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Abstract: The conventional voter model is modified so that an agent’s switching rate depends
on the ‘age’ of the agent—that is, the time since the agent last switched opinion. In contrast to
previous work, age is continuous in the present model. We show how the resulting individual-based
system with non-Markovian dynamics and concentration-dependent rates can be handled both
computationally and analytically. The thinning algorithm of Lewis and Shedler can be modified in
order to provide an efficient simulation method. Analytically, we demonstrate how the asymptotic
approach to an absorbing state (consensus) can be deduced. We discuss three special cases of the
age-dependent switching rate: one in which the concentration of voters can be approximated by a
fractional differential equation, another for which the approach to consensus is exponential in time,
and a third case in which the system reaches a frozen state instead of consensus. Finally, we include
the effects of a spontaneous change of opinion, i.e., we study a noisy voter model with continuous
ageing. We demonstrate that this can give rise to a continuous transition between coexistence and
consensus phases. We also show how the stationary probability distribution can be approximated,
despite the fact that the system cannot be described by a conventional master equation.

Keywords: voter model; ageing; non-Markovian systems; thinning algorithm

1. Introduction

Sociophysics, understood as the application of physics-inspired techniques to prob-
lems of sociological interest, has made important progress towards the understanding of
consensus formation in populations [1–7]. In the most basic models, there are two different
points of view (or opinions) about a topic. Each individual in the population holds one
of these opinions at any one time, and switches between the two states according to basic
mechanisms of imitation and spontaneous opinion changes. Imitation plays a similar role
to that of positive interaction in physical systems, namely the attractive forces leading
particles to align their states, e.g., their spin or velocity. This tends to drive the system
towards consensus, or order. The second component in many models of opinion dynamics
is a tendency to act independently. This is a force favouring disorder, akin to temperature or
noise. The competition between imitation and noise can lead to a phase transition between
states near consensus, in which a significant fraction of the population adopts the same
opinion, and disordered states in which both opinions coexist in the population with almost
equal proportions. This very simple setup lies at the heart of the voter model [8–11], which
we will be considering in detail throughout the paper.

The voter model is an example of an individual-based stochastic model. Other ap-
plications of such models include population dynamics in biology [12], game theory and
evolution [13], the evolution of languages [14–18], and opinion dynamics more gener-
ally [1,19,20]. These models often consist of a very stylised description of the real-world
processes, and focus not primarily on studying specific real-world situations, but rather on
characterising generic cause-and-effect relations.
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One simplifying assumption that is often made in the formulation of such models is
that of Markovianity, i.e., the time evolution of the system is taken to depend only on its
current state, but not on its previous history. Making this assumption is mathematically
convenient, as the machinery for Markovian stochastic processes is well developed [21,22]
and can therefore readily be applied.

Discarding memory and history independence is a choice that is made when setting up
a particular model. Together with the propensity of physicists to focus on stylised models,
the Markovian assumption limits the range of mechanisms and phenomena that can be
studied. For example, it is sensible to assume that real-world agents will be subject to some
sort of ‘inertia’ when it comes changing their opinion on a particular topic. Their propensity
to change will depend on how long they have held their current opinion. Similarly, the rate
with which a member of a population infects others with a disease, or recovers from it, will
depend on how long they have been infected [23–27]. Similarly, the Markovian assumption
breaks down in other applications of individual-based modelling: the production of mRNA
and proteins in gene regulatory systems are delayed events [28–32], and anomalous diffu-
sion is manifestly non-Markovian [33–35]. Other recent works [36,37] consider memory
effects in opinion dynamics happening online, where the whole history of past events of an
individual becomes relevant. In this case, the memory effects are a consequence of social
online platforms storing personalised information about their users.

There are typically two (related) ways to introduce history dependence into a model.
In order to capture the more detailed dynamics leading to delays and memory, one can
extend the state space of the model. For example, one can introduce different stages of
a disease, or different classes of agents with different ages. The progression between
these states can then be modelled as Markovian. Alternatively, one can depart from
the assumption of Markovianity entirely and set up a model in which the dynamics
become non-Markovian. These two approaches are not entirely disparate; they are merely
complementary descriptions of the same underlying processes. Fundamentally, it does not
make sense to say that a particular process in nature either has or does not have memory—it
is only models of this process that can be Markovian or non-Markovian. Which one it is
depends on the scale at which one chooses to model the process mesoscopically.

In previous incarnations of the voter model with ageing [38–41] (as well as in the
majority-vote model [42]), age has been implemented as a set of discrete ‘stages’ through
which individuals progress at a constant rate. As they progress through these stages, voters
have different proclivities to change opinion. This discretisation of age was a convenient
simplification that meant that the usual methods of analysis and simulation for Markovian
systems could still be used. Other existing literature, however, addresses models with
dependence of the transition rates on internal persistence times [43–45]. These latter works
relied mostly on numerical simulations.

In this work, on the contrary, we use analytical and numerical methods to study a
non-Markovian variant of the voter model, in which each agent has an age (a continuous
variable), given by the time since the agent last changed opinions. This setup presents
us with several challenges. From a computational standpoint, even a numerical simu-
lation of the system is a non-trivial task, as the celebrated Gillespie algorithm [46] can
no longer be used in its standard form. Modifications are instead necessary following
the lines of, for example, [47–49]. From an analytical perspective, the powerful frame-
work associated with the master equation has to be substantially modified to deal with
non-Markovian systems [50,51]. To remedy this, path-integral approaches have been de-
veloped that allow one to perform system-size expansions, thus avoiding the need to
write a master equation [26,28,33]. Alternatively, there often exist parameter regimes in
which one can approximate the full non-Markovian dynamics with an effective Marko-
vian system [23,24,39,52]. Such an approximation replaces history dependence with an
additional non-linearity.

We demonstrate several advantages to employing a continuous ageing process over a
discrete version. In addition to being more natural and realistic, the elimination of the age
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variables for each individual to obtain the macroscopic concentrations for either opinion as
a whole is far simpler in the continuous case. Further, we are able to demonstrate that the
approach to consensus in the case of power law ageing and in the absence of spontaneous
opinion changes follows a fractional differential equation. This is not at all transparent for
discrete ageing. Moreover, we are able to approximate the full stationary distribution using
an adiabatic reduction method. All of these analytical advantages are available without
sacrificing computational efficiency through the appropriation of the thinning algorithm by
Lewis and Shedler [49,53].

The rest of the work is structured as follows. We first introduce the modified voter
model with continuous ageing in Section 2.1. We then describe how the thinning algorithm
can be used to simulate the system in Section 2.2. Section 3.1 focuses on the model without
spontaneous opinion changes. In particular, we use a deterministic approximation to
examine the approach to consensus and the conditions under which consensus is reached
in Section 3.2. This is achieved through a linearisation of the deterministic dynamics near
an absorbing state. We analyse different scenarios of ageing and show that the type of
ageing can severely affect the presence or absence of ordering, and, in cases where the
system orders, the approach to consensus. In Section 3.3.1, we include the possibility of a
spontaneous change of opinion and analyse the resulting continuous phase transition be-
tween order and disorder, and we describe how ageing makes this transition different from
that in the conventional voter model. Finally, we go beyond the deterministic dynamics
and analyse the stochastic fluctuations about the deterministic fixed points in Section 3.3.2.
We discuss the results and conclude in Section 4.

2. Methods
2.1. Voter Model with Age-Dependent Switching Rates

Consider a population of N agents (voters). At each point in time t, each agent
is described by a binary variable si(t) = ±1, representing the agent’s opinion, where
i = 1, . . . , N. We write n±(t) for the total number of voters in each of the two states
at time t. We have n+(t) + n−(t) = N for all t. The corresponding intensive variables
are x±(t) = n±(t)/N, and we have x+(t) + x−(t) = 1. Adopting the terminology of
ferromagnetism, it is convenient to introduce a ‘magnetisation’ m(t) = |x+(t)− x−(t)|.

The variables si(t) evolve in time via a stochastic process, defined by the rate ri(t)
at which agent i changes its current opinion from si to −si. In addition to the state of
the system s(t) = {s1(t), . . . , sN(t)}, the rate ri(t) can depend on the age τi(t) of the
agent at time t; in our model, this is defined as the time since the agents’ last change
of state. Other names given to this ‘age’ variable appear in the literature as ‘persistence
time’ [43] or ‘internal time’ [40,44]. Given the all-to-all connectivity of agents that we adopt
throughout this paper, the rates are

ri(t) ≡ r[si(t)→ −si(t); s(t); τi(t)] = a +
pτi(t)

N ∑
j 6=i

[
1− δsi(t),sj(t)

]
. (1)

The first term, involving the model parameter a, describes spontaneous changes of opinion.
The second term reflects the imitation mechanism. This term is proportional to the density
of agents holding the opinion opposite to the current state of agent i. The factor pτi(t),
the activation rate, represents the age dependence of the propensity of agent i to imitate
another agent (we will refer to this as the ‘ageing profile’). The rates in Equation (1) can
also be re-expressed in the following form:

r±τ (t) = a + pτx±(t). (2)

These are the per capita rates with which voters of age τ switch from state ∓1 to ±1.
Classifying agents by their age τ, we define the number densities n±(τ, t) such that∫ τ2

τ1
dτ n±(τ, t) is the number of voters in opinion state ±1 with ages between τ1 and τ2
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at time t. The corresponding intensive variables are x±(τ, t) = n±(τ, t)/N, and we have
the relation

x±(t) =
∫ ∞

0
dτ x±(τ, t), (3)

and similarly for n±(t).
We first note that the model reduces to the conventional noisy voter model [54,55]

when pτ is a constant not depending on τ. The phenomenology of this special case is
well known: for a = 0 (and assuming N is finite), the system reaches a consensus state
in which all agents hold the same opinion (either +1 or −1). One then has m(t) → 1 in
every realisation as t→ ∞. For a > 0, there is a critical value a = ac such that m(t) assumes
values close to 0 for a > ac. Here, as t→ ∞, both opinions are present in the population in
similar proportions at any one time. However, when a < ac, m(t) tends to a non-zero value.
The critical value ac = O(1/N) separates the two regimes. We note that ac → 0 as N → ∞;
hence, this is a finite-size transition. As we will show, both the approach to consensus (for
a = 0) and the mean magnetisation of the system (for a > 0) can be affected dramatically
by the introduction of different ageing profiles pτ .

If the activation rate is a decreasing function such that the asymptotic value is lower
than the initial one, pτ=∞ < pτ=0, we have a situation in which it becomes more difficult
for an agent to change state the longer it has been holding the current state. This is typical
of ageing, in which an agent becomes more reluctant to adopt new opinions. This increased
resistance to changing state has also been described as ‘increasing inertia’ [43]. The opposite
case, p∞ > p0, which we name anti-ageing, models a situation in which agents become
tired of the current state and are more prone to adopting new viewpoints. In previous
studies of the discrete version of ageing [38,39], it was shown that when p∞ = 0, the system
may or may not reach consensus. This depends on whether the decay of pτ to zero is
slower or faster, respectively, than 1/τ. If, on the other hand, the activation rate tends to
a non-zero value from above p0 > p∞ > 0, the system orders with an exponential decay
of the fraction x±(t) of individuals to the consensus value. Finally, if the activation rate
tends to a non-zero value from below (anti-ageing) p∞ > p0 > 0, then the system does
not reach consensus. As explained in Ref. [43], the results for p∞ > 0 can be understood
heuristically by an amplification by the ageing mechanism of any small asymmetry in the
initial conditions.

2.2. Modified Thinning Algorithm for Simulation

The fact that the rates ri(t) in Equation (1) depend on age (and hence vary with
time, even when the configuration s(t) remains constant) means that we cannot use the
traditional Gillespie algorithm [46] to carry out individual-based simulations. One strategy
to overcome this issue would be to employ a staged transition from one state to the other
with Markovian progression between the stages [38–40]. This is the approach of defining an
alternative Markovian dynamics in a space with additional degrees of freedom, as discussed
in the Introduction.

A perhaps more elegant solution is to use a modification of the so-called ‘thinning’
algorithm by Lewis and Shedler [49,53], which we will now describe.

The total rate with which any switching event occurs in the population, R(t) = ∑i ri(t),
is time-dependent. One notes that the probability that voter i changes its opinion, given
that a reaction occurs at time t, is Pi(t) = ri(t)/R(t). Lewis and Shedler’s insight was to
add an additional ‘null event’, with a time-dependent rate chosen such that the total rate of
events (actual events and the null event) is constant in time. This is possible provided that
R(t) is bounded from above (we discuss this for our system below). Imagine that we have
reached a time t0 in our simulations. We then introduce an auxiliary reaction occurring
with rate R0(t) = Rmax(t0)− R(t), where Rmax(t0) ≥ maxt>t0 R(t). When this additional
reaction occurs, nothing happens in the population. The total reaction rate until the next
event is now constant in time and equal to Rmax(t0). The individual rates (R0(t), {ri(t)})
are time-dependent, and preserve the statistical properties of the original process.
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One requirement for this construction is that the total rate R(t) must be bounded from
above, R(t) ≤ Rmax(t0) for all t > t0. If the condition pτ < pmax for all τ is satisfied for
some pmax, then we can bound R(t) ≤ Rmax(t0) ≡ aN + 2pmaxn−(t0)n+(t0)/N. The con-
dition pτ < pmax is naturally satisfied for a decreasing function pτ of age τ. In the event
that pτ were unbounded, one could use the alternative approximate simulation method
in Ref. [48].

More precisely, we simulate the system as follows:

1. Set t = 0. Initialise all ages τi(0) = 0 and draw the states si(0) from the desired
initial distribution.

2. Assume that the simulation has reached time t. Set Rmax = aN + 2pmaxn−(t)n+(t)/N.
3. Draw a uniform random number u from the interval (0, 1] and calculate the time

interval to the next event ∆ = − ln u/Rmax. Update time and the ages of all voters
such that t→ t + ∆, and τi → τi + ∆ for i = 1, . . . , N.

4. Choose the type of event to occur (all rates are evaluated at the updated time):
(i) With probability R0(t)/Rmax, nothing happens.
(ii) With probability ri(t)/Rmax, voter i switches opinion, si(t) → −si(t); set

τi(t) = 0; update n±(t).
5. Go to item 2.

One inevitable consequence of the introduction of ageing into the model is that in-
dividuals become distinguishable; each individual transitions with a different rate. This
means that there are N possible events to consider, rather than simply two events, as would
be the case for the voter model without ageing. The above algorithm comes as close to
replicating the efficiency of the Gillespie algorithm as is feasible, given the far greater
number of possible events to consider.

3. Results
3.1. Deterministic Approximation for the Model without Spontaneous Opinion Changes (a = 0)

We now set out to determine analytically how continuous ageing affects the approach
to consensus in the model without spontaneous opinion changes (a = 0). We examine the
model with spontaneous changes of opinion (a > 0) in Section 3.3.

We could, in principle, begin by writing the generating functional [26,33] using the
rates in Equation (2) and then perform a system-size expansion to obtain a systematic
approximation to the individual-based dynamics. With that being said, we suppose for
now that N is large enough that fluctuations (of order 1/

√
N) in the numbers of voters in

either state can be ignored and we simply aim at writing deterministic rate equations for
the concentrations x±(t) = n±(t)/N. This approach is valid in the thermodynamic limit
N → ∞. We relax the deterministic assumption in Section 3.3, where we examine stochastic
fluctuations about deterministic fixed points.

Let us consider a small interval of time ∆t. At time t, the average number of individuals
in the state ±1 and ages in the interval [τ, τ + ∆t) is ∆tNx±(τ, t). Following Equation (2),
during the time interval [t, t + ∆t), each one of these agents switches state with probability
∆t pτ x∓(t). Noting that the number of voters in state ±1 with ages in [τ + ∆t, τ + 2∆t)
at time t + ∆t is equal to the number of voters in the same state at time t with ages in
[τ, τ + ∆t) minus the number of those voters that change state in the interval [t, t + ∆t),
we find

N∆tx±(τ + ∆t, t + ∆t) = N∆tx±(τ, t)− [∆tNx±(τ, t)]× [∆t pτ x∓(t)]. (4)

Expanding the left-hand side to the first order in ∆t and taking limit ∆t→ 0, we obtain

∂x±(τ, t)
∂t

+
∂x±(τ, t)

∂τ
= −pτx∓(t)x±(τ, t). (5)
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This equation has to be implemented with an initial condition x±(τ, t = 0). If all ages are
set to τ = 0 at t = 0, then the initial condition is

x±(τ, t = 0) = x±0 δ(τ), (6)

where x±0 = x±(t = 0) are the initial proportions of voters holding the ±1 opinion,
and δ(·) is the Dirac-delta function. Further, the average number of voters arriving at
the state ±1 during the time interval [t, t + ∆t) and subsequently adopting age τ = 0
can be approximated by ∆tNx±(t)

∫ t
0 du pu x∓(u, t). The number density of agents with

zero age is hence n±(τ = 0, t) = Nx±(t)
∫ t

0 du pu x∓(u, t). This encapsulates the influx
of age-zero voters into state ±1 due to opinion changes at time t, and translates into the
boundary condition

x±(τ = 0, t) = x±(t)
∫ t

0
du pux∓(u, t). (7)

Equation (5) along with the initial condition in Equation (6) and the boundary condition in
Equation (7) are the basis of our analysis.

Following [33,56–58], we use the method of characteristics to solve Equation (5).
Parameterising the coordinates t and τ such that

τ = s, t = c + τ, (8)

one finds through the characteristics of constant c that

dx±(s, s + c)
ds

=
∂x±(τ, t)

∂t
dt
ds

+
∂x±(τ, t)

∂τ

dτ

ds
=

∂x±(τ(s), t(s))
∂t(s)

+
∂x±(τ(s), t(s))

∂τ(s)
= −psx∓(s + c)x±(s, s + c). (9)

This can be solved to yield

x±(s, s + c) = x±(0, c)e−
∫ s

0 du pux∓(c+u). (10)

We then obtain, in the original coordinates t and τ,

x±(τ, t) = x±(0, t− τ)e−
∫ τ

0 ds psx∓(t−τ+s), t ≥ τ. (11)

Note that this expression is not yet a closed solution since x∓(·) appears on the right-
hand side. This quantity must satisfy Equation (3). The factor x±(0, t− τ) in front of the
exponential is given by the boundary condition in Equation (7).

The expression in Equation (11) has a simple interpretation. The right-hand side
accounts for voters that switch at an earlier time t− τ (and hence become age-zero agents
at that time), and who then survive τ units of time without switching opinions again.
The exponential factor in Equation (11) is the probability that such a voter does not change
opinion in this time interval.

We can also integrate Equation (5) directly with respect to τ and use Equations (3) and (7)
to obtain an integral-differential equation for the evolution of x±(t):

dx±(t)
dt

= x±(t)
∫ ∞

0
dτ pτx∓(τ, t)− x∓(t)

∫ ∞

0
dτ pτx±(τ, t). (12)

The initial condition in Equation (6) implies x±(τ > t, t) = 0 (no agent can have an age
larger than the current time t), so that the upper limits of the integrals can be replaced by t,

dx±(t)
dt

= x±(t)
∫ t

0
dτ pτx∓(τ, t)− x∓(t)

∫ t

0
dτ pτx±(τ, t). (13)
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This is to be implemented with the initial condition Equation (6), which implies x±(t = 0) = x±0 .
The first term on the right-hand side of Equation (13) describes the influx of voters newly
converted to the ±1 opinion. The second term represents the outflux of voters, namely
those that are converted to the ∓1 opinion. Again, these equations are not closed in terms
of x±(t). Nevertheless, as discussed in the next section, they can be used as a starting point
to analyse the approach to the consensus states x+ = 0 or x+ = 1.

3.2. Ordering Dynamics with Continuous Ageing

In the conventional voter model without ageing, consensus is reached through fluctu-
ations, i.e., there is no deterministic drift driving the system to absorption. As we show
below, the system with a power-law ageing profile pτ instead moves deterministically
towards consensus. On the other hand, when the ageing profile decays exponentially,
the system tends towards a frozen state which is dependent on the initial configuration
of opinions. In the case where a constant value of the switching propensity pτ → p∞ is
approached as τ → ∞, we show instead that the ultimate fate of the system is determined
by whether pτ is an increasing or decreasing function of τ. If p0 > p∞, then the system
approaches consensus. If p0 < p∞, consensus is not achieved.

These observations were also made in the case of discrete ageing [38]. However, our
objective here is to demonstrate the relative ease with which the results can be derived in the
model with continuous ageing. For the power-law ageing profile, we demonstrate addition-
ally that the ensemble-averaged number of agents in a specific opinion satisfies a fractional
differential equation. We also verify our results numerically with the aforementioned
thinning algorithm.

3.2.1. Linearisation Close to the Absorbing State

We now examine the behaviour close to the absorbing state of consensus at x− = 1
(and x+ = 0). A similar analysis could be performed for the state x− = 0 (and x+ = 1).
Here, we assume that x+(t) is a small quantity and examine its time dependence. With this
in mind, we can linearise Equations (11) and (12) in terms of x+(t). Our aim is then
to eliminate the age variable τ from these linearised equations in order to find a closed
equation for x+(t).

To carry out the analysis, we start at time t = 0 with x+0 = ε and x+(τ, 0) = εδ(τ).
We then have x−(0) = 1− ε, and we set x−(τ, 0) = (1− ε)δ(τ). We assume ε� 1 and—
within a linear expansion—that x+(t) and x+(τ, t) remain of order ε, and we neglect terms
of order ε2 and higher.

We focus on the expression for x+(τ, t) resulting from Equation (11). Within the linear
expansion in ε, we can replace x−(t − τ + s) = 1 in the exponential. Reiterating that
x+(τ, t) = O(ε), we then obtain

x+(τ, t) = x+(0, t− τ)Ψ(τ) +O(ε2), (14)

with the survival probability Ψ(t) = e−
∫ t

0 dτ pτ .
We next write pτ = ψ(τ)/Ψ(τ), where ψ(t) = − dΨ(t)

dt is the probability density
function of switching times for an agent who is of age zero at time t = 0. As shown in
Appendix A, the second term of the right-hand side of Equation (13) can then be written as∫ t

0
dτ pτx+(τ, t) =

∫ t

0
dτ K(τ)x+(t− τ), (15)

where the memory kernel K(τ) is defined via its Laplace transform K̂(u) = ψ̂(u)/Ψ̂(u).
For the first integral in the right-hand side of Equation (13), we use the fact that the

number of agents in state +1 is of order ε, within our approximation. The fraction of agents
that can switch out of state −1 is then also (at most) of order ε. Noting that all agents have
age zero at the beginning, the age of agents who remain in the state −1 up to time t is t,
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and we have x−(τ, t) = (1− ε)δ(t− τ) +O(ε). The first term describes the agents that do
not change state, and there is an O(ε) correction from agents who do change state. Hence,∫ t

0
dτ pτx−(τ, t) = pt +O(ε). (16)

Replacing x−(t) = 1 +O(ε) and the above results in Equation (13), we finally arrive at

dx+

dt
= ptx+(t)−

∫ t

0
dτ K(τ)x+(t− τ). (17)

We have thus achieved our goal of eliminating the age coordinates in favour of the global
variable x+(t). One notes that in place of this single equation, the linearisation in Ref. [38]
gave rise to a pair of coupled equations, one governing the influx of voters into a particular
opinion and the other governing the total number in that opinion.

3.2.2. Power-Law Ageing and the Approach to Consensus

Let us now consider a particular example of the approach to consensus in the presence
of ageing. Consider the power-law ageing profile

pτ =
γ

t0 + τ
, (18)

with constants γ > 0, t0 > 0. The corresponding survival function and distribution of
switching times are, respectively,

Ψ(τ) =

(
1 +

τ

t0

)−γ

, ψ(τ) =
γ

t0

(
1 +

τ

t0

)−(1+γ)

. (19)

Here, we consider only the case 0 < γ < 1 (see Appendix B for a discussion of the case of
γ ∈ N).

-Fractional differential equation

We now show that the concentration of voters in state +1 can be approximated by
a fractional differential equation upon the approach to consensus. We first compute the
Laplace transform of Ψ(τ) as

Ψ̂(u) = t0et0u(t0u)−1+γΓ[1− γ, t0u], (20)

where Γ(·, ·) is the incomplete Gamma function. For γ < 1, we now investigate the limit of
small u. One finds, to leading order,

K̂(u) ≈ u1−γ

Tγ
, (21)

where Tγ = Γ(1− γ)tγ
0 , and Γ(·) is the standard gamma function.

It is now useful to recall that the Riemann–Liouville fractional derivative of a function
f (t) is defined as [35]

0D1−γ
t f (t) =

1
Γ(γ)

∂

∂t

∫ t

0
dt′

f (t′)
(t− t′)1−γ

, (22)

and that it has the following Laplace transform

L
[

0D1−γ
t f (t)

]
= u1−γ f̂ (u). (23)
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Taking the Laplace transform of the second term on the right-hand side of Equation (17),
substituting the expression for the memory kernel in Equation (21), and using (23), one
then finds, after transforming back to t,

dx+

dt
≈ γx+(t)

t
− 1

tγ
0 Γ(1− γ)

0D1−γ
t
[
x+(t)

]
. (24)

This fractional differential equation is valid for t� t0.

-Asymptotic behaviour

We now deduce the scaling of x+(t) for large times. We multiply both sides of
Equation (24) (or equivalently of Equation (17)) by t, and then take a Laplace transform.
Using the fact that L[t f (t)] = − d

du f̂ (u), one obtains, after some algebra,[
1 + γ +

(1− γ)

tγ
0 Γ(1− γ)

u−γ

]
x̂+ +

[
u +

u1−γ

tγ
0 Γ(1− γ)

]
dx̂+

du
= 0. (25)

This can be solved to yield

x̂+(u) = C
uγ−1

1 + tγ
0 Γ(1− γ)uγ

, (26)

where C is a constant. For small u, we therefore have x̂+(u) ∼ uγ−1. Using the Tauberian
theorem [58–60],

x̂(u) ∼ uγ−1 ⇔ x(t) ∼ t−γ, (27)

we therefore find that x+(t) ∼ t−γ at long times. This scaling behaviour is verified
in Figure 1.

Figure 1. The ageing-induced power-law approach to consensus. Individual-based simulations of
the ageing voter model were performed using the method given in Section 2.2 for the case where
pτ = γ/(t + t0). The solid red line is the mean 〈x+(t)〉 averaged over 1000 trials and the dotted black
line is x+(t) = t−γ. The remaining system parameters were γ = 0.8, N = 100, t0 = 0.8.
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3.2.3. Ageing Profile with Non-Zero Asymptotic Value

We now consider an ageing profile that tends to a finite value at infinite age,

pτ = p∞ +
γ

t0 + τ
, (28)

with constants p∞ > 0, t0 > 0. From this definition, we note that γ = (p0 − p∞)t0.
If γ > 0, then pτ is a decreasing function of τ as p∞ < p0. In this case, as in the ones

considered before, agents become more ossified in their views if they maintain their opin-
ions. However, in contrast to the previous cases, there now remains a residual propensity
for change even at very large ages τ. If, on the other hand, p∞ > p0, i.e., γ < 0 (but also
γ > −p∞t0 to ensure that pτ > 0, ∀τ), then the propensity to change state increases with
age (but is limited from above by the finite value p∞). We call this ‘anti-ageing’.

To analyse if consensus is reached for this functional form of the ageing profile, we take
Equation (17) as a starting point. The kernel K(τ) = L−1[1/Ψ̂(u)− u

]
can be computed

from the knowledge of the Laplace transform of Ψ(t) = e−p∞t(1 + t/t0)
−γ

Ψ̂(u) = t0et0(u+p∞)[t0(u + p∞)]−1+γΓ[1− γ, t0(u + p∞)]. (29)

In order to find the asymptotic solution of Equation (17), we replace pt in the first term
on the right-hand side of the equation by its asymptotic value p∞. We note that we
retain the dependence of the ageing profile on γ in the second term (through the expres-
sion in Equation (29)). Upon taking the Laplace transform of this equation and using
L
[

dx+(t)
dt

]
= ux̂+(u)− x+(0), we find, after some algebra, that

x̂+(u) =
x(0)

1
Ψ̂(u)
− p∞

. (30)

A detailed analysis of this equation shows that the right-hand side has a single pole at
a value u∗ whose position depends on the value of γ. Inverting the Laplace transform,
the pole translates into an asymptotic behaviour x+(t) ∼ eu∗t. Furthermore, it can be
shown, as illustrated in Figure 2 for a given choice of the remaining model parameters,
that the value of u∗ is negative for γ > 0 (ageing) and positive for γ < 0 (anti-ageing).
Therefore, we conclude that the ageing mechanism with a final non-zero value of the
activation probability leads to consensus only when this final value is approached from
above. On the other hand, a situation of disorder (lack of consensus) is obtained when the
final value of pτ is approached from below. This counter-intuitive result agrees with the
results observed in the discrete version of the model [38]. We show in Figure 3 the decay
of the density x+(t) in the particular case t0 = 0.8, p∞ = 0.5, γ = 0.1, together with the
exponential functional form eu∗t.
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Figure 2. The location of the pole u∗ of the right-hand side of Equation (30), given by the solution of
Ψ̂(u∗) = 1

p∞
, as a function of γ for t0 = 2.0, p∞ = 0.5. Note that the sign of u∗ matches that of γ (see

the text for the discussion of this result).
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t
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〈x
+

(t
)〉

Figure 3. We plot (solid line) the evolution of the average density 〈x∗(t)〉 of agents holding the +1
opinion as a function of time t using the functional form for the activation rate given by Equation (28)
with p∞ = 0.5, t0 = 0.8, γ = 0.1. The results have been averaged over 100 realisations of the
stochastic dynamics starting at x∗(0) = 0.2. The dashed line is the theoretical prediction of an
asymptotic exponential decay x+(t) ∼ eu∗t with a value of u∗ = −0.0517 given by the solution of
Ψ̂(u∗) = 1

p∞
, the pole of the right-hand side of Equation (30).

3.2.4. Exponential Ageing and the Frozen State

To demonstrate how severely the qualitative behaviour of the deterministic dynam-
ics can be affected by the precise choice of ageing profile, we now consider the case of
exponential ageing,

pτ = p0e−τ/t0 . (31)

The corresponding survival function is Ψ(τ) = exp
[
−p0t0

(
1− e−τ/t0

)]
, and the distribu-

tion of survival times is ψ(τ) = p0e−τ/t0 × exp
[
−p0t0

(
1− e−τ/t0

)]
.
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In this special case, Equation (17) becomes, after taking the Laplace transform and
multiplying through Ψ̂(u) (and noting that 1− uΨ̂(u) = ψ(u) and that L

{
e−t/t0 x+(t)

}
=

x̂+(u + 1/t0)),

x̂+(u) = x+(0)Ψ̂(u) + p0 x̂(u + 1/t0)Ψ̂(u). (32)

One can expand this expression as an infinite series to obtain

x̂(u) = x+(0)
[
Ψ̂(u) + p0Ψ̂(u)Ψ̂(u + 1/t0) + p2

0Ψ̂(u)Ψ̂(u + 1/t0)Ψ̂(u + 2/t0) + · · ·
]
. (33)

One can also find a series solution for Ψ̂(u) by first expanding Ψ(t) as a series in e−t/t0 .
One finds

Ψ̂(u) = e−p0t0

[
1
u
+

p0t0

1!
t0

1 + ut0
+

(p0t0)
2

2!
t0

2 + ut0
+

(at0)
3

3!
t0

3 + ut0
· · ·
]

. (34)

If we now define

fn(p0t0) =
1
n
+

p0t0

1!
1

1 + n
+

(p0t0)
2

2!
1

2 + n
+

(p0t0)
3

3!
1

3 + n
· · · , (35)

we obtain an expression for the final value x+(∞) as a series entirely in the dimensionless
parameter p0t0 by using the final value theorem for Laplace transforms [61]

x+(∞) = lim
u→0

ux̂(u) = x+(0)e−p0t0
[
1 + p0t0e−p0t0 f1 + (p0t0)

2e−2p0t0 f1 f2 + · · ·
]
, (36)

where fn is shorthand for fn(p0t0).
We therefore see that when the rate of switching decays exponentially, consensus

never occurs on the deterministic level. One can thus find x+(∞) as a function of the
rate parameters and the starting value. We verify the expression for the frozen state in
Equation (36) in Figure 4. Based on these results, we expect that the faster the decay rate,
the larger the value of x+(∞)/x+(0).

Figure 4. The final frozen state in the case of exponentially decaying transition rate. Results of
individual-based simulations of the ageing voter model were performed using the Lewis and Shedler
thinning method (see Section 2.2) for the case where pτ = p0e−τ/t0 . The red points are the simulation
results for the mean 〈x+(t)〉 averaged over 100 trials and the dotted black line is the series in
Equation (36) truncated after 100 terms. The remaining system parameters were t0 = 1, N = 1000.
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3.3. Model with Spontaneous Opinion Changes (a > 0)

Having studied the effect that continuous ageing has on the approach to consensus,
we now allow for the possibility of spontaneous changes of opinion. Without ageing, this
is known in the literature as the ‘noisy voter’ or Kirman model [54,55,62]. In other words,
now, each voter changes its opinion with a constant rate a 6= 0 (see Equation (2)), as well as
copying others at an age-dependent rate pτn∓/N.

We demonstrate here how the order–disorder transition in the noisy voter model is
modified in two different ways. First, the transition in the noisy voter model is discon-
tinuous, in the sense that the mode of the stationary distribution has a discontinuity at
the transition. As we will show, there is no such discontinuity in the models with ageing
that we consider. Second, the transition occurs at a value of a that scales as N−1 in the
noisy voter model without ageing—that is, this is a finite-size transition. In the model with
ageing, instead, the value of a at which the transition occurs does not depend on the system
size N, and remains non-zero as N → ∞. Similar results were also derived in Refs. [39,40]
for the case of staged ageing. We show here that modelling ageing as a continuous process
makes the analysis more straightforward than in the case of staged ageing.

In addition to studying the transition on a deterministic level, we also show how
the fluctuations about the deterministic fixed points can be quantified. We show that the
stationary distribution can be approximated using an adiabatic elimination [39].

3.3.1. Continuous Phase Transition

Let us now revise the deterministic rate equation in Equations (5) and (7) to include
spontaneous changes of opinion. One obtains

∂x±(τ, t)
∂τ

+
∂x±(τ, t)

∂t
= −[a + pτx∓(t)]x±(τ, t) (37)

with initial and boundary conditions

x±(τ, t = 0) = x±(0)δ(τ),

x±(τ = 0, t) =
∫ t

0
dτ [a + pτx±(t)]x∓(τ, t). (38)

Now, we suppose that there exists a stationary solution such that ∂x(τ,t)±
∂t = 0, and we

write x±(τ, t)→ x̄±(τ) for the stationary profile of agents across ages. We also introduce
x̄± =

∫ ∞
0 dτ x̄±(τ). We wish to solve Equation (38) for this stationary profile x̄±(τ).

For τ 6= 0, we have

∂x̄±(τ)
∂τ

= −[a + pτ x̄∓]x̄±(τ), (39)

which yields

x̄±(τ) = x̄±(0) exp
[
−aτ − x̄∓

∫ τ

0
ds ps

]
. (40)

Now, using the boundary condition in Equation (38), one obtains the following expres-
sion for the stationary influx of voters into the states ±

x̄±(0) =
∫ ∞

0
dτx̄∓(τ)

[
a + pτ x̄±

]
. (41)
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Substituting Equation (40) into Equation (41), and realising that the integral over τ becomes
trivial, we obtain

x̄+(0) = x̄−(0) ≡ x̄(0). (42)

We note that x̄±(τ = 0) describes agents that have newly arrived in state ±1 (and hence
have age zero). Hence, this is the influx of agents into state ±1 in the stationary state. It is
then clear why Equation (42) must hold: if the influxes into the two opinion states were
different from each other, then there would be a net flow of agents from one state to the
other, and the system would be non-stationary.

Next, integrating both sides of Equation (40) with respect to τ, and using x̄+(0) = x̄−(0),
we arrive at the following closed equation for x̄+

1
x̄+

∫ ∞

0
dτ exp

[
−aτ − (1− x̄+)

∫ τ

0
ds ps

]
=

1
1− x̄+

∫ ∞

0
dτ exp

[
−aτ − x̄+

∫ τ

0
ds ps

]
. (43)

For any given ageing profile pτ , Equation (43) can be solved for the deterministic fixed
point x̄+. We note that the trivial solution x̄+ = 1/2 always exists. However, there are
ageing profiles for which there are further non-trivial solutions.

We consider the specific example pτ = γ/(t0 + τ). Evaluating the integrals in
Equation (43), we define

I(x̄+) ≡
∫ ∞

0
dτ exp

[
−aτ − x̄+

∫ τ

0
ds ps

]
=
∫ ∞

0
dτ

(
1 +

τ

t0

)−γx̄+

e−aτ

= a−1(t0a)γx̄+ eat0 Γ
(
1− γx̄+, t0a

)
. (44)

One thus finds the fixed points x̄+ and x̄− = 1− x̄+ by solving

1− x̄+

x̄+
=

I(x+)
I(1− x̄+)

. (45)

There is no closed-form analytical solution in this case, but Equation (45) can be solved
numerically. We find (see Figure 5) that, for certain values of a, multiple solutions are
possible. As a is increased, the non-trivial fixed points converge to the central value
x̄+ = 1/2 and we are left with the usual coexistence stationary state. Importantly, the value
of a at which the bifurcation occurs is independent of N, and the transition is now preserved
in the thermodynamic limit N → ∞.

Figure 5. Ageing-modified noise-induced phase transition. Here, t0 = 1, γ = 2, N = 100. Coloured
crosses represent the modal value of the magnetisation m = |x+ − x−| = |2x± − 1| obtained from
simulations using the method detailed in Section 2.2. The dashed line is the solution of Equation (45).
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3.3.2. Fluctuations about the Steady State

Having found the deterministic fixed points of the noisy voter model with ageing,
we now improve on this picture by including the stochastic fluctuations about these fixed
points. Because the rates at which voters change from one opinion to the other are both
concentration-dependent and non-Markovian, a Gaussian approximation to the noise
along the lines of Ref. [33] is difficult to achieve. In the present case, we instead make an
adiabatic approximation [39]. Specifically, we imagine that there is a separation of time
scales between the time it takes for the stationary distribution of ages to be arrived at
and the time between large changes in the population of opinions. More precisely, and as
described below, we assume that the profile of ages in the population is stationary given
the current distribution of agents n±(t) across the two opinion states ±1.

We begin by noting that the total rates at which voters of age τ switch from opinion ±
to ∓ in the population at time t are given by

Ω±τ (t) =
[
a + pτx±(t)

]
n∓(τ, t). (46)

We stress that we use ± as a superscript for the rate for transitions from ∓ to ±.
We now regard the global quantities x±(t) = n±(t)/N as slow variables to which

the quantities n±(τ, t) are enslaved. One can then replace n±(τ, t) with their station-
ary averages, conditioned on the global variables n±(t). Specifically, n±(τ, t) satisfy (c.f.
Equation (40))

n̄±(τ, t) = n±(0, t) exp
[
−aτ − n∓(t)

N

∫ τ

0
ds ps

]
. (47)

From Equation (46), we obtain

Ω±(t) ≡
∫ ∞

0
dτ Ω±τ (t) =

∫ ∞

0
dτ
[
a + pτx±(t)

]
n∓(τ, t) = n∓(0, t), (48)

where we have used Equation (47) in the last step, and the fact that the integral over τ can
be carried out directly. Further, integrating both sides of Equation (47) with respect to τ,
and using the definition of I(x±) in Equation (44), we have n±(t) = n±(0, t)I(x∓).

Ω±(t) =
n∓(t)

I[x±(t)]
. (49)

The stationary state for n± can now be approximated from the one-step process for n+.
We have n+ → n+ − 1 with rate Ω−(n+) = n+/I[(N − n+)/N], and n+ → n+ + 1 with
rate Ω+(n+) = (N − n+)/I[n+/N].

Using the well-known result for the WKB (or Eikonal) approximation of the station-

ary distribution of the master equation Pst(x+) ∝ exp
{

N
∫ x+ dy ln

[
Ω+(Ny)
Ω−(Ny)

]}
[63], one

finally obtains

Pst(x+) ∝ exp

{
N
∫ x+

dy ln
[
(1− y)I(1− y)

yI(y)

]}
. (50)

This approximation for the stationary state is verified in Figure 6. One notes that the
maxima of the stationary distribution are given by the fixed points in Equation (43). Our
approximation of the stationary distribution is valid in parameter regimes where there
is only one fixed point. In the vicinity of the transition point and beyond, the adiabatic
approximation no longer applies.
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(a) (b)

(c)

Figure 6. The stationary distribution of the concentration x+ for various values of the noise strength
((a) a = 1, (b) a = 0.2, (c) a = 0.126). The age-dependent rate in Equation (18) was used with
fixed parameters t0 = 1, γ = 2 and N = 100. Coloured crosses are the results of simulations using
the Lewis and Shedler thinning method discussed in Section 2.2 and the dashed line is given by
Equation (50).

4. Discussion and Conclusions

In this work, we have studied an augmented version of the voter model, in which
the rate at which individuals are persuaded to change their opinion depends on their
age, i.e., on the time since the individual last changed opinion. Our analysis is based
on numerical approaches and on analytical approximations. We outlined a modified
version of Lewis and Shedler’s thinning algorithm, which allowed us to carry out efficient
simulations of the system. We then went on to analytically characterise the deterministic
dynamics (the analogue of rate equations in this non-Markovian system) for the voter
model with ageing, but without the possibility for agents to change opinions spontaneously.
Depending on the form of the ageing profile, we find both a power-law and exponential
approach to consensus, as well as frozen states in which both opinion states remain in the
population indefinitely.

Allowing for the possibility of spontaneous opinion changes alters the behaviour of
the system. We demonstrated within a deterministic approximation that the fixed points
then undergo a pitchfork bifurcation at a critical value of the propensity to spontaneously
change opinions. Unlike in the conventional voter model (without ageing), the location
of the transition point does not depend on the size of the population, and the transition
remains even in the thermodynamic limit.

Although no simple master equation can be formulated for the model (due to its
non-Markovian dynamics), we were also able to go beyond a deterministic description,
providing an approximation to the stationary distribution of fluctuations about the fixed
points. Depending on the rate of spontaneous opinion changes, we find unimodal or
bimodal distributions for the number of agents in either opinion state.

The use of continuous ageing has several advantages in comparison to earlier mod-
els with discrete ageing. First, it is a much more natural way to describe the ageing
process—changes in the proclivity of individuals to alter their opinions do not occur sud-
denly, but rather vary gradually. Further, the expressions that are obtained from the
analytical treatment are more compact. For example, we obtain a closed equation for the
approach to consensus in Equation (17), whereas two coupled equations were required in
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Ref. [38]. With this equation, we were able to find, for several ageing profiles, whether or
not the system reaches asymptotically the consensus state and at what rate.

The types of equations that we encounter in this work are familiar from other problems
in which memory effects are important. For example, the convolution with the memory
kernel in Equation (17), which resulted from our elimination of the age variables, is also
found in the context of anomalous diffusion [33,56], and in systems with distributed
delay [26,28]. Our work therefore connects the voter model with ageing with this existing
literature. We also showed that the memory kernel can be traded for a fractional derivative
for survival time distributions with a power-law tail with an exponent γ between zero and
one. This is a general trait in non-Markovian systems [34,35].

One feature that sets the voter model with ageing apart from many existing systems
with non-Markovian dynamics is the fact that the rate with which agents change opinion
depends on the fraction of voters in the opposite state. Hopping rates in systems with
anomalous diffusion, in contrast, typically do not depend on the concentration of other
substances in the system [60]. Similarly, delayed recovery in a model of epidemics does
not depend on, say, the number of susceptible or recovered agents in the population.
The concentration dependence in the reaction rates adds a layer of complexity in the
voter model with ageing. It is the combination of non-Markovianity and concentration
dependence that meant that we had to linearise about the absorbing state in order to
eliminate the age variable τ. No such linearisation was required to eliminate the age
variables in, for example, Refs. [26,28,33,56,57].

We envisage that the approaches developed here could be useful for a variety of other
problems. The thinning algorithm by Lewis and Shedler [49] is somewhat undervalued
in our opinion and can be modified for systems beyond those involving single-species
Poisson processes, for which it was originally conceived. We have here shown how the
algorithm can be used for systems in which the reaction rates at a given point vary in
time due to a dependence on the state of the system at an earlier time. We also anticipate
that the analytical methods that we used could be applied in other systems. Fluctuations
in subdiffusive systems or gene regulatory circuits are often treated using a Gaussian
approximation [28,29,33]. One future avenue might be to try to eliminate the equivalent of
the ageing variable in these systems along the lines of what we have done in Section 3.3.2.
One could then try to characterise the stationary distribution of these models based on
a reduced Markovian birth–death process. As a further line of future work, our method
for studying the approach to consensus could also be re-purposed for the approach to
absorbing states in more general non-Markovian models. The approach to fade-out in
models of an epidemic could be an example.

As in many models in sociophysics, it is relevant to study the effect of the network
of interactions. This has been studied numerically for the voter model with ageing both
for the characteristic decay to consensus [44] and the nature of the phase transition in the
case with noise [40] for different random network structures (regular 2,3,4-dimensional,
Barabasi–Albert, Erdos–Renyi, etc.). It would be interesting to combine the analytical
techniques used in this study with recently developed approximate methods specifically
designed to study the dynamics of agent-based models on complex networks (see [64] for a
recent approach and a revision of existing methods).
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Appendix A. Derivation of Equation (17)

We recall the definition of the Laplace transform L[ f (t)] ≡ f̂ (u) =
∫ ∞

0 dt f (t)e−ut of

an arbitrary function f (t) and the convolution theorem L
[∫ t

0 dτ f (τ)g(t− τ)
]
= f̂ (u)ĝ(u).

We start from the integral in the second term on the right-hand side of Equation (13),
and use Equation (14) to leading order in ε, and we obtain

∫ t

0
dτ pτx+(τ, t) =

∫ t

0
dτ pτΨ(τ)x+(0, t− τ)

=
∫ t

0
dτ ψ(τ)x+(0, t− τ)

= L−1
[
L
[∫ t

0
dτ ψ(τ)x+(0, t− τ)

]]
= L−1[ψ̂(u)L[x+(0, t)

]]
= L−1

[
ψ̂(u)
Ψ̂(u)

Ψ̂(u)L
[
x+(0, t)

]]

= L−1

 ψ̂(u)
Ψ̂(u)

L

∫ t

0
dτ Ψ(τ)x+(0, t− τ)︸ ︷︷ ︸

=x+(τ,t), [Equation (14)]




= L−1
[

ψ̂(u)
Ψ̂(u)

L
[
x+(t)

]]
=
∫ t

0
dτ K(τ)x+(t− τ), (A1)

We have used
∫ t

0 dτ x+(τ, t) = x+(t), and defined the memory kernel via its Laplace
transform K̂(u) = ψ̂(u)/Ψ̂(u). Using the known properties of the Laplace transform, one

finds ψ̂(u) = 1− uΨ̂(u), leading to K̂(u) =
1

Ψ̂(u)
− u.

Appendix B. An Alternative to the Linearised Equation (17)

In Section 3.2.1, we derived a linearised integro-differential equation (see Equation (17))
for the evolution of the global fraction x+(t) close to the consensus state x− = 1, x+ = 0.
In this section, we explore an alternative integral equation and apply it to the ageing profile
of Section 3.2.2 for the case with γ ∈ N.

Taking the characteristic solution for x+(τ, t), Equation (11), around the absorbing
state x− = 1, x−(τ, t) = δ(t− τ), and using the boundary condition Equation (7), we have

x+(τ, t) = x+(0)δ(t− τ)e−
∫ τ

τ−t dupu + Θ(t− τ)x+(t− τ)pt−τe−
∫ τ

0 dupu , (A2)

where Θ(z) is the Heaviside function, Θ(z) = 0 for z ≤ 0 and Θ(z) = 1 for z > 0.
Using the definitions of the survival probability Ψ(τ), this reduces to

x+(τ, t) = x+(0)δ(t− τ)
Ψ(τ)

Ψ(τ − t)
+ Θ(t− τ)x+(t− τ)pt−τΨ(τ). (A3)
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Integrating over
∫ ∞

0 dτ, we find

x+(t) = x+(0)Ψ(t) +
∫ t

0
dτpτx+(τ)Ψ(t− τ), (A4)

which is a closed integral equation for x+(t).
For the special case pτ = γ/(t0 + τ), we have Ψ(t) = (1 + t/t0)

−γ and
Equation (A4) becomes

x+(t) =
x+(0)

(1 + t/t0)γ
+ γ

∫ t

0

x+(τ)
(t0 + τ)(1 + (t− τ)/t0)γ

dτ. (A5)

For γ ∈ N, we apply a partial fraction decomposition to the integral kernel, which is a
rational polynomial function. We obtain a sum of simple fractions

1
(t0 + τ)(1 + (t− τ)/t0)γ

=
1

(2 + t/t0)γ(t0 + τ)
+

γ

∑
n=1

tγ−n
0

(2 + t/t0)n(t0 + t− τ)γ−n+1 . (A6)

Introducing Equation (A6) in Equation (A5), we have

x+(t) =
x+(0)

(1 + t/t0)γ
+

γ

(2 + t/t0)γ

∫ t

0

x+(τ)
t0 + τ

dτ

+ γ
γ

∑
n=1

tγ−n
0

(2 + t/t0)n

∫ t

0

x+(τ)
(t0 + t− τ)γ−n+1 dτ. (A7)

We note that if x+(t) ∼ (t0 + t)−γ, the first two terms of Equation (A7) also have the asymp-
totic behaviour ∼ t−γ for t→ ∞. We now prove that the remaining terms decay faster than
this and therefore that x+(t) ∼ (t0 + t)−γ is a self-consistent solution to Equation (A7).

First, consider the following auxiliary series decomposition

1
(t0 + τ)γ(t0 + t− τ)γ−n+1 =

γ

∑
m=1

Am

(2t0 + t)2γ−n+1−m(t0 + τ)m

+
γ−n+1

∑
m=1

Bm

(2t0 + t)2γ−n+1−m(t0 + t− τ)m , (A8)

where Am and Bm are (constant) coefficients. Equation (A8) corresponds to the inte-
grand in the terms of the sum in Equation (A7) after introducing the proposed solution
x+(t) ∼ (t0 + t)−γ. This fraction decomposition allows us to perform the integrals in
Equation (A7), from which we conclude that, asymptotically, the leading term corresponds
to ∫ t

0

dτ

(t0 + τ)γ(t0 + t− τ)γ−n+1 ≈
t−γ+1
0

γ− 1
Aγ

(2t0 + t)γ−n+1 . (A9)

Thus, we have
1

(2 + t/t0)n

∫ t

0

x+(τ)
(t0 + t− τ)γ−n+1 dτ ∼ t−γ−1. (A10)

As a result, we see that the asymptotics of the solution x+(t) in Equation (A7) satisfy t−γ

for γ ∈ N, which is the same scaling behaviour as in the previously studied case with
0 < γ < 1 in Section 3.2.2.
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