained results suggest
that, although the errors varied for different characteristics, they were still comparable.
When it comes to NNs, the resulting errors were different for various characteristics, and
they were not comparable.

Secondly, the Polish Derivatives Market is an emerging market with typical problems
for such markets, such as liquidity or non-synchronous trading [5]. This led to various price
distributions on a wide range. As described in the previous section, the prices in the dataset
varied between 0.01 and 1500 but were accumulated near 0. The prices above 1000 were so
untypical that they could be treated as outliers, while the strike prices exceeded 1000. The
NN turned out not to be robust for such a wide range of data. The main barrier was the
lack of ITM options on the emerging markets with few participants. This was also a reason
that filtering methods could not be applied, as the obtained data would not be reliable for
the characteristics of the market.

6. Conclusions

The efficiency and accuracy of the parametric BSM model and the non-parametric
NN in options pricing were verified using the data from Warsaw Stock Market. The NN
was developed in a data-driven approach, which means it was designed and trained using
real-world market data. The BSM model was used with the 60 days historical volatility
estimator. To check the research hypotheses, the 10 years data was split into the training
sample used for modeling purposes, and the testing sample was used for the validation

Entropy 2022, 24, 35 17 of 19

of the model. The input to the NN consisted of the same variables as those used in the
BSM model; however, the value of the WIG20 index as an underlying asset was divided
by the strike price of an option. The output of the NN was the option price, divided by its
strike price. The output was then transformed to analyze and compare error metrics for
prices. The results were presented for call and put options, divided between three different
moneyness states.

The results obtained from empirical analysis did not confirm the first research hypoth-
esis, that the NNs trained on the market data are able to outperform the BSM model. In fact,
the NN used for pricing options did not perform significantly better than the BSM model.
The prices obtained using the data driven NN were far more biased than those from the
parametric model. The NN was not robust to the varying market conditions, which are
typical for emerging markets such as the WSE.

The second hypothesis, that the prices provided with the NN are not robust to the
varying moneyness states, could not be rejected. In terms of MAPE, the most accurate
model prices were obtained for the ITM options, and the least accurate prices were obtained
for the OTM options. The pattern in pricing accuracy was visible in the in-sample as well
as the out-of-sample results.

To summarize, using NNs to price options for all maturities and moneyness states did
not lead to a significant improvement in pricing accuracy. The BSM model was more robust
to various market conditions and provided much more stable and reliable prices. One
of the possibilities for dealing with the difficulties met by the NN would be in applying
filtering methods to the data. Another possibility would be to develop different models for
various characteristics, e.g., three NNs for three moneyness states. The results obtained by
developing the NN on the wide dataset, consisting of options with different characteristics,
were neither satisfactory nor reliable.

This paper introduced an initial study of machine learning methods applied to pricing
options quoted in emerging markets. The market data used to evaluate the option pricing
models exhibited some troublesome characteristics common for the developing markets.
Although the results suggested that the NN did not outperform the BSM model, analysis of
the error pattern indicated that applying additional filtering methods might substantially
enhance the performance of the deep learning-based model. Additionally, the ANN price
estimations could be incorporated into an ensemble or a stack of different models, e.g., a
combination of BSM, Heston, and ANN. Such an approach posed a possible solution to the
troublesome data behaviors, which caused the pricing inaccuracies.

Further research for ML methods applied to pricing options on markets, such as the
WSE, could focus on dealing with the varying accuracy between moneyness states. As
suggested above, either filtering the data or developing models for different conditions
could be tested. Secondly, more effort could be put to the detection of outliers and effectively
dealing with such observations. Moreover, to provide a more diversified sample, the high-
frequency data could be used. Lack of ITM options was the main reason for such biased
prices provided by the neural network. Lastly, an additional input data feed (e.g., various
moneyness states) for the NN could be employed to provide more detailed information
about options diversity.

Author Contributions: Conceptualization, M.W. and R.Ś.; methodology, M.W. and R.Ś.; software,
M.W.; validation, M.W. and R.Ś.; formal analysis, M.W. and R.Ś.; investigation, M.W.; resources,
M.W. and R.Ś.; data curation, M.W.; writing—original draft preparation, M.W.; writing—review and
editing, M.W. and R.Ś.; visualization, M.W.; supervision, R.Ś.; project administration, R.Ś. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are within the paper.

Entropy 2022, 24, 35 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
2. Werbos, P.; John, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard

University, Cambridge, MA, USA, 1974.
3. Jang, H.; Lee, J. Generative Bayesian neural network model for risk-neutral pricing of American index options. Quant. Financ.

2019, 19, 587–603. [CrossRef]
4. Yang, Y.; Zheng, Y.; Hospedales, T. Gated neural networks for option pricing: Rationality by design. Assoc. Adv. Artif. Intell. 2017,

31, 52–58.
5. Kokoszczyński, R.; Nehrebecka, N.; Sakowski, P.; Strawiński, P.; Ślepaczuk, R. Option Pricing Models with HF Data—A Comparative

Study. The Properties of the Black Model with Different Volatility Measures; University of Warsaw: Warszawa, Poland.
6. Kokoszczyński, R.; Sakowski, P.; Ślepaczuk, R. Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options.

Cent. Eur. Econ. J. 2017, 4, 18–39.
7. Black, F.; Scholes, M. Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [CrossRef]
8. Merton, R. Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141. [CrossRef]
9. Bates, D. Empirical option pricing: A retrospection. J. Econ. 2003, 116, 387–404. [CrossRef]
10. Bakshi, G.; Cao, C.; Chen, Z. Empirical Performance of Alternative Option Pricing Models. J. Financ. 2012, 52, 2003–2049.

[CrossRef]
11. Heston, S. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev.

Financ. Stud. 1993, 6, 327–343. [CrossRef]
12. Hull, J.; White, A. The Pricing of Options with Stochastic Volatilities. J. Financ. 1987, 42, 281–300. [CrossRef]
13. Bates, D. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options. Rev. Financ. Stud. 1996, 9,

69–107. [CrossRef]
14. Canina, L.; Figlewski, S. The Informational Content of Implied Volatility. Rev. Financ. Stud. 1993, 6, 659–681. [CrossRef]
15. Fleming, J. The quality of market volatility forecasts implied by S&P 100 index option prices. J. Empir. Finance 1998, 5, 317–345.
16. Raj, M.; Thurston, D. Transactions Data Examination of the Effectiveness of the Black Model for Pricing Options on Nikkei Index

Futures. J. Financ. Strateg. Decis. 1998, 11, 37–45.
17. Ferreira, E.; Gago, M.; Leon, A.; Rubio, G. An Empirical Comparison of the Performance of Alternative Option Pricing Model.

Investig. Econ. 2005, 29, 483–523.
18. Park, H.; Kim, N.; Lee, J. Parametric models and non-parametric machine learning models for predicting option prices: Empirical

comparison study over KOSPI 200 Index options. Expert Syst. Appl. 2014, 41, 5227–5237. [CrossRef]
19. Wang, P. Pricing currency options with support vector regression and stochastic volatility model with jumps. Expert Syst. Appl.

2011, 38, 1–7. [CrossRef]
20. Liang, X.; Zhang, H.; Xiao, J.; Chen, Y. Improving option price forecasts with neural networks and support vector regressions.

Neurocomputing 2009, 72, 3055–3065. [CrossRef]
21. Malliaris, M.; Salchenberger, L. A neural network model for estimating option prices. Appl. Intell. 1993, 3, 193–206. [CrossRef]
22. Hutchinson, J.; Lo, A.; Poggio, T. A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learning

Networks. J. Financ. 1994, 49, 851–889. [CrossRef]
23. Herrmann, R.; Narr, A. Neural Networks and the Evaluation of Derivatives: Some Insights into the Implied Pricing Mechanism of

German Stock Index Options. 1997. Available online: http://finance.fbv.kit.edu/download/dp202.pdf (accessed on 17 June 2020).
24. Palmer, S.; Gorse, D. Pseudo-analytical solutions for stochastic options pricing using Monte Carlo simulation and breeding

PSO-trained neural networks. In Proceedings of the European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 26–28 April 2017.

25. Mitra, S. An option pricing model that combines neural network approach and Black Scholes formula. Glob. J. Comput. Sci.
Technol. 2012, 12, 6–16.

26. Andreou, P.C.; Charalambous, C.; Martzoukos, S. Robust artificial neural networks for pricing of European options. Comput.
Econ. 2006, 27, 329–351. [CrossRef]

27. Andreou, P.C.; Charalambous, C.; Martzoukos, S.H. Pricing and trading European options by combining artificial neural networks
and parametric models with implied parameters. Eur. J. Oper. Res. 2008, 185, 1415–1433. [CrossRef]

28. Andreou, P.C.; Charalambous, C.; Martzoukos, S.H. Generalized parameter functions for option pricing. J. Bank. Finance 2010, 34,
633–646. [CrossRef]

29. Hahn, J.T. Option Pricing Using Artificial Neural Networks: An Australian Perspective. Ph.D. Thesis, Bond University, Robina,
Australia, 2013.

30. Huang, W.; Zhang, J. Option Hedging Using LSTM-RNN: An Empirical Analysis. Quant. Finance 2021, 21, 1753–1772.
31. Pagnottoni, P. Neural network models for Bitcoin option pricing. Frontiers in Artificial Intelligence. Front. Artif. Intell. 2019, 2, 5.

[CrossRef]

http://doi.org/10.1007/BF02478259
http://doi.org/10.1080/14697688.2018.1490807
http://doi.org/10.1086/260062
http://doi.org/10.2307/3003143
http://doi.org/10.1016/S0304-4076(03)00113-1
http://doi.org/10.1111/j.1540-6261.1997.tb02749.x
http://doi.org/10.1093/rfs/6.2.327
http://doi.org/10.1111/j.1540-6261.1987.tb02568.x
http://doi.org/10.1093/rfs/9.1.69
http://doi.org/10.1093/rfs/5.3.659
http://doi.org/10.1016/j.eswa.2014.01.032
http://doi.org/10.1016/j.eswa.2010.05.037
http://doi.org/10.1016/j.neucom.2009.03.015
http://doi.org/10.1007/BF00871937
http://doi.org/10.1111/j.1540-6261.1994.tb00081.x
http://finance.fbv.kit.edu/download/dp202.pdf
http://doi.org/10.1007/s10614-006-9030-x
http://doi.org/10.1016/j.ejor.2005.03.081
http://doi.org/10.1016/j.jbankfin.2009.08.027
http://doi.org/10.3389/frai.2019.00005

Entropy 2022, 24, 35 19 of 19

32. James, G.; Hastie, T.; Witten, D.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York,
NY, USA, 2013.

33. Kokoszczyński, R.; Sakowski, P.; Ślepaczuk, R. Midquotes or Transactional Data? The Comparison of Black Model on HF Data;
University of Warsaw: Warszawa, Poland, 2010.

34. Ślepaczuk, R.; Zakrzewski, G. High-Frequency and Model-Free Volatility Estimators; Lap Lambert Academic Publishing: Sunnyvale,
CA, USA, 2013.

35. Black, F. The Pricing of Commodity Contracts. J. Financ. Econ. 1976, 3, 167–179. [CrossRef]
36. Ivakhnenko, A.G. Cybernetic Predicting Devices; CCM Information Corporation: New York, NY, USA, 1973.
37. Fukushima, N. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.

Biol. Cybern. 1980, 36, 193–202. [CrossRef]
38. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent

(ICLR), San Diego, CA, USA, 5–8 May 2015.
39. Liu, S.; Oosterlee, C.; Bohte, S. Pricing options and computing implied volatilities using neural networks. Risks 2019, 7, 16.

[CrossRef]
40. Hamid, S.; Habib, A. Can Neural Networks Learn the Black–Scholes Model? A Simplified Approach; Southern New Hampshire

University: Manchester, NH, USA, 2005.
41. Ruf, J.; Wang, W. Neural Networks for Option Pricing and Hedging: A Literature Review. J. Comput. Finance 2020, 21, 1–46.

[CrossRef]
42. Anders, U.; Korn, O.; Schmitt, C. Improving the pricing of options: A neural network approach. J. Forecast. 1998, 17, 369–388.

[CrossRef]
43. Phani, B.; Chandra, B.; Raghav, V. Quest for efficient option pricing prediction model using machine learning techniques.

In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011;
pp. 654–657.

44. Barunikova, M.; Barunik, J. Neural networks as semiparametric option pricing tool. Bull. Czech Econom. Soc. 2011, 18, 66–83.
45. Zheng, Y.; Yang, Y.; Chen, B. Gated Neural Networks for Implied Volatility Surfaces. Available online: https://arxiv.org/abs/19

04.12834 (accessed on 17 June 2020).
46. Liu, D.; Zhang, L. Pricing Chinese warrants using artificial neural networks coupled with Markov regime switching model. Int. J.

Financ. Mark. Deriv. 2011, 2, 314–330. [CrossRef]
47. Yao, J.; Li, Y.; Tan, C.L. Option price forecasting using neural networks. Omega 2000, 28, 455–466. [CrossRef]

http://doi.org/10.1016/0304-405X(76)90024-6
http://doi.org/10.1007/BF00344251
http://doi.org/10.3390/risks7010016
http://doi.org/10.21314/JCF.2020.390
http://doi.org/10.1002/(SICI)1099-131X(1998090)17:5/6<369::AID-FOR702>3.0.CO;2-S
https://arxiv.org/abs/1904.12834
https://arxiv.org/abs/1904.12834
http://doi.org/10.1504/IJFMD.2011.045600
http://doi.org/10.1016/S0305-0483(99)00066-3

	Introduction
	Literature Review
	Methodology and Option Pricing Models
	Terminology and Metrics
	Black–Scholes–Merton Model
	Artificial Neural Network
	Architecture of Artificial Neural Networks
	Backpropagation and Optimization
	Hyperparameters
	Results of the Hyperparameters Tuning

	Data Description
	Data Distribution
	Data Preprocessing for Neural Network

	Empirical Results
	Cross-Validation Results
	In-Sample Results
	Out-of-Sample Results
	Discussion of the Results

	Conclusions
	References

