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1 Third moment calculations

By inverting the Laplace transform expression (29) (main text), it is imme-
diate to see how the main contribution arises from the first addendum. This
is because the summation over two indices, n1 and n2, surmounts the second
summation performed over a limited set of n1. Thus, inverting the first term
in time yields
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The long time behaviour gives ⟨⟨[x(t)− x(0)]3⟩w⟩0 ∼ L2t. For short times
t ≪ L2

M2D
, the third moment behavior can be assessed by expanding the ex-

ponential functions in (S1) to the third order, yielding ⟨⟨[x(t)− x(0)]3⟩w⟩0 ∼
L2t3. For intermediate times L2

M2D
≪ t ≪ L2

D
a direct calculation shows that

the leading contribution is attributable to

⟨⟨[x(t)− x(0)]3⟩w⟩0 ≃
3!
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Tracing the analysis accomplished in Ref.[1], we assume large channel widths
L ≫ 1, so the summations over kn1 and kn2 can be replaced by a double
integral over the interval
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and approximated by:
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Applying the change of variables y = Dk2
1t and z = Dk2

2t, the time scaling

expression is immediately achieved: ⟨⟨[x(t)− x(0)]3⟩w⟩0 ∼ L2t2−
3γ
4 .

2 Fourth moment calculations

We start by reporting the Laplace transform of (31) arising from three con-
tributions in (19).
The first reads
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4!
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the second is

4!
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and the third
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In analogy with the analysis performed for the third moment, we only retain
the part of the Laplace transform ∝ L2:
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4!
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Now we need to invert back in time the leading part of the Laplace transform
(S4). Inverting the first of the three terms appearing in (S4), we have

4!
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the second yields

4!
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and the last one
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Hence, the limiting behaviours can be easily derived. For short times (t ≪
L2

M2D
), one has ⟨⟨[x(t)− x(0)]4⟩w⟩ϕ ∼ L2t4, while for t ≫ L2

D
, ⟨⟨[x(t)− x(0)]4⟩w⟩ϕ ∼

L2t2. On the other side, the study of intermediate times scaling behavior re-
quires to consider only the terms proportional to 1 − e−k2n1

Dt. Therefore,
approximating the double summation with a double integral and applying
the change of variables y = Dk2

1t and z = Dk2
2t in analogy with (S3), yields

that ⟨⟨[x(t)− x(0)]4⟩w⟩ϕ ∼ L2t3−γ.
The analysis of ⟨⟨[x(t)− x(0)]4⟩w⟩0 in the case of zero disorder must be

performed in analogy with the other cases analyzed. Hence, considering the
definition (33), we need to calculate the Laplace transform of the term∑
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f(ϕn1 = 0, ϕn2 = 0, ϕn3 = 0, ϕn1−n2−n3 = 0; t).

A rather lengthy calculation yields

4!
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Owing to the analysis reported above, the leading term is the last one ∝ L3,
which also surmounts the ⟨⟨[x(t)− x(0)]4⟩w⟩ϕ contributions that are ∝ L2

(see Eq.(32)). Therefore, let us invert back in time the last summation in
(S5):

4!
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In the short time, limit t ≪ L2

M2D
), we have ⟨⟨[x(t)− x(0)]4⟩w⟩0 ∼ L3t4.

For long times (t ≫ L2

M2D
) ⟨⟨[x(t)− x(0)]4⟩w⟩0 ∼ L3t. For times such that

L2

M2D
≪ t ≪ L2

M2D
we need to approximate the sum with a triple integral and

change variables according to y = Dk2
1t, z = Dk2

2t and q = Dk2
3t, achieving

the scaling form ⟨⟨[x(t)− x(0)]4⟩w⟩0 ∼ L3t3−
5γ
4 .
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