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Simple Summary: The current paper develops a probabilistic theory of causation and suggests
practical routines for conducting causal inference applicable to new machine learning methods that
have, so far, remained relatively underutilized in this context.

Abstract: The current paper develops a probabilistic theory of causation using measure-theoretical
concepts and suggests practical routines for conducting causal inference. The theory is applicable
to both linear and high-dimensional nonlinear models. An example is provided using random
forest regressions and daily data on yield spreads. The application tests how uncertainty in short-
and long-term inflation expectations interacts with spreads in the daily Bitcoin price. The results
are contrasted with those obtained by standard linear Granger causality tests. It is shown that
the suggested measure-theoretic approaches do not only lead to better predictive models, but also
to more plausible parsimonious descriptions of possible causal flows. The paper concludes that
researchers interested in causal analysis should be more aspirational in terms of developing predictive
capabilities, even if the interest is in inference and not in prediction per se. The theory developed in
the paper provides practitioners guidance for developing causal models using new machine learning
methods that have, so far, remained relatively underutilized in this context.

Keywords: causality; Bitcoin; inflation; yield spreads; approximation theory; Hellinger distance;
Kullback–Leibler divergence; correct specification; misspecified models

1. Introduction

Philosophers have debated at length whether causality is a subject that should be
treated probabilistically or deterministically. This resulted in the development of different
inferential systems and views on reality. Pure logic dealt with inferences about deterministic
truths [1,2]. Probabilistic reasoning has been developed to allow for uncertainty in infer-
ences about deterministic truths [3,4], to make inferences about probabilistic truths [5,6],
or to imply the existence of associated deterministic truths [7–11]. Probabilistic theories
about causality were developed throughout the 20th century, with notable contributions
by Reichenbach, Good, and Suppe [12]. At the same time, however, the classical model of
physics maintained its position as a role model for other sciences, which led researchers, in-
cluding those concerned with human behavior and economic systems, to reject ideas about
probabilistic causation, opting, often, to reason probabilistically about deterministic truths.

In modern physics, the standard equations of quantum mechanics suggest that reality
is, in fact, better described by probability laws [13]. The outcome of the Bohr–Einstein
debates settled on the assertion that these probability laws are a result of a real indeter-
minacy and that reality itself is probabilistic (One may also argue that this is simply a
correct exposition of the theory and not necessarily of the physical world, as more complete
theories may yet be discovered). Ref. [14] provides an alternative interpretation of quan-
tum physics in which the probability laws are statistical results of the development of

Entropy 2022, 24, 92. https://doi.org/10.3390/e24010092 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010092
https://doi.org/10.3390/e24010092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8007-5007
https://doi.org/10.3390/e24010092
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010092?type=check_update&version=2


Entropy 2022, 24, 92 2 of 24

completely determined, but hidden, variables. At a macroscopic level, deterministic laws
and contingencies induce associated probabilistic laws (Contingencies is a term used by
Ref. [14] to refer to independent factors that may exist outside the scope of what is treated
by the laws under consideration, and which do not follow necessarily from anything that
may be specified under the context of these laws). In particular, by broadening the context
of the processes under consideration, new laws that govern some of the contingencies can
be found. This inevitably leads to new contingencies: a process that repeats indefinitely.
For this reason, any theory about reality that embraces either of deterministic law or chance,
to the exclusion of the other, is inherently incomplete. Regardless of one’s position on real
indeterminism, it holds, according to this logic, that any natural process that arises deter-
ministically must also satisfy statistical laws that are more general, and so any complete
theory about interesting real-world phenomena must be probabilistic.

In a probabilistic view of reality cause and consequence are related by probability laws
rather than laws of logical truths. A theory about probabilistic causality can, therefore, be
stated in terms of the properties of the true measure that describes a process stochastically.
The theory of causation developed here is that a causal relationship exists if there exists
a true probability measure that produces a non-empty stochastic sequence that describes
the directly caused effects from perturbations in one variable in terms of the responses in
another. The paper shows that ideas about causality, including the direction, statistical
significance, and economic relevance of effects, may be tested by formulating a statistical
model that correctly describes observed data, and evaluating its dynamic properties. In
practice, this means that the inference is conducted with a best approximation of the true
probability measure. It is the position of the paper that in order to demonstrate that causality
runs from a potential causal variable to the target variable, one requires developing the
best approximation of the true probability measure using the potential causal variable and
a best approximation of the true probability measure without the potential causal variable.
The analysis should then (1) conclude whether the first modeled measure is closer to the
true measure, and (2) test that the two modeled measures are not equivalent. Practical
routines to do so shall be discussed and an example is provided using random forest (RF)
regressions and daily data on yield spreads. The application tests how uncertainty around
short- and long-term inflation expectations interact with spreads in the daily Bitcoin price,
a digital asset with a predetermined finite supply that has been characterized as a new
potential inflation hedge. The results are contrasted with those obtained with standard
linear Granger causality tests. It is shown that the suggested approaches do not only lead to
better predictive models, but also to more plausible parsimonious descriptions of possible
causal flows.

The focus on approximating a correct stochastic representation of the DGP (data gen-
erating process) as a means of learning about true causal linkages is different from the
approaches that try to simulate laboratory conditions by testing for statistical differences in
control groups, such as described by [15,16]. The focus on obtaining a correct functional
representation of the data is also different from attributing the presence of causal relation-
ships directly to the values of parameters representing averages in treatment groups, see
for instance [17–19] on this approach. Placing emphasis on the need for accurate statistical
models for the full data distribution when conducting causal analysis introduces an obvious
weakness: it is generally accepted that all empirical models will be mis-specified to a certain
degree and that empirical models are likely never correctly specified. The true process, after
all, is unknown in practice. This is the reason to conduct analyses in the first place. The aim
to develop correct models can therefore be seen as an idealistic idea that is difficult to put
into practice. However, it is still valuable to understand the role of the correct-specification
assumption in causal analysis. It is commonly taught that mis-specification leads to residual
dependencies that violate the assumptions made by general central limit theorems needed
to obtain correct standard errors, see for example chapter 2 in [20]. However, more general
estimation theory for dependent processes, as those developed and discussed for instance
by [21–25], may help correct standard error estimation but do not remedy the issue that the



Entropy 2022, 24, 92 3 of 24

structural response of the model is incorrect [26]. These are theories to correct the variance
estimator when the underlying model is wrong, and do not address the issue that the
structural response of the model does not correctly describe the data.

The paper builds on contributions of others in the following lines of research. The
views on causality developed in the paper are related to the information theoretic view
on testing causal theories, as discussed by [27–30], which, as here, emphasizes model
parsimony. The line of reasoning is inspired by the work of [31,32], who emphasized the
importance of a probabilistic formulation of economic theories and warned against the
use of statistical methods without any reference to a stochastic process. The paper also
emphasizes the importance of the overall model response, and, thus, on focusing on system
behavior, rather than on isolated parameters that make no reference to a wider economic
system. This has previously been advocated by [33]. The main result of the paper is that
convincing statements about partial causal linkages must be underpinned by an accurate
model of broader reality, even if the interest is in inference and not prediction per se. In
order to do so, researchers must, as shall be discussed, pay due attention to distinguishing
between direct causal impacts and system memory and take note of developments in the
field of predictive modeling.

The plan of the paper is as follows. Section 2 develops definitions for probabilistic
causality in terms of true probability measures using a flexible type of dynamical system
that covers many processes observed in economics, physics, finance, and related fields
of study. Section 3 discusses approximating this true probability measure as an act of
minimizing divergence between the modeled probability measure and the true probability
measure, while section 4 forges the link between statistical divergence and distance. This
draws the connections between distance-minimization and the use of maximum likelihood
criteria. Section 5 provides practical considerations and applies the theory. Finally, Section 6
concludes. Proofs are provided in the Appendix A.

2. Causality in Terms of True Probability Measures

Notation will be as follows.

Notation 1. N, Z and R, respectively denote the sets of natural, integer, and real numbers. If
A is a set, B(A) denotes the Borel-σ algebra over A, and ×t=T

t=1A, alternatively denoted as AT ,
is the Cartesian product of T copies of A. Definitional equivalence is denoted :=, which is to be
distinguished from ≡ denoting equivalence, for example in the functional sense. For two maps, f
and g, their composition arises from their point-wise application and is denoted f ◦ g := f (g) and
f−1 is the inverse function of f . The tensor product is denoted ⊗. The notation µ � ν is used
to indicate that µ is absolutely continuous with respect to ν, i.e., if µ and ν are two measures on
the same measurable space (X,A), µ is absolutely continuous with respect to ν if µ(A) = 0 for
every set A for which ν(A) = 0, or, as an example, if ν is the counting measure on[0, 1] and µ is
the Lebesgue measure, then µ � ν. It is also said that ν is dominating µ when µ � ν, see for
instance ([34] p. 574). Finally, the empty set ∅ is also used in the context of an empty sequence,
which sometimes would be notated as () in the literature.

Directional causality is interesting when at least two sequences are considered. Specif-
ically, when the focus is on a T-period sequence {xt(ω)}T

t=1, that is a subset of the realized
path of the nx-variate stochastic sequence x(ω) := {xt(ω)}t∈Z for events in the event
space ω ∈ Ω. (That is, xt(ω) ∈ X ⊆ Rnx ∀ (ω, t) ∈ Ω× Z. The random sequence x(ω)
is a Borel-σ F/B(X∞)-measurable map x : Ω → X∞ ⊆ Rnx

∞ . In this, Rnx
∞ := ×t=∞

t=−∞Rnx

denotes the Cartesian product of infinite copies of Rnx and X∞ = ×t=∞
t=−∞X with B(X∞) :=

B(Rnx
∞ ) ∩ X∞, and B(Rnx

∞ ) denotes the Borel-σ algebra on the finite dimensional cylinder
set of Rnx

∞ , see Theorem 10.1 of [35], p. 159). As always, the complete probability space of
interest is described by a triplet (Ω,F ,P), with F as the σ-field defined on the event space.
P is used here informally as a placeholder for a collection of probability measures, as we
shall introduce the exact probability measures of interest shortly.
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If x is considered as a univariate sequence independent from causal drivers, then
for every event ω ∈ Ω, the stochastic sequence xt(ω) would live on the probability space
(X∞,B(X∞), Px) where Px assigns probability to all elements ofB(X∞). In a similar fashion,
one can consider {yt(ω)}T

t=1 as the subset of the realized path of the ny-variate stochastic
sequence y(ω) := {yt(ω)}t∈Z indexed by identical t for events ω ∈ Ω (i.e., yt(ω) ∈ Y ⊆
Rny ∀ (ω, t) ∈ Ω× Z and the random sequence y(ω) is a Borel-σ F/B(Y∞)-measurable
map y : Ω → Y∞ ⊆ Rny

∞ .) If y would live similarly isolated from outside influence, then
for every ω ∈ Ω, the stochastic sequence yt(ω) would operate on a space (Y∞,B(Y∞), Py)
where Py assigns probability to all the elements of B(Y∞). We have a system of two
unrelated sequences (This naturally covers to most common auto-regression case, only
stated for yt here, yt = f yy(yt−1) + εt, where εt is unobserved. The linear auto-regression
case is obtained when f yy is a scaled identity function.):

x := {xt = f xx(xt−1), t ∈ Z}
y := {yt = f yy(yt−1), t ∈ Z} . (1)

As we shall see, an important aspect of causal analysis is to rule out that the observed
data is not generated by Equation (1). As such, it is important to comment on a number of
properties. First, in this system of equations, the functions f xx and f yy are intentionally not
indexed by t. This does not imply that these functions cannot posses complex time-varying
properties; it only limits the discussion to observation-driven models (to the exclusion of
parameter-driven models), in which time-varying parameters arise as nonlinear functions
of the data. An example would be the threshold models considered by [36,37], in which
parameter values are allowed to differ across regimes in the data. The choice to restrict
the discussion is made because it is intuitively easier to conceive of causal effects in
an observation-driven context where observations represent verifiable values describing
different states of real-world phenomena. At the same time, it has been shown that
parametric observation-driven models can produce time-varying parameters of a wide
class of nonlinear models [38] and that the forecasting power of such models may be on-par
with parameter-driven models, even if the latter are correctly specified [39]. Moreover,
Refs. [20,40,41] show how observation-driven models may be used to not only investigate
how observations impact future observations, but also future parameter values, which may
empirically be interesting if those parameters carry an economic interpretation. Finally,
many popular machine learning algorithms, such as neural networks, can be reduced to
equations that show how parameter values change according to levels in the data [42].

While the dynamics in Equation (1) may be nonlinear, the notation is too restrictive
to nest long-memory processes. In particular, the state at time t is only a function of the
previous state at time t− 1, or t− p if the model would be generalized to p-order lags, but
not of the full history. Vanishing dependence, implied under contraction conditions [43],
is often key to verifying irreducibility and continuity [44] and proving the ergodicity of
time series [45]. Proving the ergodicity of a model is needed to obtain an estimation theory
under an assumption of correct specification [20,24]. Later, multivariate models will be
considered, in which case long-memory properties may arise, for example, when time-
varying parameters in one of the functions are a function of past data as well as of past
values of those time-varying parameters.

If interrelated stochastic sequences are at the center of inference, additional building
blocks are required to describe the processes. This increases the potential complexity of
Px and Py, but it also allows to distinguish between causality, non-causality, and feedback.
Consider the stochastic system:

x := {xt = f xx(xt−1) + f xy(yt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1), t ∈ Z} . (2)

In this multivariate context, f xy and f yx will be referred to as the direct causal maps, while
f xx and f yy control the memory properties within each channel.
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When x and y are analyzed individually, the properties of f xx and f yy are of key
interest. They carry information on the future positions of xt+1 and yt+1, and provide
predictability without considering outside influence directly. However, correct causal
inference around the interdependencies of x and y may be preferred over developing
predictive capabilities that can result from many configurations within the parameter
space that are associated with untrue probability measures. The properties of f xy and
f yx determine the direction in which effects move. Verifying their properties is central to
causality studies. The functions f xx and f yy, on the other hand, play a central role in the
system’s responses to external impulses by shaping memory of the causal initial impact of
a sequence of interventions, even after that sequence turns inactive.

The functions that control memory properties within channels in some sense determine
how the past reverberates into the future, and specifying correct empirical equivalents to
f xx and f yy is as crucial to the inference about the causal interdependencies as is specifying
mechanisms for the action of interest (it would be more general to write Equation (2) with
x := {xt = f xx(xt−1; wt−1) + f xy(yt−1; wt−1), t ∈ Z} and y := {yt = f yx(xt−1; wt−1) +
f yy(yt−1; wt−1), t ∈ Z} and with wt = (xt, yt). In this case, for instance, the dependence
of xt on its own past, xt−1, is allowed to vary based on the levels in past data. However,
under this notation, one could at any point in time, decompose the change in one variable
into effects attributed to memory and outside influence separately, which the simplified
notation in Equation (2) is intended to focus on). In fact, as Ref. [46] point out, systems
may be dominated by memory and the influence of the causal components may be small on
the overall process in which case predictive power can be obtained without specifying any
causal maps and focusing solely on memory. Inversely, this also suggests that one must
obtain a model for the memory process to isolate the causal impacts themselves, suggesting
that long-memory applications in which causal inference is of interest must develop a high
degree of predictive power, even if prediction is not needed for policy purposes. This can
be made more clear by considering the following:

x0 := {x0
t = f xy(yt−1), t ∈ Z}

y0 := {y0
t = f yx(xt−1), t ∈ Z} , (3)

with x0 and y0 defined as x0
t = xt − f xx(xt−1) and y0

t = yt − f yy(yt−1). Given the realized
sequences y(ω) and x(ω) generated by Equation (2), the sequential system of Equation (3)
moves forward in time as the one-step-ahead directly caused parts of y and x that are
filtered from the reverberating effects of f xx and f yy. More specifically, while y partially
consists of memory, there is a part, y0, that, at any point, is directly mapped from the
previous state of x, while, at the same time, x consists partially of memory and a part
x0 directly generated from the last position of y. In this view, directional causality can
be stated in terms of whether (3) produces any values, i.e., diagnosing if there is any
statistically significant signal from initial causal impulses left after all memory properties
have been stripped from the data. Importantly, the system reveals that by the definitions
of x0

t and y0
t , obtaining appropriate estimates for f xy and f yx involves f xx and f yy being

modeled correctly as x0
t and y0

t are not observed and only result as functions from the
observable processes y and x. Moreover, if y(ω) and x(ω) are triggered by an event, then it
is possible, by process of infinite backward substitution, to write Equation (3) as an infinite
chain initialized in the infinite past. Plugging in the equalities xt = x0

t + f xx(xt−1) and
yt = y0

t + f yy(yt−1) and defining the random functions f 0
y (y0

t , yt−1) = f xy(y0
t + f yy(yt−1)

)
and f 0

x (x0
t , xt−1) = f yx(x0

t + f xx(xt−1)
)
, one can write

x0 := {x0
t = f 0

y (y0
t−1, yt−2), t ∈ Z}

y0 := {y0
t = f 0

x (x0
t−1, xt−2), t ∈ Z} . (4)

Repeating infinitely, and extending infinitely in the direction T → ∞,

x0 := {x0
∞ = ( f 0

y )
∞(y0

1, y1), t ∈ Z}
y0 := {y0

∞ = ( f 0
x )

∞(x0
1, x1), t ∈ Z} . (5)
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( f 0
y )

∞ and ( f 0
x )

∞ are the maps that generate y0 and x0 infinitely after y and x have been
generated into infinity. Subscript 1 has been used, here, to mark the initialization points.
This shows that x0 can be written as a sequence of iterating functional operations that are all
defined on y, and y0 defined on x in a similar way (Equation (5) reveals that the sequences
that constitute the directly caused parts of x and y are ultimately dependent on the values
at which the observable process has been initialized. That is, the entire causal pathway
depends on the initial impact. In practice, one cannot observe all impacts—including those
that occurred in the infinite past—and assurance is required that the initialization effect of
the causal pathway must, asymptotically, be irrelevant). For ease of notation, let us write

x0 := {x0
t = f0

y(y−∞:t), t ∈ Z}
y0 := {y0

t = f0
x(x−∞:t), t ∈ Z} . (6)

where bold-faced f0 is used to refer to the entire sequence of functional operations f 0 up
to t, starting in the infinite past t = −∞. This highlights that generating the unobserved
quantities x0 and y0 from the observed quantities x and y by back substitution eventually
involves the unobserved quantities x1 and y1. This means that some feasible form of
approximation is needed, since time series data in practice area almost never recorded since
the beginning of the process.

Note first that f0
y : Y → X ⊆ R is a B(Y)/B(X )-measurable mapping, and f0

x :
X → Y ⊆ R is a B(X )/B(Y)-measurable mapping. The sequence x0 thus lives on
(X∞,B(X∞), Px

0 ), where Px
0 is induced according to Px

0 (Bx) = Py ◦ (f0
y)
−1(Bx) ∀ Bx ∈

B(X∞), and y0 lives on (Y∞,B(Y∞), Py
0 ), where Py

0 is induced according to Py
0 (By) =

Px ◦ (f0
x)
−1(By) ∀ By ∈ B(Y∞), see [47] p. 118 and [48] p. 115. The notation shows that the

probability measures underlying the stochastic causal sequences result from the functional
behavior of the entire system. In particular, the causal sequences can be written as recursive
direct effects from another variable that itself consists of memory and causal effects, and the
probability measures underlying the causal sequences are thus induced by the functional
relationships that describe all dynamical dependencies. This is important to the extent that
many causal studies focus on one single marginal dependency, while, from the measure-
theoretic perspective developed here, the wider system within any one single process
operates, is of importance to the analysis. This suggests that researchers must pay attention
to referencing the workings of a broader system when designing their models for inference,
something [33] has also argued. Moreover, it has been argued (see [49] for discussion) that
probabilistic definitions of causality are not strictly causal in the sense that they do not
provide insight in the origin of the probability law that regulates the process of interest, and
that a (correct) time-series model only describes (correctly) the probabilistic behavior as the
outcome of that unknown causal origin. The notation, here, shows, however, explicitly the
relation between the functional behavior of a system and its induced probability measure
that assigns probability to all possible outcomes. This suggests that such critiquing views,
rather, relate to disagreements around the level of detail in the structure of a model,
which in turn would be guided by the research question of interest and the availability
of detailed data. Particularly, dynamical systems in economics are often modeled using
aggregate macro-economic data that do not have the same granularity as micro-economic
data containing information about the behaviors of individual economic agents.

In many cases, a researcher is not able to observe all the relevant variables. When
a third, possibly unobserved external variable, z, with effect f z(z), is considered, the
researcher is confronted with the situation that

x := {xt = f xx(xt−1) + f xy(yt−1) + f xz(zt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1) + f yz(zt−1), t ∈ Z} . (7)

If z is unobserved, it can still be approximated as a difference combination of x and y. To
obtain an approximated sequence of the true z sequence to condition empirical counterparts
for f xz and f yz on, one can work with:
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z := {zt = f z|xy(xt+1 − ( f xx(xt) + f xy(yt))), t ∈ Z}
z := {zt = f z|yx(yt+1 − ( f yx(xt) + f yy(yt))), t ∈ Z} . (8)

Equation (8) suggests to write Equation (7) in terms of y and x only by defining z as
a difference combination of x and y (Apart from stability conditions imposed on the
endogenous process, one requires also that the exogenous impacts enter the system in
some suitable manner, which, for example, requires that f xz and f yz are appropriately
bounded. Following the same arguments that resulted in Equation (5), the initialization
of the exogenous impacts z1 should similarly not carry information influential in the
empirical estimates of f xy and f yx, conditional on partial information). This allows us to
define the spaces and measures in terms of x and y when the multivariate process includes
further variables, in this case, z. If the process is invertible, one can write, by aggregating
the functions:

x := {xt = f xx(xt−1) + f xy(yt−1) + f xz(xt, xt−1, yt−1), t ∈ Z}
y := {yt = f yx(xt−1) + f yy(yt−1) + f yz(yt, xt−1, yt−1), t ∈ Z} . (9)

x := {xt = f x(xt−1, yt−1), t ∈ Z}
y := {yt = f y(xt−1, yt−1), t ∈ Z} . (10)

x := {xt = f x(wt−1), t ∈ Z}
y := {yt = f y(wt−1), t ∈ Z} . (11)

For every t ∈ Z, the map f x ◦ (yt−1, xt−1) : Ω→ X is F/B(X )-measurable and x(ω) lives
on the space (X∞,B(X∞), Px) where the probability measure Px is induced by f x on B(X∞)
according to the point-wise application of Pw and the inverse of f x.
( Px(Bx) = Pw ◦ ( f x)−1(Bx) ∀ (Bx) ∈ B(X∞)). Similar arguments follow for Py. This tells us
that, in the general case of multivariate dependencies and in the presence of possibly unob-
served variables, the probability measures underlying the individual sequences are possibly
a result of those of the other sequences. This means the space of empirical candidates for
the probability measure Pw that underlies the joint process w := {wt = (yt, xt), t ∈ Z} op-
erates on (W∞,B(W∞), Pw). (The sequence realizes under the events ω ∈ Ω, wt(ω) ∈ W ,
whereW := Y ×X and w(ω) ∈ W∞, withW∞ := Y∞ ×X∞ ⊆ Rnx+ny

∞ := ×t=∞
t=−∞Rnx+ny ,

and the probability measure of the joint process Pw is thus defined on the product σ-algebra
B(W∞) = B(X∞ ×Y∞) = B(X∞)⊗B(Y∞) :=W∞ ∩B(R

nx+ny
∞ ) (see, [47] p. 119)).

Regardless, the measure Pw is induced by functional relations of Equation (2), which,
as was shown, can be decomposed into memory and causal subsystems. One can thus
state causality conditions, based on the measures that describe the directly caused effects
represented by Equation (6). In particular, one can keep the focus on Px

0 and Py
0 , bearing in

mind that they are lower-level constituents of Pw on which, in turn, the complete estimation
objective will be defined.

Definition 1 (Non-causality). The stochastic sequences x(ω) and y(ω) are not causally related if
Px

0 and Py
0 are null measures, such that x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω×Z and y0(ω) ∈ ∅ ∀ (ω, t) ∈

Ω×Z.

Definition 2 (Uni-directional Causality). Causality runs uni-directionally from the stochastic
sequence x(ω) to another stochastic sequence y(ω) (visa versa), if Px

0 is a null measure, and Py
0 is

a non-null measure, such that x0(ω) ∈ ∅ ∀ (ω, t) ∈ Ω× Z and y0(ω) ∈ Y ∀ (ω, t) ∈ Ω× Z
(visa versa).

Definition 3 (Bi-directional Causality). The stochastic sequence x(ω) is causal with respect to
y(ω) and y(ω) is causal with respect to x(ω), if Px

0 and Py
0 are both non-null measures, such that

x0(ω) ∈ X ∀ (ω, t) ∈ Ω×Z and y0(ω) ∈ Y ∀ (ω, t) ∈ Ω×Z.
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Respectively, conditioning on impacts in x, these probabilistic causality definitions can
thus be understood broadly as:

1. Whenever an intervention in x occurs, there is no chance that y0 reacts as a result
of that.

2. Whenever an intervention in x occurs, there is positive chance that y0 reacts as a result
of that.

3. Whenever an intervention in x occurs, there is positive chance that y0 reacts as a result
of that. Subsequently there is positive chance that x reacts to this initial reaction, a
probabilistic process that repeats recursively.

Remark 1. With null-measures, it is meant that the stochastic sequence describing the directly
caused effects from one variable to the other takes values in the empty set with probability 1. This is
because the functions that induce the probability measure cancel out, hence, they can be removed
from the equations resulting in a probability measure that is not induced by any remaining rule
or relationship. In practice, one can test whether Px| f xx ≡ Px| f xx f xy or Px| f xx 6≡ Px| f xx f xy,
where Px| f xx here denotes the probability measure induced by the functional relationships in
Equation (1) and Px| f xx f xy denotes the probability measure induced by the functional relationships
in Equation (2), to test whether Px

0 exists. A practical test is a Kolmogorov–Smirnov-type test.

3. Limit Divergence on the Space of Modeled Probability Measures

The definitions of causality, in terms of the lower-level components of Pw, suggest that
correct causal statements can be obtained empirically by extracting relevant counterparts
to Px

0 and Py
0 from a relevant counterpart to Pw, and investigating the stochastic sequences

produced by these modeled measures. For such an approach to be of relevance in an
empirical context, one must ensure that the concepts introduced adequately transfer over
from the true measure Pw to a modeled measure Pŵ. The focus is therefore shifted towards
detailing how Pŵ can be approximated as a minimally divergent measure relative to Pw,
and draw on approximation theory to construct equivalence around the true measure under
an axiom of correct specification.

For some event ω ∈ Ω, a realized T-period sequence wT(ω) := (yT(ω), xT(ω))
consisting of sequences {yt(ω)}t=T

t=1 and {xt(ω)}t=T
t=1 can be observed. The true function

f w, consists of our main functions of interest f x and f y that in turn are composed of f xy

and f yx that are of particular interest to the researcher focused on causality, but possibly
also functions f xx and f yy that shape the responses of an initial causal effect. The exact
properties are generally unknown to the observer, but one can design a parameterization
mapping that learns the behavior of f x and f y when exposed to sufficient data. To learn
from the data an approximation of f x and f y, one can postulate a model

ŵ := {ŵt = f (wt−1; θ), θ ∈ Θ, t ∈ Z}, (12)

with f :W × Θ → W as our postulated model function and ŵ as the modeled data. In
the context of parametric inference, the parameter space Θ is of finite dimensionality, but
also in the nonparametric case, the vector θ ∈ Θ indexes parametric models nested by the
nonparametric model, each inducing its own probability measure, and Θ indexes families
of parametric models, each inducing a space of parametric functions generated under
Θ. In this discussion a compact set of potential hypotheses is considered, limiting the
inference to parametric models. The arguments can be extended to the nonparametric
case, by focusing on a compact subset Θs ⊂ Θ of solutions (For example, by letting Θs
grow as T → ∞, hence focusing on the case Θs1 ⊂ Θs2... ⊂ Θs∞ ⊆ Θ, see for example [50]).
For example, by using priors or penalties that discard Θ \ Θs such that any solution of
the criterion necessarily falls within a compact subset space, see [20] p. 210 and [24].
Let f be B(W)-measurable ∀ θ ∈ Θ so that f (wt; θ) : Ω → W is F/B(W)-measurable
∀ θ ∈ Θ and t ∈ Z. FΘ := { f (·; θ), θ ∈ Θ} is our space of parametric functions defined
onW generated under Θ under the injective fW : Θ→ FΘ(W) where fW (θ) := f (·; θ) ∈
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FΘ(W) ∀ θ ∈ Θ. Under any true probability measure Pw, every potential parameter vector
included in the parameter space θ ∈ Θ induces a probability measure Pŵ

θ indexed by θ
on B(W∞), according to Pŵ

θ (Bw) = Pw ◦ f−1(Bw, θ) ∀ (Bw, θ) ∈ B(W∞ ×Θ). Thus, for
every potential parameter vector included in the parameter space θ ∈ Θ, there is a triplet
(W∞,B(W∞), Pŵ

θ ) that describes the probability space of modeled data under θ. The triplet
(W∞,B(W∞), Pŵ

θ ) is, thus, itself an element of the measure spaces indexed by θ across
all Θ. Given the true probability measure Pw on B(W), this process is summarized by a
functional P : FΘ(W)→ P ŵ

Θ , that maps elements from the space of parametric functions
generated by the entire parameter space FΘ(W), onto the space P ŵ

Θ of probability measures
defined on the sets of B(W∞) generated by Θ through f (·; θ).

Now, f w is generally not only unknown, but for a finite Θ there is no guarantee
that ∃θ0 ∈ Θ : P ◦ fW (θ0) = Pw, implying that, in many empirical applications, one is
concerned with the situation where Pw /∈ P ŵ

Θ . However, if ∃Pw ∈ P ŵ
Θ , one can learn all

about Pw by uncovering the properties of f , given that a sufficient amount of observations
is available. (As discussed in the literature on miss-specification, even when the axiom of
correct specification is abandoned, f may converge to a function that produces the optimal
conditional density, which may reveal properties of f w). Let

θ̂T := arg min
θ∈Θ

QT(wT ; θ), (13)

θ̂T : Ω→ Θ, be the extremum estimate for θ0 as judged by the criterion QT :WT ×Θ→ R.
Trivially, WT := YT × XT and wT(ω) ∈ WT . To see that under correct specification it
is possible to approximate the true function f w in terms of equivalence (in the sense of
function equivalence [51] p. 288), one can write the criterion function also as a function of
the true function and the postulated model QT( f w(wT), f (wT ; θ)) in which it is made use
of the fact that f w(wT) := { f w(wt)}T

t=1 := wT and f (wT ; θ) := { f (wt; θ)}T
t=1 := ŵT .

The discussion further evolves toward showing that the element in P ŵ
Θ that is closest

to Pw minimizes a divergence metric that results from a transformation of the limit criterion
that measures the divergence between the true density and the density implied by the
model. Note that P ŵ

Θ is induced by the proposed candidates for Pw; studies on causality
thus rely on flexible model design as the researcher determines which hypotheses are
considered in a study by exerting control over Θ. Naturally, if Θ1 ⊂ Θ2, then Θ2 produces
a larger P ŵ

Θ2
⊃ P ŵ

Θ1
. This suggests that minimizing this divergence metric over a large as

possible P ŵ
Θ results in selecting Pŵ at a point in P ŵ

Θ that attains equivalence to Pw only
when Θ is large enough to produce a correctly specified hypothesis set. Note that the
definition of FΘ := { f (·; θ), θ ∈ Θ}, as our space of parametric functions generated under
Θ, under the injective fW : Θ→ FΘ(W) and the functional P : FΘ(W)→ P ŵ

Θ that induces
the space of probability measures, is defined on the sample spaceW . This highlights that
the correct specification argument, Pw ∈ P ŵ

Θ , not only stresses flexible parameterization in
the sense that parameterized dependencies can take on many values, but also in the sense
of using correct data (Indeed, the potential parameters that would interact with data that
is not used are essentially treated as zero, so the focus on using correct data is implicitly
already contained in the standard statements of correct specification that focus directly
on the dimensions of Θ. The distinction is nevertheless useful because nonparametric
models are often popularized as methods to reduce miss-specification bias as Θ becomes
infinite dimensional, but this does not imply that Pw ∈ P ŵ

Θ if important data is missing).
When little is known about f , one is thus not only concerned with flexibility in terms of
the type of parametric functions generated under Θ, but also the variables on which the
modeled measures are defined. When these concerns are appropriately addressed, testing
for causality is deciding based on the approximation Pŵ whether the best approximation
of the true model suggests (1) that x and y live in isolation, (2) unidirectional causality, or
(3) that Pw produces feedback.

To turn this problem into a selection problem that can be solved by divergence mini-
mization w.r.t. the true measure, first introduce the limit criterion by taking T → ∞ and
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working with the modeled data as the minimizer of the criterion. Specifically, let the limit
criterion be Q∞(θ) := QT( f w(wT), f (wT ; arg minθ∈Θ QT(wT ; θ))) evaluated at T → ∞
with Q∞ : Θ→ R and Q∞(θ) = QP∞(Pw; Pŵ

θ ) ∀ θ ∈ Θ with the criterion Q∞(θ) = QP∞ as a
measure of divergence dP on the true probability measure and the modeled measure. More
specifically, dP ≡ QP∞ : P ŵ

Θ ×P ŵ
Θ → R≥0. By definition of QP∞ as a divergence on the space

that contains Pw and Pŵ
θ ∀ θ ∈ Θ, the element θ0 is thus the minimizer of that divergence.

Moreover, arg min in the parameter sense, arg min in the function sense (in terms of a
divergence metric on the true function), and arg min in the measure sense (in terms of a
divergence metric on the true probability measure), are equivalent limits under the same
consistency result. To see this, it is convenient to focus once more on the target and write
θ0 = arg minθ∈Θ QP∞ ≡ arg minθ∈Θ QF

∞( f w, fW (θ)), with QF
∞ : F(W)× F(W) → R≥0, to

make clear that the criterion establishes a divergence dF on F(W)× F(W), which is, in
turn, induced by dP through P according to dF( f 1, f 2) = dP (P( f 1), P( f 2)) ∀ ( f 1, f 2) ∈
F(W) × F(W). This ensures that our statement on the probability measure is relevant
under standard consistency results that are focused on the convergence of an estimated
parameter vector toward θ0, while, equivalently, the impulse response functions (IRFs)
converge to the true IRFs at θ0. This implies that deciding between Definitions 1–3 can be
read from the responses produced by the IRF that minimizes divergence w.r.t. the true IRF

Not necessary, but convenient for a proof that holds easily in practical situations, is
to assume the existence of a strictly increasing function r : R → R≥0 that ensures the
existence of a transformation of the limit criterion into a metric, d∗P ≡ r ◦ dP , with r being
a continuously and strictly increasing function. For convenience, all assumptions are
summarized in Assumption 1.

Assumption 1. For a limit criterion Q∞ : Θ→ R of the form Q∞(θ) ≡ QP∞(Pw, Pŵ
θ ) ∀ θ ∈ Θ,

dP ≡ QP∞ : Pw×Pw → R≥0 is a divergence. Assume there exists a continuous strictly increasing
function r : R → R≥0 such that d∗P ≡ r ◦ dP is a metric. The functional fW : Θ → FΘ(W) is
injective and θ0 ∈ Θ.

Proposition 1. Assume 1, then the following are equivalent limits:

1. θ0,
2. arg minθ∈Θ Q∞(θ),
3. arg minθ∈Θ d∗F( f w, f ŵ(·, θ)),
4. arg minθ∈Θ QP∞(Pw, Pŵ

θ ),
5. arg minθ∈Θ d∗P (Pw, Pŵ

θ ).

Remark 2. Dropping the axiom of correct specification implies θ̂∞ 6= θ0, hence, the equivalences
of 3–5 are now w.r.t. item 2.

The equivalences in Proposition 1 not only ensure that for a correctly specified model
∃θ0 ∈ Θ, the element θ0 results in functional equivalence between the model and the true
model (item 3), but also in zero divergence between the probability measures Pw and Pŵ

θ
(item 4). Moreover, it follows that at θ0, the empirically estimated probability measure Pŵ

is equivalent to Pw in the sense that there is zero distance between the two (item 5).

Remark 3. Proposition 1 is applicable to a large class of extremum estimators, even those not
initially conceived as minimizers of distance. In particular it is often possible to find a divergence on
the space of probability measures. For example, method of moments estimators are naturally defined
in terms of features of the underlying probability measures. In Section 4 and example is given, using
Kullback–Leibler divergence, for which penalized likelihood is an estimator. In this case squared
Hellinger distance can be shown to be a lower bound.

Corollary 1 now delivers that our definitions, set on the true measures, transfer to
modeled probability measures in the limit for correctly specified cases. It is well-known
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that standard consistency proofs apply also to approximate extremum estimators, there-
fore, assuming additionally that supθ∈Θ |QT(wT ; θ) − Q∞(θ)| → 0 a.s., is sufficient for
a consistency result together with the uniqueness of θ0 within the compact hypothesis
space Θ (Note that, under the axiom of correct-specification, consistency results require
suitable forms of stability defined on the process rather than the data. While we have
loosely remarked on the fact that the non-parametric case of an infinite dimensional Θ is
easily allowed, stability of highly nonlinear multivariate time series is a difficult separate
topic. Regardless, Refs. [44,45] provide Ergodicity results for a large class of nonlinear
time series that include non-parametric ones. The conditions require the nonlinearities
to be sufficiently smooth. Specific stability results have also been established for certain
neural network models, for example by [52]). This implies that our causality conditions
on the true measures do not only transfer to the approximate in the limit, but also for
large T under standard regularity conditions. Essentially, this is the setting considered by
Ref. [11]. Summarized:

Corollary 1. Given a true probability measure Pw, and an equivalent modeled probability measure
Pŵ in the sense that d∗Pŵ = r ◦ dP (Pw, Pŵ

θ ) ∼ 0, there are four possibilities for causality:

1. There is no causation if Px̂
0 and Pŷ

0 adhere to Definition 1.
2. x causes y if the probability measure Pŷ

0 adheres to Definition 2.
3. y causes x if the probability measure Px̂

0 adheres to Definition 2.
4. There is bi-directional causality if Px̂

0 and Pŷ
0 adhere to Definition 3.

Finally, in the case of a miss-specified model, Proposition 2 implies that the divergence
between the optimal probability measure as judged by the criterion and the true probability
measure attains a minimum at a strictly positive value d∗Pw > 0. In this case, the quantity
d∗Pŵ determines how “close” the empirical claim is to the true hypothesis about causality.
While it is difficult to make claims about this quantity, it is evident that minimizing d∗Pŵ

may involve widening P ŵ
Θ in the direction of Pw by increasing the dimensionality of Θ and

allow flexibility while investigating a wide range of data. Disregarding the value of d∗Pŵ ,
the following holds.

Proposition 2. If θ0 /∈ Θ, then Pw /∈ P ŵ
Θ . However, θ̂∞ is still the pseudo-true parameter that

minimizes r ◦ dP (Pw, Pŵ
θ ) over Θ. Therefore, Pŵ is the probability measure minimally divergent

from Pw within P ŵ
Θ . As such, it follows that, from all the potential probability measures in P ŵ

Θ , the
measure closest to Pw is supportive of one out of 1− 4 in corollary 1 based on the properties of Px̂

0

and Pŷ
0 as the best approximations. Pŵ provides the best approximation of the true causal measure

across all the hypotheses considered.

This leads to the following collection of results.

Corollary 2. Given a true probability measure Pw, and a non-equivalent, but pseudo-true modeled
probability measure, Pŵ, in the sense that d∗Pw = r ◦ dP (Pw, Pŵ

θ ) has attained a non-zero minimum,
there are four possible optimal hypotheses about causality, as judged by the criterion:

1. There is no causation if Px̂
0 and Pŷ

0 adhere to Definition 1.
2. x causes y if the probability measure Pŷ

0 adheres to Definition 2.
3. y causes x if the probability measure Px̂

0 adheres to Definition 2.
4. There is bi-directional causality if Px̂

0 and Pŷ
0 adhere to Definition 3.

Respectively, conditioning on interventions in x, the results can be understood as:

1. Whenever an intervention in x occurs, our best hypothesis is that there is no chance
that y reacts as a result of that.
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2. Whenever an intervention in x occurs, our best hypothesis is that there is positive
chance that y reacts as a result of that.

3. Whenever an intervention in x occurs, our best hypothesis is that there is positive
chance that y reacts as a result of that, and these interactions continue to repeat with
positive probability.

4. Limit Squared Hellinger Distance

Both Corollaries 1 and 2 assume that an appropriate transformation of the limit
criterion exists that provides us with a metric or norm. This assumption allows us to make
use of the classical theorems on existence and uniqueness of best approximations that
have been naturally obtained for metric, normed, and inner product spaces [53]. While
this retains the simplicity of the argument, it also shows that a direct interpretation of
Corollaries 1 and 2 can be obtained within the framework of maximum likelihood. Let us
first define the criterion function as the maximum likelihood estimator:

arg min
θ∈Θ

QT(wT ; θ) := arg max
θ∈Θ

T

∑
t=1

ln pt(wt|θ). (14)

Note that this is conforming to Q∞(θ) := QT( f w(wT), f (wT ; arg minθ∈Θ QT(wT ; θ)))
with T → ∞ and Q∞ : Θ → R. It can be shown that, under this definition with
Q∞(θ) = QP∞(Pw; Pŵ

θ ) ∀ θ ∈ Θ, the criterion Q∞(θ) = QP∞ is a measure of divergence
dP on the true probability measure and the modeled measure. Specifically, we can intro-
duce a divergence dP ≡ QP∞ : Pw ×Pw → R≥0 as follows. Let pw(wt|θw) and pŵ(wt|θŵ)
be, respectively, the true density evaluated under the true parameter and a modeled den-
sity at θ̂, evaluated under the estimated parameter, both at time t, with respect to the
Lebesque measure (such that they are probability density functions); then the following
is a divergence from the true probability measure to the modeled probability measure
(Kullback–Leibler divergence, see [54]):

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
=

∫ ∞
−∞ pw(w|θw) ln

pw(w|θw)

pŵ(w|θŵ)
dw ∀ pw(w|θw)� pŵ(w|θŵ)

∞ otherwise
. (15)

Naturally, KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
≥ 0 with equality if and only if pw(w|θw) = pŵ(w|θŵ)

almost everywhere, i.e., when the probability measures are the same (this is known as
Gibb’s inequality and can be verified by applying Jensen’s inequality).

Kullback–Leibler divergence is not a distance metric, as was used in Corollaries 1 and 2
to establish equivalences by partitioning into classes of zero-distance points. In particular,
it is asymmetric

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
6= KL

(
Pŵ(w|θŵ)||Pw(w|θw)

)
, (16)

and the triangle inequality is also not satisfied. However, it has the product–density prop-
erty

KL(Pw(w|θw)||Pŵ(w|θŵ)) =
T

∑
t

ln KL(pw
t (wt|θw)||pŵ

t (wt|θŵ)), (17)

for pw(w|θw) = pw
1 (w1|θw) · pw

2 (w2|θw) . . . pw
T (wT |θw), and pŵ(w|θŵ) defined similarly.

Hence, the MLE is an unbiased estimator of minimized Kullback–Leibler divergence:

arg min
θ∈Θ

QT(wT ; θ) := arg max
θ∈Θ

T

∑
t=1

ln
pw(wt|θw)

pŵ(wt|θŵ)

= arg min
θ∈Θ

KL
(

Pw(w|θw)||Pŵ(w|θŵ)
)
.

(18)
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Note that under standard assumptions, a law of large numbers can be applied to obtain
the convergence, hence, by maximizing log likelihood, we minimize Kullback–Leibler
divergence. Now, we need to either find a continuously scaling function, r, to ensure that it
also minimizes distance between the true measure and the modeled measure so that we may
reach zero at d∗Pŵ = r ◦ dP (Pw, Pŵ

θ ) ∼ 0. Alternatively, we find the distance metric directly.
We argued above that Kullback–Leibler divergence is not a proper distance (in particular, it
is not symmetric and does not satisfy the triangle inequality). However, notably useful is
specifying d∗Pŵ directly as the Hellinger distance between a modeled probability measure
and the true probability measure [55]:

H
(

Pw(w|θw), Pŵ(w|θŵ)
)
=

√
1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw. (19)

Specifically, the squared Hellinger distance provides a lower bound for the Kullback–
Leibler divergence. Therefore, maximizing log likelihood implies minimizing Kullback–
Leibler divergence, which implies minimizing the Hellinger distance. This is easily seen by
the following:

Proposition 3. The squared Hellinger distance provides a lower bound to Kullback–Leibler diver-
gence: (

H
(

Pw(w|θw)||Pŵ(w|θŵ)
))2
≤ KL

(
Pw(w|θw)||Pŵ(w|θŵ)

)
.

Remark 4 below highlights that these notions do not just apply to the standard real-
valued time series settings considered by Granger, but can apply to the explicit probability
modeling of binary outcomes as well. Remark 4 further clarifies a result that has so far
only been presented implicitly—that the probabilistic truth identified at the discussed
zero-distance point may allow for a base level of entropy to exist even when all functional
relationships in the process have been accounted for in a model.

Remark 4. While the paper has implicitly alluded to modeling continuous real-valued processes
though the notational conventions, the connections between true probability and modeled probability
are also easily made by focusing on an explicit binary outcome problem. Define cross-entropy for
two discrete probability distributions p and q with the same support X :

H(p, q) = Ep[− ln q] = H(p) +DKL(p||q) = − ∑
x∈X

p(x) ln q(x),

in which DKL is Kullback–Leibler divergence, or the relative entropy of q with respect to p, and
H(p) is the entropy of p. Now if p ∈ {y, 1− y} and q ∈ {ŷ, 1− ŷ}, we can rewrite cross-entropy:

H(p, q) = − ∑
x∈X

px ln qx = −y ln ŷ− (1− y) ln(1− ŷ),

or, for predictions generated under a set of parameters θ and a predictor x, as

H(y, x; θ) = −
T

∑
t=1

yt ln pθ(y|xt−1)− (1− yt) ln(1− pθ(y|xt−1)).

Remember that the maximum likelihood estimator maximizes the likelihood of the data under some
probabilistic model. The correct likelihood in the case of binary classification is Bernoulli:

p(y|π) = ΠT
t=1π

yt
t (1− πt)

1−yt ,

which results in the likelihood function

p(y|x; θ) = ΠT
t=1 pθ(y|xt−1)

yt(1− pθ(y|xt−1))
1−yt .
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Taking logs then gives the following log likelihood function

L(θ; x, y) =
T

∑
t=1

yt ln pθ(y|xt−1) + (1− yt) ln(1− pθ(y|xt−1)).

This shows that negative log likelihood is proportional to Kullback–Leibler divergence and differs
by the basic entropy in the data, which is constant. Maximizing the likelihood of a binary model
can, thus, be understood as minimizing statistical distance toward a true probability measure; the
minimum value is determined by the entropy in the observed data.

5. Application
5.1. Practical Considerations

We continue this section first with some notes on practical considerations. Let LT(θ)
denote the sample log likelihood at θ ∈ Θ. Naturally, if Θs ⊂ Θ, it follows that P ŵ

Θ ⊃ P ŵ
Θs

.
In the limit, this means that maximizing likelihood minimizes Hellinger distance over
both P ŵ

Θ and P ŵ
Θs

. Following Corollary 1, if θ ∈ Θs, this results in selecting Pŵ at a
point in P ŵ

Θs
that attains equivalence to Pw. In practice, when finite data is used, two

different points, one in P ŵ
Θ \ P ŵ

Θs
and one in P ŵ

Θs
, may be obtained because the finite

sample log likelihoods LT(θ̂sT) and LT(θ̂T) that are available are both asymptotically
biased estimators of the expected log likelihood ELT(θ0). This is easily shown by using a
quadratic expansion [20,40]

lim
T→∞

E
(

LT(θ̂T)−ELT(θ0)
)
= lim

T→∞
E
√

T(θ̂T − θ0)
′ 1
T

L′′T(θT)
√

T(θ̂T − θ0) 6= 0. (20)

Under considerably restrictive conditions, the original work by [56,57] showed that the
right hand-side approaches the dimension of θ̂T and, hence, an asymptotically unbiased
estimator of E`t(θ0) is given by 1

T ∑T
t=2 `t(θ̂T)− k. Akaike also proposed the well-known

AIC given by AIC= 2T
(
k− 1

T ∑T
t=2 `t(θ̂T)

)
. Several authors have shown that the AIC can be

used to consistently rank models according to Kullback–Leibler divergence in considerably
more general settings, including the mis-specified case and have suggested further finite
sample improvements [58–60]. The AIC is also valid to decide between economic theories
for which no test statistics can be found [27]. This highlights that, while maximizing log
likelihood over Θ is not the same objective as minimizing Kullback–Leibler divergence
in finite samples, working with a complexity-penalized log likelihood (i.e., minimizing
the AIC) does select the model that attains the lowest KL-bound of all considered models
generated under Θ. Hence, in practice, a researcher can minimize the AIC as the practical
objective to minimize Hellinger distance, and use specification tests to diagnose which
of Corollaries 1 and 2 is more relevant. Since in-sample fits typically overfit data, a form
of regularization would usually allow better out-of-sample results; see, for instance the
(supplementary) discussion of [61] or the work of [62,63].

The challenge remains, however, that the AIC cannot be computed for all models as
the degrees of freedom used in the correction is generally not a well-defined quantity for
non-parametric models. As opposed to relying on in-sample corrections, cross-validation
may instead be used to obtain unbiased estimates of E`t(θ0) in a setting that is more
attuned to machine learning approaches, see for example [64]. Tests have been developed
by [20,40,65] by following the general strategy of [66] adapted to the log likelihood case.
The work has shown that choosing the model with the highest out-of-sample log likelihood
equals choosing the model configuration that has achieves the highest probability of being
the model that has lower Kullback–Leibler divergence. As the training T and validation
data T̃ grows T, T̃ → ∞, this strategy chooses the model that has achieved the lowest
Kullback–Leibler divergence, with probability converging to one.
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5.2. Application to Treasury Yield Spreads and Bitcoin Spreads

The developed theory is now put into practice using daily data from short-term and
long-term Treasury yield spreads and Bitcoin spreads. This is an interesting problem
because each of these three assets has an important relation to inflation expectations. Rising
inflation is also an acute problem, see [67,68].

The empirical strategy is as follows. First, standard linear Granger causality tests
are performed as a benchmark. Next, non-parametric models will be fit in an effort to
obtain an accurate-as-possible description of the true probability measure. The focus
will be on maximizing out-of-sample log likelihood to minimize KL-divergence. Finally,
Definitions 1 to 3 show that our conclusions about causality should be supported by a
study of the probability measure that describes the causal effects. In particular, it must be
decided whether this measure is a null-measure or produces real-valued data. This will be
done by taking the best approximation of the true probability measure using the potential
causal variable and the best approximation of the true probability measure without the
potential causal variable, and (1) concluding whether the first achieves a lower KL-bound,
and (2) testing whether the first is not stochastically equivalent to the latter. Section 5.2.1
first describes the data.

5.2.1. Data

Dynamic interactions between spreads in short-term and long-term bond yields can
naturally be expected to occur in the data. In the absence of any credit risk, the net
value of future bond payments is a function of the return required based on the inflation
expectation used to discount the cash stream. Each of the Treasury securities typically
caries a different yield, depending on maturity, the ratio between short and long-term
treasury yields signals how investors feel about the economy in the short versus long
term. If the yields vary substantially throughout the day, the market is uncertain about
its expectations. Investigating the flow of causality between long-term and short-term
yields and the interactions with other variables has been the objective of a large number of
studies. To name a few, refs. [69,70] investigate causality between bonds and credit default
swaps, while [71–75] investigate how financial distress propagates throughout connected
bond markets.

Proponents of Bitcoin have argued that it is an important hedge due to its prede-
termined finite supply. While Bitcoin, as an asset class, has only recently attracted the
public attention of large institutional investors, many researchers have already analyzed
the time-series behavior of Bitcoin prices. An overview of recent developments and more
discussion on forecasting Bitcoin prices is by [76]. They investigate a large set of covariates
that cover nearly all important classes of financial assets, except bonds. They conclude
that the intra-day distribution of daily returns follows a nonlinear memory process better
captured by machine learning methods than conventional econometric models, which is
further supported by a large body of literature that has documented related modeling
exorcises [77–83].

If investors treat Bitcoin as an inflation hedge, then the spreads may causally interact
with the U.S. yield spreads. Moreover, spreads in U.S. Treasury yields will arise predomi-
nantly from uncertainty in the expectations about the U.S. economy. Bitcoin, on the other
hand, as a global asset that can be exchanged peer-to-peer by individuals without the need
of a financial intermediary, might react to economic uncertainty in non-U.S. economies
that may have the potential to spill over. Bitcoin also trades 24 h a day, every day of the
year, and so may react to turmoil that happens outside U.S. trading hours and pass it on
when the markets open. At the same time, Bitcoin is a relatively small market and the
large institutional investors that dominate the bond market may not be active in the Bitcoin
market. Causality from Bitcoin to the bond market could, then, be unlikely. Similarly, since
Bitcoin trades non-stop, information assimilates rapidly, and so it may be likely that there
is no causal influence of bond spreads at the daily time frame. The different hypotheses
about the causal flows will be tested first using standard Granger causality tests.
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5.2.2. Estimation Results

The following general system will be considered.

s(Tt) = f 1(L(Tt, Qt, Bt, St))

s(Qt) = f 2(L(Tt, Qt, Bt, St))

s(Bt) = f 3(L(Tt, Qt, Bt, St))

(21)

In which L is a lag operator, s is a function that calculates the spread between daily highs
(ht) and lows (lt) as the log difference o(log(1 + ht) − log(1 + lt)) where 1 is added to
account for negative rates. The function o is a simple outlier replacement function that
replaces the largest observed spread (the Corona-crash) with the second largest value. The
matrices Tt, Qt, Bt are, respectively, the daily data of the ten-year bond, Quarterly bond,
and Bitcoin price at time t, and St is SP500 price data used as a control. The data used in
the analysis runs from 1 January 2017 to 20 December 2021 and were obtained from Yahoo
finance using ticker symbols ^TNX, ^IRX and BTC-USD and ^GSPC.

First, a linear VAR model is considered with lags selected using the AIC. All of the
maximums of 10 considered lags were selected, and stability was confirmed by verify-
ing that the largest eigenvalue of the companion matrix remained below 1 (The largest
eigenvalue was approximately 0.95, indicating that the process was stable but strongly
dependent. Results were also generated using differenced data, which resulted in stronger
causal linkages. Results are implemented in the code available with the paper but not
shown here for compactness. see Supplementary Materials). Conditional Granger tests for
causality are calculated by applying an F-test to the squared residuals of the model with
and without the lags of a variable of interest in the presence of the autoregressive lags and
the other control variables. The table below reports the p-values.

There are two important results in Table 1. First, the AIC, as an in-sample estimator
of KL-divergence, selects a very large number of lags. The BIC is not an estimator of
KL-divergence, see [84], but is a closely related Bayesian alternative to the AIC that is
widely used. It places a larger penalty on the number of parameters and, as such, behaves
somewhat similar to the corrected AIC in finite samples. The table shows that with this
alternative criterion, a vastly different model is chosen. As Equation (20) showed, and the
discussion after mentioned, the in-sample estimator of log likelihood is a biased estimator of
expected log likelihood and, in practice, it is difficult to determine the appropriate penalty.
In Table 1, two vastly different results are obtained. In both cases, however, the p-values
of all causality tests are small. Both models suggest that there are strong causal linkages
between spreads in all three markets. The statistical significance is somewhat dubious: the
VAR(AIC) suggests that the causal flow of financial distress spills over in all directions.
Moreover, Table 1 shows that, by adding more lags the significance of the causality tests
increases, while it is likely that with 10 lags the model is trying to approximate a nonlinear
process and the extremely high number of parameters involved in this approximation are
likely over-fitting the data.

Table 1. p-values for Granger causality tests using VAR methods. Columns indicate the dependent
variables, rows correspond to exogenous lags tested for causality. Each linkage is tested in the
presence of lagged SP500 spreads as a control. Note that the BIC is not an estimator of KL-divergence,
but it is widely used as a Bayesian alternative that places a higher penalty on dimensionality. Blank
entries are intentionally left so, as they refer to endogenous linkages.

AIC (lags = 10) BIC (lags = 3)

s(Tt) s(Qt) s(Bt) s(Tt) s(Qt) s(Bt)

L(s(Tt)) 0 0.0225 0 0.2207
L(s(Qt)) 0 0.0021 0.0183 0.0450
L(s(Bt)) 0.0142 0.0083 0.1093 0.0635
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The section will now use an RF model to better approximate ( f 1, f 2, f 3). The im-
plementation used is that of [85], all possible tuning parameters are considered. The
consistency of the RF in a time-series context under the assumption of data generated
by a nonlinear autoregressive process is developed by [86]. As the previous sections de-
tailed, the out-of-sample estimate of log likelihood is proportional to KL-divergence but
RF models are typically not estimated using an in-sample log likelihood approach. A log
likelihood function can nevertheless still be specified for out-of-sample predictions. To
retain simplicity of the example, the commonly used Gaussian formulation is used:

`(vt, µt, σt) =
T

∑
t

1
2
(2πσ2

t )−
(vt − µt)2

2σ2
t

(22)

In this function, vt are holdout validation samples at time t and µt is the mean parameter,
which will be substituted by the conditional means predicted on the holdout data by
the model. Note that σt, the variance parameter, is allowed to be time-varying. This is
important because spread data is not homoskedastic, and the variance varies over the
time dimension [87,88]. The log likelihood function thus allows for heteroskedasticity, the
standard literature is followed and σt estimated using an ARMA-GARCH model. (The
algorithm is as follows. Consider the time-varying density Ft = (µt, σt, ϑ), where µt is a
conditional mean process. For simplicity, it is defined as an ARMA (1, 1) process

µt = c + φµt−1 + θεt−1 + εt, (23)

and the conditional variance, again for simplicity, is specified as a GARCH process of
order (1, 1):

σ2
t = ω + αε2

t−1 + βσ2
t−1 (24)

with σ2
t as the conditional variance, ω an intercept, and L the back-shift operator. The vector

ϑ specifies any remaining parameters of the distribution, in this case, the log likelihood is
estimated using the Gaussian distribution in line with the validation criterion).

The RF models use three lags of the spread data so that the BIC-selected VAR model is
nested. Several other features are added that may help describe the long-term dependencies
captured by the AIC-selected model more accurately. In particular, a relative strength index
(RSI) of all close values, including the SP500 close, is calculated. This is a standard indicator
on [0, 100], described in many resources that compare average upward movement to
average downward movements over a look-back period. The standard period of 14 days
is used along with a look-back of 14 weeks. The latter is also calculated using the spread
data. This way, the model may learn different dependencies in periods of sustained decline,
increase, or stability, in spreads and prices. The bootstrap sampling algorithm of the RF
allows for case weights, effectively increasing the probability that highly weighted cases are
over-represented in the random base learners, see [85]. This is exploited; σ2

t is standardized
in the training data to be used as case-weights so that observations during more volatile
periods feature more frequently in the sampling scheme.

The out-of-sample log likelihood is cross-validated using Equation (23), using 20 folds
so that each validation sample has approximately 60 observations. The splits are generated
using a stratified sampling approach that conditions on the RSI of the SP500. In other words,
validation samples are chosen so that each validation sample equally represents days of
under-bought, over-bought, and neutral stock market territories. The split is generated
once and kept identical for each model so that the results can be directly compared. In total,
an out-of-sample log likelihood value is generated for each observation so the sum of the
log likelihood is taken to obtain an estimate of total out-of-sample log likelihood.

The results in Table 2 show the following. First, the nonlinear autoregressive models
(indicated by the rows that apply a lag operator to the dependent variable listed in each
column) all out-compete the VAR model that used all variables. According to the theory
of the paper, the causal results obtained using the linear Granger causality tests in Table 1
should thus be discarded in favor of the theory that each variable follows a nonlinear
autoregressive process that only makes possible reference to the SP500 but not the other
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variables of interest. For instance, the VAR of the ten-year Treasury yield spreads reach
an out-of-sample log likelihood of 3916.77, while the nonlinear RF model reached a log
likelihood of 3932.78 without using the lagged quarterly yield spreads or Bitcoin spreads.
The differences in log likelihood are even larger for the models for quarterly Treasuries
spreads and Bitcoin spreads.

Table 2 contains only evidence for two possible causal linkages. First, the model for
the spreads on the ten-year that reached the lowest KL-bound used the lags of the quarterly
yield data. This suggests that causality, in financial distress, may run from the short-term
bonds to the long-term bonds. This is sensible; acute economic fears may impact short-term
expectations more heavily, and the reaction in the short-term yields may trigger further
fears about longer-term economic expectations. The second causal link could run from
the Bitcoin market to the quarterly bonds. This is not far-fetched: Bitcoin trades non-stop
and so any event globally can impact the Bitcoin market immediately, whereupon the
increased fear in the Bitcoin market could then trigger further reactions in the short-term
bond market, which would be more susceptible to short-term economic fears. However,
the point increase in log likelihood that backs this hypothesis is small compared to the
model that only used endogenous lags and control data.

Table 2. Cross-validated log likelihood for different models. Columns indicate the dependent variables,
rows correspond to exogenous lagged data that are used by the models in addition to the control data.
For each dependent variable, the model that achieved the lowest KL-divergence is marked by *.

s(Tt) s(Qt) s(Bt)

VAR 3916.77 4084.68 2204.91

RF
All 3989.14 4239.42 2251.06

L(s(Tt)) 3932.78 4230.44 2251.68
L(s(Qt)) 3991.24 * 4240.54 2251.46
L(s(Bt)) 3932.90 4242.67 * 2251.84 *

Recall Remark 1: to test whether the evidence for causality is strong enough; it is
important to test whether the probability measures that achieved the lowest KL-bound are
stochastically different from those that exclude the causal linkages. A Kolmogorov–Smirnov
test, under the null of distributional equivalence against a two-sided alternative, is com-
puted. For the ten-year yield spread model, the p-value is 0, so the null is overwhelmingly
rejected. The analysis, thus, concludes that the best possible hypothesis is that disruptions
in the short-term bond market cause further disruption in the longer-term bond market.
The test for distributional equivalence between the model with and without Bitcoin data
has a p-value of 0.8591. In other words, the null of equivalence cannot be rejected and, while
the model that used Bitcoin data reached the lowest KL-bound, the analysis does not find
significant evidence for a causal flow from the Bitcoin market to the short-term Treasuries
as the modeled probability measure is not significantly distinguishable from the competing
non-causal measure. This suggests that the probability measure that describes the causal
effects in Definition 2 is not distinguishable from that of Definition 1, and so Corollary 1 or 2
remain inconclusive. The final conclusion that causal flows are thus parsimonious is far
more likely than the result obtained with the VAR, which suggested that causality flows
significantly in all directions.

6. Concluding Remarks

This paper has developed a probabilistic theory of causation using measure-theoretical
concepts. It discussed how probabilistic truths can be approximated by minimizing distance
to the true probability measure over a space of measures in which each element is associated
with a probabilistic theory about causation. This notion is flexible and has allowed for
a wide range of models to be used for causal inference, including linear and nonlinear
dynamical models. The theory has been applied using daily data on yield spreads to
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test how uncertainty around short-term and long-term expectations about future inflation
interact with uncertainty in the daily Bitcoin price. The results were contrasted with those
obtained using standard linear Granger causality tests. While linear Granger causality
relies on models that assume a constant causal influence from one variable onto another,
specified by static parameters, the analysis has shown that time-varying properties of the
auto-regressive process provides a better description of the data. While the linear Granger
causality tests finds significant causal influence in all directions, the suggested measure-
theoretic approach to causality testing, using, in this example, a random forest model,
found only one significant causal link that ran from financial distress in the short-term
bond market to uncertainty in the long-term bond market.

As with Granger’s approach, a convincing theory of how causes produce effect is
not necessarily a prerequisite to making correct causal inferences. Clear hypotheses about
causal relations may, however, help guide the inference by helping design better models.
However, whereas Granger’s definition “is based entirely on the predictability of some
series” [5], the ideas of the current paper start with the notion that true probabilistic laws
exist and can, and should, correctly be approximated to infer causal structures from data. A
conclusion from this is that researchers interested in causal analysis should aim to develop
strong out-of-sample predictions, as Granger’s techniques applied to inaccurate models
may provide an overly enthusiastic description of causal linkages.

The general ideas of the paper differ from the linear Granger tests in terms of result, but
share a similarity in thought process. Granger’s statement about causality followed from the
premises that causes occur before effects and that causes contain unique information about
their effect, and so that any causal variable must help forecast outcomes after other variables
have been used first. For this reason, many refer to Granger causality as predictability.
This paper defined causality directly in terms of the probability measures that define a
stochastic process. This, in turn, places the emphasis on finding the best approximation of
that probability measure. The theory developed here shows that minimizing KL-divergence
implies minimizing distance between a model and the true probability measure and shows
that maximizing out-of-sample log likelihood implies minimizing KL-divergence. This
does not require parametric models or the degrees of freedom to be known. Instead, the
KL-ranking of competing models can be directly read from the out-of-sample log likelihood.
The stochastic equivalence, or difference, between probability measures that are induced
by causal flows, or from autoregressive properties only, can subsequently be tested. The
theory provides practitioners guidance for developing causal models using new machine
learning methods that have, so far, remained relatively underutilized in this context.
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Appendix A. Proofs

Appendix A.1. Proof for Proposition 1

Proof. By construction of the criterion, as stated in Assumption 1, arg minθ∈Θ Q∞(θ) is its
minimizer, and, by assuming θ0 ∈ Θ, it is also equal to θ0. Hence, item 2 is equivalent to
item 1 by definition under correct specification.

The equivalence of the deterministic limit criterion (item 2) as a function describing the
divergence of the underlying probability measures of w and ŵ (item 4) is assumed, however,
given a limit criterion function Q∞ : Θ→ R and a flexible definition of divergence (e.g., a
pre-metric, such as the KL-divergence), it is often possible to find a divergence dP : PΘ ×
PΘ → R≥0 on the space of probability measures satisfying arg minθ∈Θ dP (Pw,P ŵ

θ ) =
arg minθ∈Θ Q∞(θ). The KL-divergence example is provided in this paper in the context of
the maximum likelihood criterion.

By the assumption that r exists, the deterministic limit criterion that minimizes diver-
gence, is also the minimizer of a distance metric d∗P (Pw, Pŵ

θ ), hence item 4 is also equivalent
to item 2.

Finally, since fW : Θ → FΘ(W) is injective, (Pw, Pŵ
θ ) ≡ d∗F( f w, f (·, θ)) ∀ θ ∈ Θ and

d∗F is a metric on FΘ(W), θ0 is also the minimizer of d∗F( f w, f (·, θ)) ∀ θ ∈ Θ so that item 3
is equivalent to item 2.

Appendix A.2. Proof for Proposition 2

Proof. The result follows immediately by the arguments used in proposition 1 dropping
only the first equivalence.

Appendix A.3. Proof for Proposition 3

Proof. First, Hellinger distance is

H
(

Pw(w|θw), Pŵ(w|θŵ)
)
=

√
1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw,

hence,

(
H(Pw(w|θw), Pŵ(w|θŵ))

)2
=

1
2

∫ (√
pw(w|θw)−

√
pŵ(w|θŵ)

)2
dw.

Now, the R.H.S. can be written as

1
2

∫
pw(w|θw)dw +

1
2

∫
pŵ(w|θŵ)dw−

∫ √
pw(w|θw)pŵ(w|θŵ)dw.

The integral of a probability density over its domain equals 1, hence the sum of the first
two terms is 1, hence this can be rewritten as

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw.
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This has an upper bound, provided by the inequality

1−
∫ √

pw(w|θw)pŵ(w|θŵ)dw ≤ − ln
∫ √

pw(w|θw)pŵ(w|θŵ)dw.

Write R.H.S. as − ln
∫ √ pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

dw and to obtain the upper bound

− ln
∫ √ pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

dw ≤ −
∫ ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

dw,

by applying Jensen’s inequality, which can be applied to the integral case, since any random
variable whose distribution admits a probability density function has the expected value
represented by the integral over the full range of the density.

Finally, define the R.H.S. as

E
∫ [

ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
dw = −

∫ ln

√
pŵ(w|θŵ)

pw(w|θw)
pw(w|θw)

dw,

and conclude that the last expression is equivalent to the Kullback–Leibler divergence by
an elementary row operation.

E
∫ [

ln
pw(w|θw)

pŵ(w|θŵ)
pw(w|θw)

]
dw ≡ KL

(
Pw(w|θw)||Pŵ(w|θŵ)

)
.

References
1. Sundholm, G. A century of judgement and inference,1837–1936: Some strands in the development of logic. In The Development of

Modern Logic; Oxford University Press: New York, NY, USA, 2009. [CrossRef]
2. Sundholm, G. “Inference versus consequence” revisited: Inference, consequence, conditional, implication. Synthese 2012,

187, 943–956. [CrossRef]
3. Pearl, J. Causality: Models, Reasoning, and Inference; Cambridge University Press: Cambridge, UK, 2000; p. 384.
4. Neuberg, L.G. Causality: Models, Reasoning, and Inference, by Judea Pearl, Cambridge University Press, 2000. Econom. Theory

2003, 19, 675–685. [CrossRef]
5. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424.

[CrossRef]
6. Granger, C.W. Testing for causality: A personal viewpoint. J. Econ. Dyn. Control 1980, 2, 329–352. [CrossRef]
7. White, H.; Chalak, K. Settable Systems: An Extension of Pearl’s Causal Model with Optimization, Equilibrium, and Learning. J.

Mach. Learn. Res. 2009, 10, 1759–1799.
8. White, H.; Lu, X. Granger Causality and Dynamic Structural Systems. J. Financ. Econom. 2010, 8, 193–243. [CrossRef]
9. White, H.; Chalak, K.; Lu, X. Causality in Time Series Linking Granger Causality and the Pearl Causal Model with Settable

Systems. JMRL Workshop Conf. Proc. 2011, 12, 1–29.
10. White, H.; Xu, H.; Chalak, K. Causal discourse in a game of incomplete information. J. Econom. 2014, 182, 45–58. [CrossRef]
11. White, H.; Pettenuzzo, D. Granger causality, exogeneity, cointegration, and economic policy analysis. J. Econom. 2014, 178, 316–330.

[CrossRef]
12. Williamson, J. Probabilistic theories of causality. In The Oxford Handbook of Causation; Chapter Probabilistic Theories; Beebee, H.,

Menzies, P., Hitchcock, C., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 185–212.
13. Bohm, D. Quantum Theory; Dover Publications, Inc.: New York, NY, USA, 1951; p. 646.
14. Bohm, D. Causality and Chance in Modern Physics; University of Pennslyvania Press: Philadelphia, PA, USA, 1999; p. 170.
15. Rubin, D.B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 1974, 66, 688–701.

[CrossRef]
16. Heckman, J.J. Econometric Causality. Int. Stat. Rev. 2008, 76, 1–27. [CrossRef]
17. Heckman, J.J.; Vytlacil, E. Structural equations, treatment effects, and econometric policy evaluation. Econometrica 2005,

73, 669–738. [CrossRef]

http://doi.org/10.1093/acprof:oso/9780195137316.003.0028
http://dx.doi.org/10.1007/s11229-011-9901-0
http://dx.doi.org/10.1017/S0266466603004109
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1016/0165-1889(80)90069-X
http://dx.doi.org/10.1093/jjfinec/nbq006
http://dx.doi.org/10.1016/j.jeconom.2014.04.007
http://dx.doi.org/10.1016/j.jeconom.2013.08.030
http://dx.doi.org/10.1037/h0037350
http://dx.doi.org/10.1111/j.1751-5823.2007.00024.x
http://dx.doi.org/10.1111/j.1468-0262.2005.00594.x


Entropy 2022, 24, 92 22 of 24

18. Mogstad, M.; Santos, A.; Torgovitsky, A. Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters.
Econometrica 2018, 86, 1589–1619. [CrossRef]

19. Parbhoo, S.; Wieser, M.; Wieczorek, A.; Roth, V. Information Bottleneck for Estimating Treatment Effects with Systematically
Missing Covariates. Entropy 2020, 22, 389. [CrossRef]

20. Andrée, B.P.J. Theory and Application of Dynamic Spatial Time Series Models; Rozenberg Publishers and Tinbergen Institute:
Amsterdam, The Netherlands, 2020; pp. 1–374.

21. White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica
1980, 48, 817. [CrossRef]

22. White, H. Maximum Likelihood Estimation of Misspecified Models. Econometrica 1982, 50, 1–25. [CrossRef]
23. Domowitz, I.; White, H. Misspecified models with dependent observations. J. Econom. 1982, 20, 35–58. [CrossRef]
24. Pötscher, B.M.; Prucha, I.R. Dynamic Nonlinear Econometric Models; Springer: Berlin/Heidelberg, Germany, 1997. [CrossRef]
25. Driscoll, J.C.; Kraay, A.C. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Rev. Econ. Stat. 1998,

80, 549–560. [CrossRef]
26. Freedman, D.A. On the So-Called “Huber Sandwich Estimator” and “Robust Standard Errors”. Am. Stat. 2006, 60, 299–302.

[CrossRef]
27. Granger, C.; King, M.L.; White, H. Comments on testing economic theories and the use of model selection criteria. J. Econom.

1995, 67, 173–187. [CrossRef]
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